Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 140 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 8 minimal generators of maximal degree 4:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_2_1, an element of degree 2
- b_2_2, an element of degree 2
- b_2_3, an element of degree 2
- b_3_4, an element of degree 3
- b_3_5, an element of degree 3
- c_4_8, a Duflot regular element of degree 4
Ring relations
There are 14 minimal relations of maximal degree 6:
- a_1_02
- a_1_0·b_1_1
- b_2_1·b_1_1 + b_2_2·a_1_0
- b_2_2·b_1_1 + b_2_1·b_1_1
- b_2_3·a_1_0
- b_2_22 + b_2_1·b_2_2
- a_1_0·b_3_4
- b_1_1·b_3_4
- a_1_0·b_3_5
- b_2_2·b_3_4 + b_2_1·b_3_5
- b_2_2·b_3_5 + b_2_2·b_3_4
- b_3_42 + b_2_1·b_2_32
- b_3_4·b_3_5 + b_2_2·b_2_32
- b_3_52 + b_2_3·b_1_1·b_3_5 + b_2_2·b_2_32 + c_4_8·b_1_12
Data used for Benson′s test
- Benson′s completion test succeeded in degree 6.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_8, a Duflot regular element of degree 4
- b_1_12 + b_2_3 + b_2_1, an element of degree 2
- b_3_4 + b_2_3·b_1_1, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, 3, 6].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
- We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 2 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- b_3_4 → 0, an element of degree 3
- b_3_5 → 0, an element of degree 3
- c_4_8 → c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_3_4 → 0, an element of degree 3
- b_3_5 → c_1_0·c_1_12 + c_1_02·c_1_1, an element of degree 3
- c_4_8 → c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2
+ c_1_02·c_1_12 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_2_1 → c_1_12, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- b_3_4 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_5 → 0, an element of degree 3
- c_4_8 → c_1_12·c_1_22 + c_1_13·c_1_2 + c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2
+ c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2 + c_1_02·c_1_12 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_2_1 → c_1_22, an element of degree 2
- b_2_2 → c_1_22, an element of degree 2
- b_2_3 → c_1_1·c_1_2 + c_1_12, an element of degree 2
- b_3_4 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_5 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- c_4_8 → c_1_0·c_1_1·c_1_22 + c_1_0·c_1_12·c_1_2 + c_1_02·c_1_22 + c_1_02·c_1_1·c_1_2
+ c_1_02·c_1_12 + c_1_04, an element of degree 4
|