Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 137 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
(t2 − t + 1) · (t4 + t3 + t2 + t + 1) |
| (t − 1)2 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- a_2_1, a nilpotent element of degree 2
- a_2_2, a nilpotent element of degree 2
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_4_5, a nilpotent element of degree 4
- b_4_6, an element of degree 4
- a_5_7, a nilpotent element of degree 5
- b_6_8, an element of degree 6
- a_7_9, a nilpotent element of degree 7
- c_8_10, a Duflot regular element of degree 8
Ring relations
There are 57 minimal relations of maximal degree 14:
- a_1_02
- a_1_0·b_1_1
- a_2_1·a_1_0
- a_2_1·b_1_1
- a_2_2·a_1_0
- a_2_1·a_2_2
- a_1_0·a_3_2
- b_1_1·a_3_2
- a_1_0·a_3_3
- a_1_0·a_3_4 + a_2_12
- b_1_1·a_3_4 + b_1_1·a_3_3 + a_2_22
- a_2_2·a_3_2
- a_2_1·a_3_2
- a_2_1·a_3_3
- a_2_2·a_3_4 + a_2_2·a_3_3 + a_2_1·a_3_4
- a_4_5·a_1_0
- b_1_12·a_3_3 + a_4_5·b_1_1 + a_2_2·a_3_3
- b_4_6·b_1_1 + b_4_6·a_1_0
- a_3_22
- a_3_2·a_3_3
- a_3_32 + a_2_2·b_1_1·a_3_3 + a_2_22·b_1_12
- a_3_2·a_3_4
- a_3_3·a_3_4 + a_2_2·a_4_5 + a_2_22·b_1_12
- a_2_1·a_4_5
- a_2_2·b_4_6 + a_2_1·b_4_6 + a_3_42 + a_3_32
- a_1_0·a_5_7
- b_1_1·a_5_7 + a_3_32
- a_4_5·a_3_2
- a_4_5·a_3_3 + a_2_2·a_4_5·b_1_1 + a_2_22·b_1_13
- b_4_6·a_3_3 + b_4_6·a_3_2 + a_4_5·a_3_4 + a_4_5·a_3_3 + a_2_22·a_3_3
- a_4_5·a_3_4 + a_4_5·a_3_3 + a_2_2·a_5_7
- a_4_5·a_3_4 + a_4_5·a_3_3 + a_2_1·a_5_7 + a_2_22·a_3_3
- b_6_8·a_1_0 + b_4_6·a_3_3
- b_6_8·b_1_1 + b_4_6·a_3_3 + a_4_5·b_1_13 + a_4_5·a_3_3 + a_2_22·a_3_3
- a_4_52 + a_2_2·a_4_5·b_1_12 + a_2_22·b_1_14 + a_2_22·a_4_5 + a_2_1·a_3_42
- a_3_3·a_5_7
- a_3_2·a_5_7 + a_2_1·a_3_42
- a_4_5·b_4_6 + a_2_2·b_6_8 + a_4_52 + a_2_22·b_1_14 + a_2_1·a_3_42
- a_4_5·b_4_6 + a_2_1·b_6_8 + a_3_4·a_5_7
- a_1_0·a_7_9 + a_2_1·a_3_42
- b_1_1·a_7_9 + a_4_5·b_1_14 + a_2_22·b_1_14 + a_2_1·a_3_42
- a_4_5·a_5_7 + a_2_1·b_4_6·a_3_4
- b_6_8·a_3_3 + b_4_62·a_1_0 + a_2_2·a_4_5·b_1_13 + a_2_22·b_1_15
- b_6_8·a_3_2 + b_4_62·a_1_0 + a_2_1·b_4_6·a_3_4
- a_2_2·a_7_9 + a_2_2·a_4_5·b_1_13
- a_2_1·a_7_9
- a_5_72 + b_4_6·a_3_42
- a_4_5·b_6_8 + a_2_1·b_4_62 + b_4_6·a_3_42 + a_2_2·a_4_5·b_1_14 + a_2_22·b_1_16
+ a_2_22·a_4_5·b_1_12 + a_2_1·a_3_4·a_5_7
- a_3_3·a_7_9 + a_2_2·a_4_5·b_1_14 + a_2_22·b_1_16 + a_2_22·a_4_5·b_1_12
+ a_2_1·a_3_4·a_5_7
- a_3_2·a_7_9 + a_2_1·a_3_4·a_5_7
- a_3_4·a_7_9 + a_2_2·a_4_5·b_1_14 + a_2_22·b_1_16 + a_2_1·a_3_4·a_5_7
- a_4_5·a_7_9 + a_2_2·a_4_5·b_1_15 + a_2_22·b_1_17
- b_6_8·a_5_7 + b_4_6·a_7_9 + b_4_62·a_3_4 + a_2_1·b_4_6·a_5_7
- a_5_7·a_7_9 + a_2_1·b_4_6·a_3_42
- b_6_82 + b_4_63 + b_4_6·a_3_4·a_5_7 + a_2_2·a_4_5·b_1_16 + a_2_22·b_1_18
+ a_2_22·a_4_5·b_1_14 + a_2_12·c_8_10
- b_6_8·a_7_9 + b_4_6·b_6_8·a_3_4 + b_4_62·a_5_7 + a_2_2·a_4_5·b_1_17
+ a_2_22·b_1_19 + a_2_1·b_4_62·a_3_4
- a_7_92 + a_2_2·a_4_5·b_1_18 + a_2_22·b_1_110 + a_2_22·a_4_5·b_1_16
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_10, a Duflot regular element of degree 8
- b_1_14 + b_4_6, an element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, 10].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_5 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- a_5_7 → 0, an element of degree 5
- b_6_8 → 0, an element of degree 6
- a_7_9 → 0, an element of degree 7
- c_8_10 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_5 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- a_5_7 → 0, an element of degree 5
- b_6_8 → 0, an element of degree 6
- a_7_9 → 0, an element of degree 7
- c_8_10 → c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- a_2_2 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_5 → 0, an element of degree 4
- b_4_6 → c_1_14, an element of degree 4
- a_5_7 → 0, an element of degree 5
- b_6_8 → c_1_16, an element of degree 6
- a_7_9 → 0, an element of degree 7
- c_8_10 → c_1_18 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|