Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 139 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 1.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t7 − t6 − 1 |
| (t + 1) · (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-4,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 15 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_2, a nilpotent element of degree 2
- b_2_1, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- b_3_3, an element of degree 3
- b_4_2, an element of degree 4
- b_4_4, an element of degree 4
- a_5_5, a nilpotent element of degree 5
- b_5_4, an element of degree 5
- b_6_6, an element of degree 6
- b_6_7, an element of degree 6
- a_7_5, a nilpotent element of degree 7
- b_8_8, an element of degree 8
- c_8_10, a Duflot regular element of degree 8
Ring relations
There are 78 minimal relations of maximal degree 16:
- a_1_02
- a_1_0·a_1_1
- a_2_2·a_1_1
- a_2_2·a_1_0
- b_2_1·a_1_1
- a_1_14
- a_2_2·b_2_1 + a_2_22
- a_1_0·a_3_2
- a_1_1·b_3_3 + a_1_1·a_3_2 + a_2_22
- a_1_0·b_3_3 + a_2_22
- a_2_2·a_3_2
- b_2_1·a_3_2
- a_2_2·b_3_3 + a_1_12·a_3_2
- b_4_2·a_1_1
- b_4_2·a_1_0
- b_4_4·a_1_0
- a_3_2·b_3_3 + a_3_22
- a_2_2·b_4_2
- b_3_32 + b_2_1·b_4_4 + a_3_22
- a_3_22 + b_4_4·a_1_12
- a_1_0·a_5_5
- a_1_1·b_5_4
- a_1_0·b_5_4
- b_4_2·a_3_2
- a_2_2·a_5_5 + b_4_4·a_1_13
- b_2_1·a_5_5 + b_4_4·a_1_13
- a_2_2·b_5_4 + b_4_4·a_1_13
- b_6_6·a_1_1 + a_1_12·a_5_5 + b_4_4·a_1_13
- b_4_2·b_3_3 + b_2_1·b_5_4 + b_6_6·a_1_0 + b_4_4·a_1_13
- b_6_7·a_1_1 + b_4_4·a_3_2 + a_1_12·a_5_5 + b_4_4·a_1_13
- b_6_7·a_1_0
- b_4_22 + b_2_12·b_4_4
- a_1_13·a_5_5
- a_3_2·b_5_4
- b_3_3·b_5_4 + b_4_2·b_4_4 + b_3_3·a_5_5 + a_3_2·a_5_5
- a_2_2·b_6_6
- b_3_3·a_5_5 + a_2_2·b_6_7 + a_3_2·a_5_5
- b_4_2·b_4_4 + b_2_1·b_6_7 + b_3_3·a_5_5 + a_3_2·a_5_5
- a_3_2·a_5_5 + a_1_1·a_7_5
- a_1_0·a_7_5
- b_4_2·a_5_5
- b_4_2·b_5_4 + b_2_1·b_4_4·b_3_3 + b_4_4·a_1_12·a_3_2
- b_6_7·a_3_2 + b_6_6·a_3_2 + b_4_42·a_1_1 + b_4_4·a_1_12·a_3_2
- b_6_7·b_3_3 + b_4_4·b_5_4 + b_4_42·a_1_1 + b_4_4·a_1_12·a_3_2
- a_2_2·a_7_5 + b_4_4·a_1_12·a_3_2
- b_2_1·a_7_5 + b_4_4·a_1_12·a_3_2
- b_6_6·a_3_2 + a_1_12·a_7_5 + b_4_4·a_1_12·a_3_2
- b_8_8·a_1_1 + b_6_6·a_3_2 + b_4_4·a_1_12·a_3_2
- b_8_8·a_1_0 + b_2_1·b_6_6·a_1_0
- a_5_5·b_5_4 + a_2_2·b_4_42
- b_5_42 + b_2_1·b_4_42
- b_4_2·b_6_7 + b_2_1·b_4_42 + a_2_2·b_4_42
- a_3_2·a_7_5 + b_4_4·a_1_1·a_5_5
- b_3_3·a_7_5 + a_2_2·b_4_42 + b_4_4·a_1_1·a_5_5
- a_2_2·b_4_42 + a_5_52 + b_4_4·a_1_1·a_5_5 + c_8_10·a_1_12
- a_2_2·b_8_8
- b_4_2·b_6_6 + b_2_1·b_8_8 + b_2_12·b_6_6 + b_2_13·b_4_4
- b_6_7·b_5_4 + b_4_42·b_3_3 + b_4_42·a_3_2 + b_4_4·a_1_12·a_5_5
- b_4_2·a_7_5
- b_6_7·a_5_5 + b_6_6·a_5_5 + b_4_4·a_7_5 + b_4_4·a_1_12·a_5_5 + b_4_42·a_1_13
- b_6_6·a_5_5 + c_8_10·a_1_13
- b_8_8·a_3_2 + b_4_4·a_1_12·a_5_5
- b_8_8·b_3_3 + b_6_6·b_5_4 + b_2_1·b_6_6·b_3_3 + b_2_12·b_4_4·b_3_3
+ b_4_4·a_1_12·a_5_5 + b_2_1·c_8_10·a_1_0
- b_5_4·a_7_5 + a_2_2·b_4_4·b_6_7
- a_2_2·b_4_4·b_6_7 + a_5_5·a_7_5 + b_4_4·a_1_1·a_7_5 + c_8_10·a_1_1·a_3_2
- b_6_72 + b_4_43 + a_2_2·b_4_4·b_6_7 + b_4_42·a_1_1·a_3_2 + a_2_22·c_8_10
- b_6_72 + b_6_62 + b_4_43 + b_2_12·b_8_8 + b_2_13·b_6_7 + b_2_13·b_6_6
+ b_2_14·b_4_2 + a_2_2·b_4_4·b_6_7 + b_4_42·a_1_1·a_3_2 + b_2_12·c_8_10
- b_6_72 + b_6_62 + b_4_43 + b_4_2·b_8_8 + b_2_1·b_4_4·b_6_6 + b_2_14·b_4_4
+ b_2_14·b_4_2 + a_2_2·b_4_4·b_6_7 + b_4_42·a_1_1·a_3_2 + b_2_12·c_8_10
- b_6_6·b_6_7 + b_4_4·b_8_8 + b_2_1·b_4_4·b_6_6 + b_2_12·b_4_42 + b_4_42·a_1_1·a_3_2
- b_6_7·a_7_5 + b_6_6·a_7_5 + b_4_42·a_5_5
- b_6_7·a_7_5 + b_4_42·a_5_5 + c_8_10·a_1_12·a_3_2
- b_8_8·a_5_5 + b_6_7·a_7_5 + b_4_42·a_5_5 + b_4_4·a_1_12·a_7_5
- b_8_8·b_5_4 + b_4_4·b_6_6·b_3_3 + b_2_1·b_6_6·b_5_4 + b_2_12·b_4_4·b_5_4
+ b_4_4·a_1_12·a_7_5 + b_4_42·a_1_12·a_3_2
- a_7_52 + b_4_4·a_5_52
- b_6_6·b_8_8 + b_2_13·b_8_8 + b_2_13·b_4_42 + b_2_14·b_6_6 + b_2_15·b_4_4
+ b_2_15·b_4_2 + b_2_1·b_4_2·c_8_10 + b_2_13·c_8_10
- b_6_7·b_8_8 + b_4_42·b_6_6 + b_2_1·b_4_4·b_8_8 + b_2_12·b_4_4·b_6_7
+ b_2_12·b_4_4·b_6_6 + b_2_13·b_4_42 + b_4_43·a_1_12
- b_8_8·a_7_5 + b_4_42·a_1_12·a_5_5 + b_4_4·c_8_10·a_1_13
- b_8_82 + b_2_12·b_4_4·b_8_8 + b_2_13·b_4_4·b_6_7 + b_2_13·b_4_4·b_6_6
+ b_2_14·b_8_8 + b_2_14·b_4_42 + b_2_15·b_6_6 + b_2_16·b_4_2 + b_2_12·b_4_4·c_8_10 + b_2_14·c_8_10
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_10, a Duflot regular element of degree 8
- b_4_4 + b_2_12, an element of degree 4
- b_3_3, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, 4, 9, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_2 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_3 → 0, an element of degree 3
- b_4_2 → 0, an element of degree 4
- b_4_4 → 0, an element of degree 4
- a_5_5 → 0, an element of degree 5
- b_5_4 → 0, an element of degree 5
- b_6_6 → 0, an element of degree 6
- b_6_7 → 0, an element of degree 6
- a_7_5 → 0, an element of degree 7
- b_8_8 → 0, an element of degree 8
- c_8_10 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_2 → 0, an element of degree 2
- b_2_1 → c_1_12, an element of degree 2
- a_3_2 → 0, an element of degree 3
- b_3_3 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_2 → c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
- b_4_4 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- a_5_5 → 0, an element of degree 5
- b_5_4 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_6_6 → c_1_14·c_1_22 + c_1_15·c_1_2 + c_1_0·c_1_13·c_1_22 + c_1_0·c_1_14·c_1_2
+ c_1_02·c_1_12·c_1_22 + c_1_02·c_1_13·c_1_2 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- b_6_7 → c_1_26 + c_1_1·c_1_25 + c_1_12·c_1_24 + c_1_13·c_1_23, an element of degree 6
- a_7_5 → 0, an element of degree 7
- b_8_8 → c_1_16·c_1_22 + c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_16·c_1_2
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_16 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14, an element of degree 8
- c_8_10 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_17·c_1_2
+ c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_14·c_1_22 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_24 + c_1_04·c_1_13·c_1_2 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|