Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 135 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t6 + t3 + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-4,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 17 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- b_3_3, an element of degree 3
- b_3_4, an element of degree 3
- b_4_5, an element of degree 4
- b_4_6, an element of degree 4
- b_5_7, an element of degree 5
- b_5_8, an element of degree 5
- b_6_10, an element of degree 6
- b_6_11, an element of degree 6
- a_7_8, a nilpotent element of degree 7
- b_7_12, an element of degree 7
- b_8_17, an element of degree 8
- c_8_18, a Duflot regular element of degree 8
Ring relations
There are 105 minimal relations of maximal degree 16:
- a_1_02
- a_1_0·b_1_1
- a_2_1·a_1_0
- a_2_1·b_1_1
- b_2_2·a_1_0
- a_2_1·b_2_2
- a_1_0·a_3_2
- b_1_1·a_3_2
- a_1_0·b_3_3
- a_1_0·b_3_4 + a_2_12
- b_1_1·b_3_4
- b_2_2·a_3_2
- a_2_1·a_3_2
- a_2_1·b_3_3
- a_2_1·b_3_4
- b_4_5·a_1_0
- b_4_5·b_1_1
- b_4_6·b_1_1 + b_4_6·a_1_0
- a_3_22
- a_3_2·b_3_3
- b_3_32 + b_2_2·b_1_1·b_3_3 + b_2_23
- a_3_2·b_3_4
- b_3_3·b_3_4 + b_2_2·b_4_5
- a_2_1·b_4_5
- b_3_42 + b_2_2·b_4_6 + a_2_1·b_4_6
- a_1_0·b_5_7
- b_1_1·b_5_7
- a_1_0·b_5_8
- b_4_5·a_3_2
- b_4_5·b_3_3 + b_2_22·b_3_4
- b_4_6·b_3_3 + b_4_5·b_3_4
- b_4_5·b_3_4 + b_2_2·b_5_7 + b_2_22·b_3_4
- a_2_1·b_5_7
- a_2_1·b_5_8
- b_6_10·a_1_0
- b_6_10·b_1_1 + b_2_2·b_5_8
- b_6_11·a_1_0 + b_4_6·a_3_2
- b_6_11·b_1_1 + b_2_2·b_5_8 + b_4_6·a_3_2
- b_4_52 + b_2_22·b_4_6
- a_3_2·b_5_7
- b_3_3·b_5_7 + b_4_52 + b_2_22·b_4_5
- a_3_2·b_5_8
- b_3_4·b_5_8
- a_2_1·b_6_10
- b_4_5·b_4_6 + b_2_2·b_6_11 + b_2_2·b_6_10
- b_3_4·b_5_7 + b_4_5·b_4_6 + b_4_52 + a_2_1·b_6_11
- a_1_0·a_7_8
- b_1_1·a_7_8
- a_1_0·b_7_12
- b_3_3·b_5_8 + b_1_1·b_7_12 + b_1_13·b_5_8 + b_2_2·b_1_1·b_5_8
- b_4_5·b_5_7 + b_2_2·b_4_6·b_3_4 + b_2_22·b_5_7 + b_2_23·b_3_4
- b_4_5·b_5_8
- b_6_10·a_3_2
- b_6_11·a_3_2 + b_4_62·a_1_0
- b_6_11·b_3_4 + b_6_10·b_3_4 + b_4_6·b_5_8 + b_4_6·b_5_7 + b_2_2·b_4_6·b_3_4
+ b_4_62·a_1_0
- b_6_11·b_3_3 + b_6_10·b_3_3 + b_2_2·b_4_6·b_3_4
- b_2_2·a_7_8
- a_2_1·a_7_8
- b_6_10·b_3_3 + b_2_2·b_7_12 + b_2_2·b_1_12·b_5_8 + b_2_22·b_5_8 + b_2_22·b_5_7
- a_2_1·b_7_12
- b_8_17·a_1_0 + b_4_62·a_1_0
- b_8_17·b_1_1 + b_2_2·b_1_12·b_5_8 + b_2_22·b_5_8 + b_4_62·a_1_0
- b_5_72 + b_2_2·b_4_62 + b_2_23·b_4_6 + a_2_1·b_4_62
- b_5_7·b_5_8
- b_4_5·b_6_11 + b_4_5·b_6_10 + b_2_2·b_4_62
- a_3_2·a_7_8
- b_3_4·a_7_8
- b_3_3·a_7_8
- a_3_2·b_7_12
- b_3_4·b_7_12 + b_4_5·b_6_10 + b_2_22·b_6_11 + b_2_22·b_6_10 + b_2_23·b_4_6
- b_3_3·b_7_12 + b_1_13·b_7_12 + b_1_15·b_5_8 + b_2_2·b_1_13·b_5_8 + b_2_22·b_6_10
+ b_2_23·b_4_6 + b_2_23·b_4_5
- b_5_82 + b_2_22·b_1_1·b_5_8 + c_8_18·b_1_12
- b_4_5·b_6_10 + b_2_2·b_8_17 + b_2_2·b_4_62 + b_2_22·b_1_1·b_5_8 + b_2_22·b_6_11
+ b_2_23·b_4_6
- a_2_1·b_8_17 + a_2_1·b_4_62
- b_6_11·b_5_8 + b_6_11·b_5_7 + b_6_10·b_5_8 + b_6_10·b_5_7 + b_4_62·b_3_4
+ b_2_2·b_4_6·b_5_7 + b_2_22·b_4_6·b_3_4 + b_4_62·a_3_2
- b_6_11·b_5_8 + b_6_10·b_5_8 + b_4_6·a_7_8
- b_4_5·a_7_8
- b_6_10·b_5_7 + b_4_6·b_7_12 + b_2_2·b_6_10·b_3_4 + b_2_2·b_4_6·b_5_7 + b_4_62·a_3_2
- b_4_5·b_7_12 + b_2_2·b_6_10·b_3_4 + b_2_22·b_4_6·b_3_4 + b_2_23·b_5_7 + b_2_24·b_3_4
- b_6_10·b_5_8 + b_2_23·b_5_8 + b_2_2·c_8_18·b_1_1
- b_8_17·a_3_2 + b_4_62·a_3_2
- b_8_17·b_3_4 + b_6_10·b_5_7 + b_4_62·b_3_4 + b_2_2·b_4_6·b_5_7
- b_8_17·b_3_3 + b_2_2·b_1_12·b_7_12 + b_2_2·b_1_14·b_5_8 + b_2_2·b_6_10·b_3_4
+ b_2_2·b_4_6·b_5_7 + b_2_22·b_7_12 + b_2_23·b_5_8 + b_2_24·b_3_4
- b_5_8·a_7_8
- b_5_7·a_7_8
- b_5_7·b_7_12 + b_6_102 + b_2_2·b_4_6·b_6_10 + b_2_23·b_6_11 + b_2_22·c_8_18
- b_6_112 + b_6_102 + b_4_63 + a_2_1·b_4_6·b_6_11 + a_2_12·c_8_18
- b_5_8·b_7_12 + b_2_22·b_1_1·b_7_12 + c_8_18·b_1_1·b_3_3 + c_8_18·b_1_14
+ b_2_2·c_8_18·b_1_12
- b_5_7·b_7_12 + b_2_2·b_4_6·b_6_10 + b_2_22·b_8_17 + b_2_23·b_1_1·b_5_8
+ b_2_23·b_6_11
- b_6_10·b_6_11 + b_6_102 + b_4_6·b_8_17 + b_4_63 + b_2_2·b_4_6·b_6_11
+ b_2_22·b_4_62 + a_2_1·b_4_6·b_6_11
- b_5_7·b_7_12 + b_4_5·b_8_17 + b_2_2·b_4_6·b_6_11 + b_2_2·b_4_6·b_6_10 + b_2_23·b_6_11
+ b_2_23·b_6_10 + b_2_24·b_4_6
- b_4_62·b_5_8 + b_6_11·a_7_8
- b_6_10·a_7_8
- b_6_11·b_7_12 + b_6_10·b_7_12 + b_4_6·b_6_10·b_3_4 + b_2_2·b_4_62·b_3_4
+ b_2_22·b_4_6·b_5_7 + b_2_23·b_4_6·b_3_4 + b_4_63·a_1_0
- b_6_11·b_7_12 + b_4_6·b_6_10·b_3_4 + b_2_2·b_4_6·b_7_12 + b_2_2·b_4_62·b_3_4
+ b_2_22·b_4_6·b_5_7 + b_2_23·b_7_12 + b_2_23·b_4_6·b_3_4 + b_2_25·b_3_4 + b_4_63·a_1_0 + b_2_2·c_8_18·b_3_3 + b_2_2·c_8_18·b_1_13 + b_2_22·c_8_18·b_1_1
- b_8_17·b_5_8 + b_4_62·b_5_8 + b_2_23·b_1_12·b_5_8 + b_2_24·b_5_8
+ b_2_2·c_8_18·b_1_13 + b_2_22·c_8_18·b_1_1
- b_8_17·b_5_7 + b_4_6·b_6_10·b_3_4 + b_4_62·b_5_7 + b_2_2·b_4_62·b_3_4
+ b_2_22·b_6_10·b_3_4 + b_2_23·b_4_6·b_3_4
- a_7_82
- a_7_8·b_7_12
- b_7_122 + b_2_22·b_1_15·b_5_8 + b_2_23·b_1_1·b_7_12 + b_2_23·b_1_13·b_5_8
+ b_2_23·b_8_17 + b_2_23·b_4_62 + b_2_24·b_1_1·b_5_8 + b_2_25·b_4_6 + c_8_18·b_1_16 + b_2_2·c_8_18·b_1_1·b_3_3 + b_2_22·c_8_18·b_1_12 + b_2_23·c_8_18
- b_6_11·b_8_17 + b_4_62·b_6_11 + b_4_62·b_6_10 + b_2_2·b_4_63 + b_2_24·b_1_1·b_5_8
+ b_2_24·b_6_10 + b_2_25·b_4_6 + a_2_1·b_4_63 + b_2_2·b_4_5·c_8_18 + b_2_22·c_8_18·b_1_12 + b_2_23·c_8_18
- b_6_10·b_8_17 + b_4_62·b_6_10 + b_2_2·b_4_6·b_8_17 + b_2_2·b_4_63
+ b_2_22·b_4_6·b_6_10 + b_2_23·b_4_62 + b_2_24·b_1_1·b_5_8 + b_2_24·b_6_10 + b_2_25·b_4_6 + b_2_2·b_4_5·c_8_18 + b_2_22·c_8_18·b_1_12 + b_2_23·c_8_18
- b_8_17·b_7_12 + b_4_62·b_7_12 + b_2_23·b_1_12·b_7_12 + b_2_23·b_6_10·b_3_4
+ b_2_24·b_7_12 + b_2_24·b_4_6·b_3_4 + b_2_26·b_3_4 + b_2_2·c_8_18·b_1_12·b_3_3 + b_2_2·c_8_18·b_1_15 + b_2_22·c_8_18·b_3_4 + b_2_22·c_8_18·b_3_3 + b_2_23·c_8_18·b_1_1
- b_8_17·a_7_8 + b_4_62·a_7_8
- b_8_172 + b_4_64 + b_2_22·b_4_6·b_8_17 + b_2_22·b_4_63 + b_2_24·b_1_13·b_5_8
+ b_2_24·b_8_17 + b_2_24·b_4_62 + b_2_25·b_1_1·b_5_8 + b_2_22·c_8_18·b_1_14 + b_2_22·b_4_6·c_8_18 + b_2_24·c_8_18
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_18, a Duflot regular element of degree 8
- b_1_14 + b_4_6 + b_2_22, an element of degree 4
- b_3_4 + b_2_2·b_1_1, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, 4, 9, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_3 → 0, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- b_5_7 → 0, an element of degree 5
- b_5_8 → 0, an element of degree 5
- b_6_10 → 0, an element of degree 6
- b_6_11 → 0, an element of degree 6
- a_7_8 → 0, an element of degree 7
- b_7_12 → 0, an element of degree 7
- b_8_17 → 0, an element of degree 8
- c_8_18 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_3 → c_1_23 + c_1_12·c_1_2, an element of degree 3
- b_3_4 → 0, an element of degree 3
- b_4_5 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- b_5_7 → 0, an element of degree 5
- b_5_8 → c_1_0·c_1_12·c_1_22 + c_1_0·c_1_13·c_1_2 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2 + c_1_02·c_1_13 + c_1_04·c_1_1, an element of degree 5
- b_6_10 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_13·c_1_22 + c_1_02·c_1_24
+ c_1_02·c_1_13·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
- b_6_11 → c_1_0·c_1_1·c_1_24 + c_1_0·c_1_13·c_1_22 + c_1_02·c_1_24
+ c_1_02·c_1_13·c_1_2 + c_1_04·c_1_22 + c_1_04·c_1_1·c_1_2, an element of degree 6
- a_7_8 → 0, an element of degree 7
- b_7_12 → c_1_0·c_1_1·c_1_25 + c_1_0·c_1_13·c_1_23 + c_1_0·c_1_14·c_1_22
+ c_1_0·c_1_15·c_1_2 + c_1_02·c_1_25 + c_1_02·c_1_14·c_1_2 + c_1_02·c_1_15 + c_1_04·c_1_23 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_13, an element of degree 7
- b_8_17 → c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_14·c_1_23
+ c_1_0·c_1_15·c_1_22 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_13·c_1_23 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2, an element of degree 8
- c_8_18 → c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_13·c_1_24
+ c_1_0·c_1_14·c_1_23 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_13·c_1_23 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_2_2 → c_1_12, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_3 → c_1_13, an element of degree 3
- b_3_4 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_5 → c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
- b_4_6 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- b_5_7 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_5_8 → 0, an element of degree 5
- b_6_10 → c_1_12·c_1_24 + c_1_15·c_1_2 + c_1_0·c_1_13·c_1_22 + c_1_0·c_1_14·c_1_2
+ c_1_02·c_1_12·c_1_22 + c_1_02·c_1_13·c_1_2 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- b_6_11 → c_1_26 + c_1_1·c_1_25 + c_1_13·c_1_23 + c_1_15·c_1_2 + c_1_0·c_1_13·c_1_22
+ c_1_0·c_1_14·c_1_2 + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_13·c_1_2 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- a_7_8 → 0, an element of degree 7
- b_7_12 → c_1_0·c_1_14·c_1_22 + c_1_0·c_1_15·c_1_2 + c_1_02·c_1_13·c_1_22
+ c_1_02·c_1_14·c_1_2 + c_1_02·c_1_15 + c_1_04·c_1_13, an element of degree 7
- b_8_17 → c_1_28 + c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_16·c_1_2
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_16 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14, an element of degree 8
- c_8_18 → c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_16·c_1_2
+ c_1_02·c_1_16 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_08, an element of degree 8
|