Cohomology of group number 1425 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 4 minimal generators and exponent 4.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 3.
  • It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 3.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    (t3  +  2·t  +  1) · (t3  +  t2  +  1)

    (t  +  1)2 · (t  −  1)4 · (t2  +  1)2
  • The a-invariants are -∞,-∞,-∞,-5,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 15 minimal generators of maximal degree 5:

  1. a_1_1, a nilpotent element of degree 1
  2. b_1_0, an element of degree 1
  3. b_1_2, an element of degree 1
  4. b_1_3, an element of degree 1
  5. c_2_7, a Duflot regular element of degree 2
  6. b_3_10, an element of degree 3
  7. b_3_11, an element of degree 3
  8. b_3_12, an element of degree 3
  9. b_3_13, an element of degree 3
  10. b_3_14, an element of degree 3
  11. b_3_15, an element of degree 3
  12. c_4_26, a Duflot regular element of degree 4
  13. c_4_27, a Duflot regular element of degree 4
  14. b_5_43, an element of degree 5
  15. b_5_44, an element of degree 5

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 57 minimal relations of maximal degree 10:

  1. b_1_2·b_1_3 + b_1_22 + a_1_1·b_1_2
  2. b_1_0·b_1_2 + a_1_1·b_1_3 + a_1_1·b_1_2 + a_1_1·b_1_0
  3. b_1_32 + b_1_22 + b_1_0·b_1_3 + b_1_0·b_1_2 + a_1_12
  4. a_1_12·b_1_0
  5. a_1_12·b_1_2
  6. b_1_2·b_3_10 + a_1_1·b_3_11 + c_2_7·b_1_22 + c_2_7·a_1_1·b_1_3 + c_2_7·a_1_1·b_1_2
  7. b_1_3·b_3_11 + b_1_2·b_3_11 + b_1_2·b_3_10 + a_1_1·b_3_10 + c_2_7·b_1_22
       + c_2_7·b_1_0·b_1_3 + c_2_7·a_1_1·b_1_2 + c_2_7·a_1_1·b_1_0
  8. b_1_3·b_3_10 + b_1_2·b_3_10 + b_1_0·b_3_11 + b_1_0·b_3_10 + a_1_1·b_3_10
       + c_2_7·b_1_0·b_1_3 + c_2_7·a_1_1·b_1_0
  9. b_1_2·b_3_13
  10. b_1_3·b_3_13 + b_1_3·b_3_12 + b_1_2·b_3_12 + b_1_2·b_3_11 + b_1_2·b_3_10 + b_1_03·b_1_3
       + a_1_1·b_3_13 + a_1_1·b_1_03 + c_2_7·b_1_22
  11. b_1_3·b_3_12 + b_1_2·b_3_12 + b_1_0·b_3_13 + b_1_03·b_1_3 + a_1_1·b_3_12
       + a_1_1·b_1_02·b_1_3 + a_1_1·b_1_03
  12. b_1_3·b_3_14 + b_1_2·b_3_14 + b_1_03·b_1_3 + a_1_1·b_3_14 + a_1_1·b_3_13
       + a_1_1·b_1_02·b_1_3 + a_1_1·b_1_03 + c_2_7·b_1_0·b_1_3 + c_2_7·a_1_1·b_1_3
       + c_2_7·a_1_1·b_1_2
  13. b_1_2·b_3_11 + b_1_2·b_3_10 + b_1_0·b_3_14 + b_1_03·b_1_3 + a_1_1·b_3_12
       + a_1_1·b_1_02·b_1_3 + a_1_1·b_1_03 + c_2_7·b_1_22 + c_2_7·b_1_02
  14. b_1_2·b_3_15 + b_1_2·b_3_12 + b_1_2·b_3_10 + a_1_1·b_3_14 + a_1_1·b_3_13 + a_1_1·b_3_12
       + c_2_7·b_1_22 + c_2_7·a_1_1·b_1_0
  15. b_1_2·b_3_11 + a_1_1·b_3_15 + c_2_7·a_1_1·b_1_3 + c_2_7·a_1_1·b_1_2
  16. b_1_3·b_3_15 + b_1_2·b_3_12 + b_1_2·b_3_11 + b_1_2·b_3_10 + a_1_1·b_3_14 + a_1_1·b_3_13
       + a_1_1·b_3_12 + a_1_1·b_3_10 + c_2_7·b_1_22 + c_2_7·b_1_0·b_1_3 + c_2_7·a_1_1·b_1_2
  17. b_1_3·b_3_10 + b_1_0·b_3_15 + b_1_0·b_3_10 + a_1_1·b_3_10 + c_2_7·b_1_22
       + c_2_7·b_1_0·b_1_3 + c_2_7·a_1_1·b_1_3 + c_2_7·a_1_1·b_1_2
  18. a_1_12·b_3_12
  19. b_3_13·b_3_15 + b_3_11·b_3_13
  20. b_3_112 + b_3_10·b_3_15 + a_1_1·b_1_02·b_3_13 + c_2_7·b_1_2·b_3_12
       + c_2_7·b_1_0·b_3_11 + c_2_7·b_1_0·b_3_10 + c_2_7·a_1_1·b_3_14 + c_2_7·a_1_1·b_3_13
       + c_2_7·a_1_1·b_3_12 + c_2_72·a_1_1·b_1_0
  21. b_3_11·b_3_15 + b_3_11·b_3_13 + b_3_11·b_3_12 + b_3_10·b_3_14 + b_3_10·b_3_13
       + b_3_10·b_3_12 + b_3_10·b_3_11 + a_1_1·b_1_02·b_3_13 + a_1_1·b_1_02·b_3_11
       + a_1_1·b_1_02·b_3_10 + c_2_7·b_1_2·b_3_14 + c_2_7·b_1_2·b_3_12 + c_2_7·b_1_0·b_3_11
       + c_2_7·b_1_03·b_1_3 + c_2_7·a_1_1·b_3_12 + c_2_7·a_1_1·b_1_02·b_1_3
       + c_2_7·a_1_1·b_1_03 + c_2_72·a_1_1·b_1_3 + c_2_72·a_1_1·b_1_2
       + c_2_72·a_1_1·b_1_0
  22. b_3_14·b_3_15 + b_3_132 + b_3_12·b_3_14 + b_3_12·b_3_13 + b_3_11·b_3_14 + b_1_05·b_1_3
       + a_1_1·b_1_22·b_3_12 + a_1_1·b_1_04·b_1_3 + a_1_1·b_1_05 + c_2_7·b_1_0·b_3_12
       + c_2_7·a_1_1·b_3_11 + c_2_72·a_1_1·b_1_0
  23. b_3_152 + b_3_12·b_3_15 + b_3_11·b_3_14 + b_3_11·b_3_13 + b_3_11·b_3_12 + b_3_112
       + b_3_10·b_3_14 + b_1_03·b_3_11 + b_1_03·b_3_10 + a_1_1·b_1_02·b_3_10
       + c_2_7·b_1_2·b_3_14 + c_2_7·b_1_0·b_3_13 + c_2_7·b_1_0·b_3_11 + c_2_7·b_1_0·b_3_10
       + c_2_7·a_1_1·b_1_02·b_1_3 + c_2_72·a_1_1·b_1_3 + c_2_72·a_1_1·b_1_2
       + c_2_72·a_1_1·b_1_0
  24. b_3_11·b_3_13 + b_3_10·b_3_14 + b_1_03·b_3_11 + b_1_03·b_3_10 + a_1_1·b_1_02·b_3_11
       + c_2_7·b_1_2·b_3_14 + c_2_7·b_1_0·b_3_13 + c_2_7·b_1_0·b_3_10 + c_2_7·b_1_03·b_1_3
       + c_2_7·a_1_1·b_3_15 + c_2_7·a_1_1·b_3_12 + c_2_7·a_1_1·b_3_11 + c_2_7·a_1_1·b_1_03
       + c_2_72·a_1_1·b_1_3 + c_2_72·a_1_1·b_1_2 + c_2_72·a_1_1·b_1_0
  25. b_3_12·b_3_15 + b_3_11·b_3_14 + b_3_11·b_3_13 + b_3_11·b_3_12 + b_3_10·b_3_14
       + b_1_23·b_3_12 + b_1_03·b_3_11 + b_1_03·b_3_10 + a_1_1·b_1_22·b_3_14
       + a_1_1·b_1_22·b_3_12 + a_1_1·b_1_02·b_3_10 + c_4_26·b_1_22 + c_2_7·b_1_2·b_3_14
       + c_2_7·b_1_24 + c_2_7·b_1_0·b_3_13 + c_2_7·b_1_0·b_3_11 + c_2_7·b_1_0·b_3_10
       + c_2_7·a_1_1·b_1_23 + c_2_7·a_1_1·b_1_02·b_1_3 + c_2_72·b_1_22
       + c_2_72·a_1_1·b_1_3 + c_2_72·a_1_1·b_1_2 + c_2_72·a_1_1·b_1_0
  26. b_3_11·b_3_12 + b_3_10·b_3_13 + b_3_10·b_3_12 + b_1_03·b_3_11 + b_1_03·b_3_10
       + a_1_1·b_1_22·b_3_12 + a_1_1·b_1_02·b_3_10 + c_2_7·b_1_2·b_3_12 + c_2_7·b_1_0·b_3_13
       + c_4_26·a_1_1·b_1_2 + c_2_7·a_1_1·b_1_23 + c_2_7·a_1_1·b_1_02·b_1_3
       + c_2_72·a_1_1·b_1_2
  27. b_3_112 + b_3_102 + b_1_03·b_3_13 + a_1_1·b_1_02·b_3_12 + a_1_1·b_1_02·b_3_11
       + a_1_1·b_1_02·b_3_10 + c_4_26·a_1_12 + c_2_72·b_1_22 + c_2_72·a_1_12
  28. b_3_11·b_3_13 + b_3_11·b_3_12 + b_3_112 + b_3_10·b_3_14 + b_3_10·b_3_13 + b_3_10·b_3_12
       + b_3_10·b_3_11 + a_1_1·b_1_22·b_3_12 + a_1_1·b_1_02·b_3_12 + a_1_1·b_1_02·b_3_10
       + a_1_1·b_1_04·b_1_3 + c_2_7·b_1_2·b_3_14 + c_2_7·b_1_2·b_3_12 + c_2_7·b_1_0·b_3_11
       + c_2_7·b_1_03·b_1_3 + c_4_26·a_1_1·b_1_3 + c_4_26·a_1_1·b_1_0 + c_2_7·a_1_1·b_3_12
       + c_2_7·a_1_1·b_3_11 + c_2_7·a_1_1·b_1_23 + c_2_7·a_1_1·b_1_02·b_1_3
       + c_2_72·a_1_1·b_1_2 + c_2_72·a_1_1·b_1_0
  29. b_3_11·b_3_13 + b_3_112 + b_3_10·b_3_14 + b_3_10·b_3_11 + b_3_102 + b_1_03·b_3_12
       + b_1_03·b_3_10 + b_1_05·b_1_3 + a_1_1·b_1_02·b_3_12 + a_1_1·b_1_02·b_3_11
       + a_1_1·b_1_05 + c_4_26·b_1_0·b_1_3 + c_4_26·b_1_02 + c_2_7·b_1_2·b_3_14
       + c_2_7·b_1_0·b_3_13 + c_2_7·b_1_0·b_3_11 + c_2_7·b_1_03·b_1_3 + c_2_7·b_1_04
       + c_2_7·a_1_1·b_3_12 + c_2_7·a_1_1·b_3_11 + c_2_7·a_1_1·b_1_02·b_1_3
       + c_2_72·b_1_22 + c_2_72·b_1_0·b_1_3 + c_2_72·a_1_1·b_1_3 + c_2_72·a_1_1·b_1_2
  30. b_3_142 + b_3_112 + b_3_102 + b_1_23·b_3_12 + b_1_03·b_3_13 + b_1_05·b_1_3
       + a_1_1·b_1_02·b_3_12 + a_1_1·b_1_02·b_3_11 + a_1_1·b_1_02·b_3_10
       + a_1_1·b_1_04·b_1_3 + a_1_1·b_1_05 + c_4_27·a_1_12 + c_2_72·b_1_22
       + c_2_72·b_1_02
  31. b_3_142 + b_3_13·b_3_14 + b_3_11·b_3_12 + b_3_10·b_3_13 + b_3_10·b_3_12 + b_1_23·b_3_12
       + b_1_03·b_3_13 + b_1_03·b_3_11 + b_1_03·b_3_10 + b_1_05·b_1_3 + a_1_1·b_1_22·b_3_12
       + a_1_1·b_1_02·b_3_13 + a_1_1·b_1_02·b_3_12 + a_1_1·b_1_02·b_3_10 + a_1_1·b_1_05
       + c_2_7·b_1_2·b_3_12 + c_4_27·a_1_1·b_1_3 + c_4_27·a_1_1·b_1_2 + c_4_26·a_1_1·b_1_3
       + c_2_7·a_1_1·b_1_23 + c_2_7·a_1_1·b_1_02·b_1_3 + c_2_72·b_1_02
       + c_2_72·a_1_1·b_1_3
  32. b_3_142 + b_3_13·b_3_14 + b_3_12·b_3_13 + b_1_23·b_3_12 + b_1_03·b_3_13
       + b_1_05·b_1_3 + a_1_1·b_1_02·b_3_13 + a_1_1·b_1_02·b_3_11 + a_1_1·b_1_05
       + c_4_27·b_1_0·b_1_3 + c_4_26·b_1_0·b_1_3 + c_2_7·b_1_0·b_3_13 + c_2_7·a_1_1·b_1_03
       + c_2_72·b_1_0·b_1_3 + c_2_72·b_1_02
  33. b_3_132 + b_3_12·b_3_13 + b_3_11·b_3_13 + b_3_11·b_3_12 + b_3_112 + b_3_10·b_3_14
       + b_3_10·b_3_13 + b_3_10·b_3_12 + b_3_10·b_3_11 + b_1_03·b_3_13 + a_1_1·b_1_22·b_3_12
       + a_1_1·b_1_02·b_3_12 + a_1_1·b_1_02·b_3_11 + a_1_1·b_1_02·b_3_10
       + a_1_1·b_1_04·b_1_3 + c_2_7·b_1_2·b_3_14 + c_2_7·b_1_2·b_3_12 + c_2_7·b_1_0·b_3_11
       + c_2_7·b_1_03·b_1_3 + c_4_27·a_1_1·b_1_0 + c_4_26·a_1_1·b_1_3 + c_2_7·a_1_1·b_3_12
       + c_2_7·a_1_1·b_3_11 + c_2_7·a_1_1·b_1_23 + c_2_7·a_1_1·b_1_02·b_1_3
       + c_2_7·a_1_1·b_1_03 + c_2_72·a_1_1·b_1_2
  34. b_3_12·b_3_15 + b_3_122 + b_3_11·b_3_14 + b_3_11·b_3_12 + b_3_112 + b_3_10·b_3_11
       + b_3_102 + b_1_05·b_1_3 + a_1_1·b_1_02·b_3_13 + c_4_27·b_1_02 + c_4_26·b_1_0·b_1_3
       + c_2_7·b_1_0·b_3_10 + c_2_7·b_1_03·b_1_3 + c_2_7·a_1_1·b_3_12 + c_2_7·a_1_1·b_3_11
       + c_2_72·b_1_22 + c_2_72·b_1_0·b_1_3 + c_2_72·b_1_02 + c_2_72·a_1_1·b_1_0
  35. b_3_142 + b_3_13·b_3_14 + b_3_132 + b_3_12·b_3_13 + b_3_11·b_3_14 + b_3_11·b_3_13
       + b_3_112 + b_3_10·b_3_14 + b_3_10·b_3_11 + b_1_2·b_5_43 + b_1_23·b_3_14
       + b_1_23·b_3_12 + b_1_03·b_3_11 + b_1_03·b_3_10 + b_1_05·b_1_3 + a_1_1·b_1_02·b_3_12
       + a_1_1·b_1_02·b_3_10 + a_1_1·b_1_05 + c_4_27·b_1_22 + c_2_7·b_1_2·b_3_14
       + c_2_7·b_1_2·b_3_12 + c_2_7·b_1_24 + c_2_7·a_1_1·b_3_14 + c_2_7·a_1_1·b_3_13
       + c_2_7·a_1_1·b_3_12 + c_2_7·a_1_1·b_3_11 + c_2_7·a_1_1·b_1_23
       + c_2_7·a_1_1·b_1_02·b_1_3 + c_2_72·b_1_02 + c_2_72·a_1_1·b_1_3
       + c_2_72·a_1_1·b_1_0
  36. b_3_132 + b_3_12·b_3_13 + b_3_11·b_3_13 + b_3_10·b_3_11 + b_3_102 + a_1_1·b_5_43
       + a_1_1·b_1_22·b_3_14 + a_1_1·b_1_02·b_3_12 + c_2_7·b_1_0·b_3_13 + c_2_7·b_1_0·b_3_11
       + c_2_7·b_1_0·b_3_10 + c_4_27·a_1_1·b_1_2 + c_2_7·a_1_1·b_3_13 + c_2_7·a_1_1·b_3_11
       + c_2_7·a_1_1·b_1_23 + c_2_7·a_1_1·b_1_02·b_1_3 + c_2_72·b_1_22
       + c_2_72·a_1_1·b_1_0 + c_2_72·a_1_12
  37. b_3_142 + b_3_13·b_3_14 + b_3_12·b_3_13 + b_3_11·b_3_14 + b_3_11·b_3_12 + b_3_10·b_3_14
       + b_3_10·b_3_12 + b_3_10·b_3_11 + b_3_102 + b_1_3·b_5_43 + b_1_23·b_3_14
       + b_1_23·b_3_12 + b_1_03·b_3_13 + b_1_03·b_3_11 + b_1_03·b_3_10 + b_1_05·b_1_3
       + a_1_1·b_1_22·b_3_14 + a_1_1·b_1_22·b_3_12 + a_1_1·b_1_02·b_3_10
       + a_1_1·b_1_04·b_1_3 + a_1_1·b_1_05 + c_4_27·b_1_22 + c_2_7·b_1_2·b_3_14
       + c_2_7·b_1_24 + c_2_7·b_1_03·b_1_3 + c_4_27·a_1_1·b_1_2 + c_4_26·a_1_1·b_1_3
       + c_2_7·a_1_1·b_3_14 + c_2_7·a_1_1·b_3_11 + c_2_7·a_1_1·b_1_23 + c_2_7·a_1_1·b_1_03
       + c_2_72·b_1_22 + c_2_72·b_1_02 + c_2_72·a_1_1·b_1_3 + c_2_72·a_1_1·b_1_2
       + c_2_72·a_1_1·b_1_0
  38. b_3_142 + b_3_13·b_3_14 + b_3_132 + b_3_12·b_3_15 + b_3_12·b_3_13 + b_3_122
       + b_3_11·b_3_14 + b_3_112 + b_3_10·b_3_13 + b_3_10·b_3_11 + b_3_102 + b_1_23·b_3_12
       + b_1_0·b_5_43 + b_1_03·b_3_12 + b_1_03·b_3_11 + b_1_03·b_3_10 + b_1_05·b_1_3
       + a_1_1·b_1_22·b_3_12 + a_1_1·b_1_02·b_3_13 + a_1_1·b_1_02·b_3_11
       + a_1_1·b_1_02·b_3_10 + a_1_1·b_1_05 + c_2_7·b_1_0·b_3_13 + c_2_7·b_1_0·b_3_12
       + c_2_7·b_1_0·b_3_10 + c_4_26·a_1_1·b_1_3 + c_2_7·a_1_1·b_3_12 + c_2_7·a_1_1·b_1_23
       + c_2_7·a_1_1·b_1_03 + c_2_72·b_1_22 + c_2_72·a_1_1·b_1_3 + c_2_72·a_1_1·b_1_0
  39. b_3_132 + b_3_12·b_3_15 + b_3_12·b_3_14 + b_3_12·b_3_13 + b_3_11·b_3_13 + b_3_11·b_3_12
       + b_3_112 + b_3_10·b_3_14 + b_3_10·b_3_11 + b_1_2·b_5_44 + b_1_23·b_3_14
       + b_1_03·b_3_11 + b_1_03·b_3_10 + b_1_05·b_1_3 + a_1_1·b_1_02·b_3_13
       + a_1_1·b_1_04·b_1_3 + a_1_1·b_1_05 + c_4_27·b_1_22 + c_2_7·b_1_0·b_3_13
       + c_2_7·b_1_0·b_3_12 + c_2_7·b_1_0·b_3_11 + c_2_7·b_1_03·b_1_3 + c_2_7·a_1_1·b_3_12
       + c_2_7·a_1_1·b_1_02·b_1_3 + c_2_7·a_1_1·b_1_03 + c_2_72·b_1_22
  40. b_3_11·b_3_14 + b_3_11·b_3_12 + b_3_10·b_3_13 + b_3_10·b_3_12 + b_3_10·b_3_11 + b_3_102
       + b_1_03·b_3_13 + b_1_03·b_3_11 + b_1_03·b_3_10 + a_1_1·b_5_44 + a_1_1·b_1_22·b_3_14
       + a_1_1·b_1_02·b_3_13 + a_1_1·b_1_02·b_3_12 + a_1_1·b_1_02·b_3_11
       + a_1_1·b_1_02·b_3_10 + a_1_1·b_1_04·b_1_3 + c_2_7·b_1_2·b_3_12 + c_2_7·b_1_0·b_3_13
       + c_2_7·b_1_0·b_3_10 + c_2_7·b_1_03·b_1_3 + c_4_27·a_1_1·b_1_2 + c_2_7·a_1_1·b_3_14
       + c_2_7·a_1_1·b_3_12 + c_2_7·a_1_1·b_3_11 + c_2_7·a_1_1·b_3_10
       + c_2_7·a_1_1·b_1_02·b_1_3 + c_2_7·a_1_1·b_1_03 + c_2_72·b_1_22
       + c_2_72·a_1_1·b_1_0
  41. b_3_132 + b_3_12·b_3_15 + b_3_12·b_3_14 + b_3_12·b_3_13 + b_3_11·b_3_14 + b_3_11·b_3_13
       + b_3_11·b_3_12 + b_3_10·b_3_11 + b_3_102 + b_1_3·b_5_44 + b_1_23·b_3_14
       + b_1_03·b_3_13 + a_1_1·b_1_22·b_3_14 + a_1_1·b_1_22·b_3_12 + a_1_1·b_1_02·b_3_12
       + a_1_1·b_1_02·b_3_10 + c_4_27·b_1_22 + c_2_7·b_1_2·b_3_14 + c_2_7·b_1_0·b_3_13
       + c_2_7·b_1_0·b_3_12 + c_2_7·b_1_0·b_3_11 + c_4_27·a_1_1·b_1_2 + c_4_26·a_1_1·b_1_3
       + c_2_7·a_1_1·b_3_14 + c_2_7·a_1_1·b_3_13 + c_2_7·a_1_1·b_3_12 + c_2_7·a_1_1·b_3_10
       + c_2_7·a_1_1·b_1_23 + c_2_72·a_1_1·b_1_3
  42. b_3_142 + b_3_13·b_3_14 + b_3_132 + b_3_12·b_3_13 + b_3_11·b_3_13 + b_3_11·b_3_12
       + b_3_10·b_3_14 + b_3_102 + b_1_23·b_3_12 + b_1_0·b_5_44 + b_1_03·b_3_13
       + b_1_03·b_3_10 + a_1_1·b_1_22·b_3_12 + a_1_1·b_1_02·b_3_11 + a_1_1·b_1_05
       + c_2_7·b_1_2·b_3_14 + c_2_7·b_1_0·b_3_12 + c_2_7·b_1_03·b_1_3 + c_4_26·a_1_1·b_1_3
       + c_2_7·a_1_1·b_1_23 + c_2_7·a_1_1·b_1_02·b_1_3 + c_2_7·a_1_1·b_1_03
       + c_2_72·b_1_22 + c_2_72·b_1_02 + c_2_72·a_1_1·b_1_2 + c_2_72·a_1_1·b_1_0
  43. b_3_13·b_5_43 + b_1_05·b_3_13 + a_1_1·b_1_02·b_5_43 + a_1_1·b_1_04·b_3_13
       + a_1_1·b_1_06·b_1_3 + c_4_27·b_1_0·b_3_13 + c_4_27·b_1_0·b_3_11 + c_4_27·b_1_0·b_3_10
       + c_4_27·b_1_03·b_1_3 + c_4_26·b_1_0·b_3_13 + c_4_26·b_1_0·b_3_11
       + c_4_26·b_1_0·b_3_10 + c_4_26·b_1_03·b_1_3 + c_4_27·a_1_1·b_1_02·b_1_3
       + c_4_27·a_1_1·b_1_03 + c_4_26·a_1_1·b_3_15 + c_4_26·a_1_1·b_3_12
       + c_4_26·a_1_1·b_3_11 + c_4_26·a_1_1·b_1_03 + c_2_7·a_1_1·b_1_02·b_3_13
       + c_2_7·c_4_27·b_1_0·b_1_3 + c_2_7·c_4_26·b_1_0·b_1_3 + c_2_72·b_1_0·b_3_13
       + c_2_72·b_1_0·b_3_11 + c_2_72·b_1_0·b_3_10 + c_2_72·b_1_03·b_1_3
       + c_2_72·a_1_1·b_3_15 + c_2_72·a_1_1·b_3_13 + c_2_72·a_1_1·b_3_12
       + c_2_72·a_1_1·b_3_11 + c_2_72·a_1_1·b_1_03 + c_2_73·b_1_0·b_1_3
  44. b_3_15·b_5_43 + b_3_11·b_5_43 + b_1_23·b_5_44 + b_1_25·b_3_14 + b_1_25·b_3_12
       + a_1_1·b_1_24·b_3_14 + a_1_1·b_1_04·b_3_13 + a_1_1·b_1_04·b_3_12
       + a_1_1·b_1_04·b_3_11 + a_1_1·b_1_06·b_1_3 + c_4_27·b_1_2·b_3_12 + c_4_27·b_1_24
       + c_4_26·b_1_24 + c_2_7·b_1_23·b_3_14 + c_2_7·b_1_26 + c_4_27·a_1_1·b_3_15
       + c_4_27·a_1_1·b_3_14 + c_4_27·a_1_1·b_3_13 + c_4_27·a_1_1·b_3_12
       + c_4_27·a_1_1·b_1_02·b_1_3 + c_4_27·a_1_1·b_1_03 + c_4_26·a_1_1·b_3_15
       + c_4_26·a_1_1·b_3_14 + c_4_26·a_1_1·b_3_13 + c_4_26·a_1_1·b_3_12 + c_4_26·a_1_1·b_3_11
       + c_4_26·a_1_1·b_1_02·b_1_3 + c_4_26·a_1_1·b_1_03 + c_2_7·a_1_1·b_1_22·b_3_14
       + c_2_7·a_1_1·b_1_25 + c_2_7·a_1_1·b_1_05 + c_2_7·c_4_26·b_1_22
       + c_2_72·b_1_24 + c_2_7·c_4_26·a_1_1·b_1_0 + c_2_72·a_1_1·b_3_14
       + c_2_72·a_1_1·b_3_13 + c_2_72·a_1_1·b_3_12 + c_2_72·a_1_1·b_1_23
       + c_2_72·a_1_1·b_1_02·b_1_3 + c_2_72·a_1_1·b_1_03 + c_2_73·b_1_22
       + c_2_73·a_1_1·b_1_0
  45. b_3_11·b_5_43 + b_1_05·b_3_13 + b_1_05·b_3_12 + b_1_05·b_3_11 + b_1_07·b_1_3
       + a_1_1·b_1_22·b_5_44 + a_1_1·b_1_24·b_3_14 + a_1_1·b_1_24·b_3_12
       + a_1_1·b_1_02·b_5_43 + a_1_1·b_1_06·b_1_3 + c_4_27·b_1_0·b_3_11
       + c_4_27·b_1_03·b_1_3 + c_4_27·b_1_04 + c_4_26·b_1_0·b_3_13 + c_4_26·b_1_0·b_3_12
       + c_4_26·b_1_04 + c_2_7·b_1_0·b_5_43 + c_2_7·b_1_06 + c_4_27·a_1_1·b_3_15
       + c_4_27·a_1_1·b_1_23 + c_4_27·a_1_1·b_1_02·b_1_3 + c_4_27·a_1_1·b_1_03
       + c_4_26·a_1_1·b_3_13 + c_4_26·a_1_1·b_3_11 + c_4_26·a_1_1·b_3_10
       + c_4_26·a_1_1·b_1_23 + c_4_26·a_1_1·b_1_03 + c_2_7·a_1_1·b_5_43
       + c_2_7·a_1_1·b_1_25 + c_2_7·a_1_1·b_1_02·b_3_13 + c_2_7·a_1_1·b_1_02·b_3_12
       + c_2_7·c_4_27·b_1_02 + c_2_72·b_1_0·b_3_13 + c_2_72·b_1_0·b_3_12
       + c_2_72·b_1_04 + c_2_7·c_4_27·a_1_1·b_1_2 + c_2_7·c_4_26·a_1_1·b_1_0
       + c_2_72·a_1_1·b_3_15 + c_2_72·a_1_1·b_3_11 + c_2_72·a_1_1·b_3_10
       + c_2_72·a_1_1·b_1_02·b_1_3 + c_2_72·a_1_1·b_1_03 + c_2_7·c_4_26·a_1_12
  46. b_3_14·b_5_43 + b_3_12·b_5_44 + b_3_11·b_5_43 + b_1_03·b_5_43 + b_1_05·b_3_13
       + b_1_05·b_3_11 + b_1_07·b_1_3 + a_1_1·b_1_24·b_3_14 + a_1_1·b_1_02·b_5_44
       + a_1_1·b_1_02·b_5_43 + c_4_27·b_1_2·b_3_14 + c_4_27·b_1_2·b_3_12
       + c_4_27·b_1_03·b_1_3 + c_4_27·b_1_04 + c_4_26·b_1_2·b_3_14 + c_4_26·b_1_2·b_3_12
       + c_4_26·b_1_24 + c_4_26·b_1_0·b_3_11 + c_4_26·b_1_03·b_1_3 + c_4_26·b_1_04
       + c_2_7·b_1_23·b_3_12 + c_2_7·b_1_26 + c_2_7·b_1_0·b_5_43 + c_2_7·b_1_05·b_1_3
       + c_2_7·b_1_06 + c_4_27·a_1_1·b_3_12 + c_4_27·a_1_1·b_3_11 + c_4_27·a_1_1·b_3_10
       + c_4_27·a_1_1·b_1_02·b_1_3 + c_4_27·a_1_1·b_1_03 + c_4_26·a_1_1·b_3_15
       + c_4_26·a_1_1·b_3_14 + c_4_26·a_1_1·b_3_13 + c_4_26·a_1_1·b_3_12
       + c_4_26·a_1_1·b_1_02·b_1_3 + c_4_26·a_1_1·b_1_03 + c_2_7·a_1_1·b_5_43
       + c_2_7·a_1_1·b_1_25 + c_2_7·a_1_1·b_1_02·b_3_12 + c_2_7·a_1_1·b_1_02·b_3_10
       + c_2_7·a_1_1·b_1_05 + c_2_7·c_4_27·b_1_02 + c_2_7·c_4_26·b_1_0·b_1_3
       + c_2_7·c_4_26·b_1_02 + c_2_72·b_1_2·b_3_14 + c_2_72·b_1_24
       + c_2_72·b_1_0·b_3_13 + c_2_72·b_1_0·b_3_11 + c_2_72·b_1_04
       + c_2_7·c_4_27·a_1_1·b_1_3 + c_2_7·c_4_27·a_1_1·b_1_2 + c_2_7·c_4_26·a_1_1·b_1_2
       + c_2_72·a_1_1·b_3_12 + c_2_72·a_1_1·b_3_11 + c_2_72·a_1_1·b_1_02·b_1_3
       + c_2_72·a_1_1·b_1_03 + c_2_7·c_4_27·a_1_12 + c_2_73·b_1_0·b_1_3
       + c_2_73·b_1_02 + c_2_73·a_1_1·b_1_2 + c_2_73·a_1_12
  47. b_3_15·b_5_43 + b_3_13·b_5_44 + b_3_12·b_5_43 + b_3_11·b_5_43 + b_3_10·b_5_43
       + b_1_03·b_5_44 + b_1_05·b_3_13 + b_1_05·b_3_10 + b_1_07·b_1_3 + a_1_1·b_1_24·b_3_12
       + a_1_1·b_1_04·b_3_12 + a_1_1·b_1_04·b_3_10 + c_4_27·b_1_0·b_3_12
       + c_4_26·b_1_0·b_3_12 + c_4_26·b_1_0·b_3_11 + c_2_7·b_1_23·b_3_14 + c_2_7·b_1_0·b_5_43
       + c_2_7·b_1_03·b_3_11 + c_2_7·b_1_05·b_1_3 + c_4_27·a_1_1·b_3_15
       + c_4_27·a_1_1·b_3_14 + c_4_27·a_1_1·b_3_13 + c_4_27·a_1_1·b_3_12 + c_4_27·a_1_1·b_3_11
       + c_4_27·a_1_1·b_3_10 + c_4_27·a_1_1·b_1_02·b_1_3 + c_4_26·a_1_1·b_3_11
       + c_4_26·a_1_1·b_3_10 + c_4_26·a_1_1·b_1_02·b_1_3 + c_2_7·a_1_1·b_1_22·b_3_14
       + c_2_7·a_1_1·b_1_02·b_3_12 + c_2_7·a_1_1·b_1_05 + c_2_7·c_4_27·b_1_22
       + c_2_7·c_4_27·b_1_0·b_1_3 + c_2_7·c_4_26·b_1_0·b_1_3 + c_2_7·c_4_26·b_1_02
       + c_2_72·b_1_2·b_3_12 + c_2_72·b_1_24 + c_2_72·b_1_0·b_3_12 + c_2_72·b_1_0·b_3_11
       + c_2_72·b_1_04 + c_2_7·c_4_27·a_1_1·b_1_3 + c_2_7·c_4_27·a_1_1·b_1_0
       + c_2_7·c_4_26·a_1_1·b_1_3 + c_2_7·c_4_26·a_1_1·b_1_0 + c_2_72·a_1_1·b_3_14
       + c_2_72·a_1_1·b_3_13 + c_2_72·a_1_1·b_3_11 + c_2_72·a_1_1·b_1_23
       + c_2_72·a_1_1·b_1_03 + c_2_7·c_4_27·a_1_12 + c_2_7·c_4_26·a_1_12
       + c_2_73·b_1_0·b_1_3 + c_2_73·b_1_02 + c_2_73·a_1_1·b_1_3 + c_2_73·a_1_1·b_1_0
       + c_2_73·a_1_12
  48. b_3_14·b_5_43 + b_3_10·b_5_44 + b_3_10·b_5_43 + b_1_25·b_3_12 + b_1_05·b_3_13
       + a_1_1·b_1_24·b_3_12 + a_1_1·b_1_02·b_5_43 + a_1_1·b_1_04·b_3_13
       + a_1_1·b_1_04·b_3_12 + a_1_1·b_1_04·b_3_11 + a_1_1·b_1_06·b_1_3
       + c_4_27·b_1_2·b_3_14 + c_4_27·b_1_0·b_3_10 + c_4_26·b_1_0·b_3_10
       + c_2_7·b_1_23·b_3_14 + c_2_7·b_1_23·b_3_12 + c_2_7·b_1_0·b_5_43
       + c_2_7·b_1_03·b_3_12 + c_2_7·b_1_03·b_3_11 + c_2_7·b_1_03·b_3_10
       + c_2_7·b_1_05·b_1_3 + c_4_27·a_1_1·b_3_15 + c_4_27·a_1_1·b_3_12 + c_4_27·a_1_1·b_3_11
       + c_4_27·a_1_1·b_3_10 + c_4_27·a_1_1·b_1_03 + c_4_26·a_1_1·b_3_15
       + c_4_26·a_1_1·b_3_12 + c_4_26·a_1_1·b_3_10 + c_4_26·a_1_1·b_1_23
       + c_4_26·a_1_1·b_1_02·b_1_3 + c_4_26·a_1_1·b_1_03 + c_2_7·a_1_1·b_5_43
       + c_2_7·a_1_1·b_1_22·b_3_14 + c_2_7·a_1_1·b_1_25 + c_2_7·a_1_1·b_1_02·b_3_12
       + c_2_7·a_1_1·b_1_04·b_1_3 + c_2_7·c_4_26·b_1_22 + c_2_7·c_4_26·b_1_0·b_1_3
       + c_2_7·c_4_26·b_1_02 + c_2_72·b_1_2·b_3_14 + c_2_72·b_1_2·b_3_12
       + c_2_72·b_1_0·b_3_13 + c_2_72·b_1_03·b_1_3 + c_2_72·b_1_04
       + c_2_7·c_4_27·a_1_1·b_1_0 + c_2_7·c_4_26·a_1_1·b_1_3 + c_2_7·c_4_26·a_1_1·b_1_0
       + c_2_72·a_1_1·b_3_12 + c_2_72·a_1_1·b_1_03 + c_2_7·c_4_27·a_1_12
       + c_2_73·b_1_0·b_1_3 + c_2_73·a_1_1·b_1_2 + c_2_73·a_1_1·b_1_0 + c_2_73·a_1_12
  49. b_3_11·b_5_44 + b_3_10·b_5_43 + b_1_03·b_5_44 + b_1_03·b_5_43 + b_1_05·b_3_13
       + b_1_05·b_3_11 + b_1_05·b_3_10 + b_1_07·b_1_3 + a_1_1·b_1_24·b_3_12
       + a_1_1·b_1_02·b_5_44 + a_1_1·b_1_04·b_3_13 + a_1_1·b_1_04·b_3_12
       + a_1_1·b_1_04·b_3_10 + a_1_1·b_1_06·b_1_3 + a_1_1·b_1_07 + c_4_27·b_1_0·b_3_10
       + c_4_27·b_1_03·b_1_3 + c_4_27·b_1_04 + c_4_26·b_1_0·b_3_10 + c_4_26·b_1_03·b_1_3
       + c_4_26·b_1_04 + c_2_7·b_1_23·b_3_14 + c_2_7·b_1_03·b_3_13 + c_2_7·b_1_03·b_3_12
       + c_2_7·b_1_03·b_3_10 + c_2_7·b_1_05·b_1_3 + c_2_7·b_1_06 + c_4_27·a_1_1·b_3_15
       + c_4_27·a_1_1·b_3_11 + c_4_27·a_1_1·b_1_02·b_1_3 + c_4_27·a_1_1·b_1_03
       + c_4_26·a_1_1·b_3_15 + c_4_26·a_1_1·b_3_14 + c_4_26·a_1_1·b_3_10
       + c_4_26·a_1_1·b_1_23 + c_4_26·a_1_1·b_1_03 + c_2_7·a_1_1·b_1_22·b_3_14
       + c_2_7·a_1_1·b_1_22·b_3_12 + c_2_7·a_1_1·b_1_25 + c_2_7·a_1_1·b_1_02·b_3_12
       + c_2_7·a_1_1·b_1_02·b_3_10 + c_2_7·a_1_1·b_1_04·b_1_3 + c_2_7·c_4_27·b_1_22
       + c_2_7·c_4_26·b_1_0·b_1_3 + c_2_7·c_4_26·b_1_02 + c_2_72·b_1_2·b_3_12
       + c_2_72·b_1_24 + c_2_72·b_1_0·b_3_13 + c_2_72·b_1_04 + c_2_7·c_4_26·a_1_1·b_1_3
       + c_2_72·a_1_1·b_3_13 + c_2_72·a_1_1·b_3_11 + c_2_72·a_1_1·b_1_03
       + c_2_7·c_4_26·a_1_12 + c_2_73·b_1_0·b_1_3 + c_2_73·a_1_1·b_1_3
       + c_2_73·a_1_1·b_1_0 + c_2_73·a_1_12
  50. b_3_14·b_5_44 + b_3_12·b_5_43 + b_3_10·b_5_43 + b_1_03·b_5_44 + b_1_05·b_3_10
       + a_1_1·b_1_24·b_3_14 + a_1_1·b_1_24·b_3_12 + a_1_1·b_1_02·b_5_44
       + a_1_1·b_1_02·b_5_43 + a_1_1·b_1_04·b_3_12 + a_1_1·b_1_04·b_3_11
       + a_1_1·b_1_04·b_3_10 + a_1_1·b_1_06·b_1_3 + a_1_1·b_1_07 + c_4_27·b_1_2·b_3_14
       + c_4_27·b_1_2·b_3_12 + c_4_27·b_1_0·b_3_12 + c_4_26·b_1_2·b_3_14 + c_4_26·b_1_24
       + c_4_26·b_1_0·b_3_12 + c_4_26·b_1_0·b_3_11 + c_2_7·b_1_23·b_3_12 + c_2_7·b_1_26
       + c_2_7·b_1_03·b_3_11 + c_2_7·b_1_05·b_1_3 + c_4_27·a_1_1·b_1_02·b_1_3
       + c_4_26·a_1_1·b_3_15 + c_4_26·a_1_1·b_3_14 + c_4_26·a_1_1·b_3_12 + c_4_26·a_1_1·b_3_11
       + c_4_26·a_1_1·b_1_23 + c_2_7·a_1_1·b_5_43 + c_2_7·a_1_1·b_1_02·b_3_13
       + c_2_7·a_1_1·b_1_02·b_3_12 + c_2_7·a_1_1·b_1_02·b_3_10 + c_2_7·a_1_1·b_1_05
       + c_2_7·c_4_27·b_1_22 + c_2_7·c_4_27·b_1_0·b_1_3 + c_2_7·c_4_27·b_1_02
       + c_2_7·c_4_26·b_1_22 + c_2_7·c_4_26·b_1_0·b_1_3 + c_2_72·b_1_2·b_3_12
       + c_2_72·b_1_24 + c_2_72·b_1_0·b_3_13 + c_2_72·b_1_0·b_3_12 + c_2_72·b_1_0·b_3_11
       + c_2_72·b_1_0·b_3_10 + c_2_72·b_1_03·b_1_3 + c_2_7·c_4_27·a_1_1·b_1_3
       + c_2_7·c_4_27·a_1_1·b_1_0 + c_2_7·c_4_26·a_1_1·b_1_3 + c_2_7·c_4_26·a_1_1·b_1_2
       + c_2_72·a_1_1·b_3_11 + c_2_72·a_1_1·b_3_10 + c_2_72·a_1_1·b_1_02·b_1_3
       + c_2_72·a_1_1·b_1_03 + c_2_7·c_4_27·a_1_12 + c_2_73·b_1_22
       + c_2_73·b_1_0·b_1_3 + c_2_73·b_1_02 + c_2_73·a_1_1·b_1_0 + c_2_73·a_1_12
  51. b_3_15·b_5_44 + b_3_14·b_5_43 + b_3_10·b_5_43 + b_1_05·b_3_13 + b_1_05·b_3_11
       + b_1_05·b_3_10 + a_1_1·b_1_24·b_3_14 + a_1_1·b_1_24·b_3_12 + a_1_1·b_1_02·b_5_44
       + a_1_1·b_1_04·b_3_12 + a_1_1·b_1_04·b_3_11 + a_1_1·b_1_04·b_3_10
       + c_4_27·b_1_2·b_3_14 + c_4_27·b_1_2·b_3_12 + c_4_27·b_1_0·b_3_10 + c_4_26·b_1_2·b_3_14
       + c_4_26·b_1_2·b_3_12 + c_4_26·b_1_24 + c_4_26·b_1_0·b_3_10 + c_2_7·b_1_23·b_3_14
       + c_2_7·b_1_23·b_3_12 + c_2_7·b_1_26 + c_2_7·b_1_0·b_5_43 + c_2_7·b_1_03·b_3_13
       + c_2_7·b_1_03·b_3_12 + c_2_7·b_1_05·b_1_3 + c_4_27·a_1_1·b_3_15
       + c_4_27·a_1_1·b_3_14 + c_4_27·a_1_1·b_3_13 + c_4_27·a_1_1·b_3_11 + c_4_27·a_1_1·b_3_10
       + c_4_27·a_1_1·b_1_02·b_1_3 + c_4_26·a_1_1·b_3_15 + c_4_26·a_1_1·b_3_14
       + c_4_26·a_1_1·b_3_13 + c_4_26·a_1_1·b_3_11 + c_2_7·a_1_1·b_1_22·b_3_14
       + c_2_7·a_1_1·b_1_25 + c_2_7·a_1_1·b_1_02·b_3_13 + c_2_7·a_1_1·b_1_02·b_3_11
       + c_2_7·a_1_1·b_1_02·b_3_10 + c_2_7·a_1_1·b_1_04·b_1_3 + c_2_7·a_1_1·b_1_05
       + c_2_7·c_4_27·b_1_22 + c_2_7·c_4_26·b_1_0·b_1_3 + c_2_7·c_4_26·b_1_02
       + c_2_72·b_1_2·b_3_14 + c_2_72·b_1_2·b_3_12 + c_2_72·b_1_0·b_3_13
       + c_2_72·b_1_03·b_1_3 + c_2_72·b_1_04 + c_2_7·c_4_27·a_1_1·b_1_2
       + c_2_7·c_4_27·a_1_1·b_1_0 + c_2_72·a_1_1·b_3_15 + c_2_72·a_1_1·b_3_13
       + c_2_72·a_1_1·b_3_12 + c_2_72·a_1_1·b_3_11 + c_2_72·a_1_1·b_3_10
       + c_2_72·a_1_1·b_1_23 + c_2_7·c_4_27·a_1_12 + c_2_73·b_1_0·b_1_3
       + c_2_73·a_1_1·b_1_0
  52. b_3_15·b_5_43 + b_3_14·b_5_43 + b_3_12·b_5_43 + b_3_11·b_5_43 + b_1_25·b_3_12
       + b_1_03·b_5_44 + b_1_05·b_3_12 + a_1_1·b_1_02·b_5_44 + a_1_1·b_1_04·b_3_11
       + a_1_1·b_1_06·b_1_3 + c_4_27·b_1_2·b_3_14 + c_4_27·b_1_0·b_3_12 + c_4_27·b_1_0·b_3_10
       + c_4_27·b_1_03·b_1_3 + c_4_27·b_1_04 + c_4_26·b_1_0·b_3_13 + c_4_26·b_1_0·b_3_10
       + c_4_26·b_1_04 + c_2_7·b_1_2·b_5_44 + c_2_7·b_1_23·b_3_12 + c_2_7·b_1_0·b_5_43
       + c_2_7·b_1_03·b_3_10 + c_2_7·b_1_06 + c_4_27·a_1_1·b_3_14 + c_4_27·a_1_1·b_3_13
       + c_4_27·a_1_1·b_3_11 + c_4_27·a_1_1·b_3_10 + c_4_27·a_1_1·b_1_03
       + c_4_26·a_1_1·b_3_13 + c_4_26·a_1_1·b_3_10 + c_4_26·a_1_1·b_1_23
       + c_4_26·a_1_1·b_1_02·b_1_3 + c_4_26·a_1_1·b_1_03 + c_2_7·a_1_1·b_1_22·b_3_14
       + c_2_7·a_1_1·b_1_25 + c_2_7·a_1_1·b_1_02·b_3_13 + c_2_7·a_1_1·b_1_02·b_3_11
       + c_2_7·a_1_1·b_1_02·b_3_10 + c_2_7·a_1_1·b_1_04·b_1_3 + c_2_7·c_4_27·b_1_22
       + c_2_7·c_4_27·b_1_0·b_1_3 + c_2_7·c_4_27·b_1_02 + c_2_7·c_4_26·b_1_22
       + c_2_7·c_4_26·b_1_0·b_1_3 + c_2_7·c_4_26·b_1_02 + c_2_72·b_1_2·b_3_14
       + c_2_72·b_1_24 + c_2_72·b_1_0·b_3_13 + c_2_72·b_1_0·b_3_10
       + c_2_7·c_4_27·a_1_1·b_1_2 + c_2_7·c_4_27·a_1_1·b_1_0 + c_2_7·c_4_26·a_1_1·b_1_2
       + c_2_7·c_4_26·a_1_1·b_1_0 + c_2_72·a_1_1·b_3_15 + c_2_72·a_1_1·b_3_14
       + c_2_72·a_1_1·b_3_13 + c_2_72·a_1_1·b_3_12 + c_2_72·a_1_1·b_3_10
       + c_2_7·c_4_27·a_1_12 + c_2_7·c_4_26·a_1_12 + c_2_73·b_1_0·b_1_3
       + c_2_73·b_1_02 + c_2_73·a_1_1·b_1_3 + c_2_73·a_1_12
  53. b_3_15·b_5_43 + b_3_12·b_5_43 + b_3_11·b_5_43 + b_1_03·b_5_43 + b_1_05·b_3_12
       + b_1_07·b_1_3 + a_1_1·b_1_24·b_3_12 + a_1_1·b_1_02·b_5_44 + a_1_1·b_1_04·b_3_12
       + a_1_1·b_1_04·b_3_11 + a_1_1·b_1_06·b_1_3 + a_1_1·b_1_07 + c_4_27·b_1_0·b_3_12
       + c_4_27·b_1_0·b_3_10 + c_4_26·b_1_0·b_3_13 + c_4_26·b_1_0·b_3_10
       + c_4_26·b_1_03·b_1_3 + c_4_27·a_1_1·b_3_15 + c_4_27·a_1_1·b_3_14
       + c_4_27·a_1_1·b_3_13 + c_4_27·a_1_1·b_3_12 + c_4_27·a_1_1·b_1_02·b_1_3
       + c_4_27·a_1_1·b_1_03 + c_4_26·a_1_1·b_1_03 + c_2_7·a_1_1·b_5_44
       + c_2_7·a_1_1·b_1_22·b_3_12 + c_2_7·a_1_1·b_1_02·b_3_13
       + c_2_7·a_1_1·b_1_02·b_3_10 + c_2_7·a_1_1·b_1_04·b_1_3 + c_2_7·c_4_27·b_1_0·b_1_3
       + c_2_7·c_4_27·b_1_02 + c_2_7·c_4_26·b_1_0·b_1_3 + c_2_7·c_4_26·b_1_02
       + c_2_72·b_1_0·b_3_13 + c_2_72·b_1_0·b_3_10 + c_2_72·b_1_03·b_1_3
       + c_2_7·c_4_27·a_1_1·b_1_2 + c_2_7·c_4_27·a_1_1·b_1_0 + c_2_7·c_4_26·a_1_1·b_1_3
       + c_2_72·a_1_1·b_3_15 + c_2_72·a_1_1·b_3_14 + c_2_72·a_1_1·b_3_12
       + c_2_72·a_1_1·b_3_11 + c_2_72·a_1_1·b_3_10 + c_2_72·a_1_1·b_1_23
       + c_2_72·a_1_1·b_1_02·b_1_3 + c_2_7·c_4_26·a_1_12 + c_2_73·b_1_0·b_1_3
       + c_2_73·b_1_02 + c_2_73·a_1_1·b_1_3 + c_2_73·a_1_12
  54. b_3_15·b_5_43 + b_3_12·b_5_43 + b_3_11·b_5_43 + b_3_10·b_5_43 + b_1_03·b_5_44
       + b_1_05·b_3_10 + b_1_07·b_1_3 + a_1_1·b_1_24·b_3_12 + a_1_1·b_1_02·b_5_44
       + a_1_1·b_1_04·b_3_13 + a_1_1·b_1_04·b_3_12 + a_1_1·b_1_04·b_3_10
       + a_1_1·b_1_06·b_1_3 + c_4_27·b_1_0·b_3_12 + c_4_26·b_1_0·b_3_12 + c_4_26·b_1_0·b_3_11
       + c_2_7·b_1_23·b_3_14 + c_2_7·b_1_0·b_5_44 + c_2_7·b_1_03·b_3_10
       + c_4_27·a_1_1·b_3_15 + c_4_27·a_1_1·b_3_14 + c_4_27·a_1_1·b_3_13 + c_4_27·a_1_1·b_3_12
       + c_4_27·a_1_1·b_3_11 + c_4_27·a_1_1·b_1_02·b_1_3 + c_4_27·a_1_1·b_1_03
       + c_4_26·a_1_1·b_3_15 + c_4_26·a_1_1·b_3_12 + c_4_26·a_1_1·b_1_03
       + c_2_7·a_1_1·b_1_22·b_3_14 + c_2_7·a_1_1·b_1_02·b_3_13
       + c_2_7·a_1_1·b_1_02·b_3_12 + c_2_7·a_1_1·b_1_04·b_1_3 + c_2_7·a_1_1·b_1_05
       + c_2_7·c_4_27·b_1_22 + c_2_7·c_4_27·b_1_0·b_1_3 + c_2_7·c_4_27·b_1_02
       + c_2_7·c_4_26·b_1_0·b_1_3 + c_2_72·b_1_2·b_3_12 + c_2_72·b_1_24
       + c_2_72·b_1_0·b_3_13 + c_2_72·b_1_0·b_3_12 + c_2_72·b_1_0·b_3_11
       + c_2_72·b_1_0·b_3_10 + c_2_72·b_1_03·b_1_3 + c_2_7·c_4_26·a_1_1·b_1_3
       + c_2_7·c_4_26·a_1_1·b_1_2 + c_2_7·c_4_26·a_1_1·b_1_0 + c_2_72·a_1_1·b_3_14
       + c_2_72·a_1_1·b_3_13 + c_2_72·a_1_1·b_3_10 + c_2_72·a_1_1·b_1_23
       + c_2_72·a_1_1·b_1_02·b_1_3 + c_2_73·b_1_0·b_1_3 + c_2_73·b_1_02
       + c_2_73·a_1_1·b_1_3 + c_2_73·a_1_1·b_1_2 + c_2_73·a_1_1·b_1_0
  55. b_5_442 + b_1_27·b_3_12 + b_1_07·b_3_13 + b_1_07·b_3_12 + b_1_07·b_3_11
       + a_1_1·b_1_24·b_5_44 + a_1_1·b_1_26·b_3_14 + a_1_1·b_1_06·b_3_13
       + a_1_1·b_1_06·b_3_11 + a_1_1·b_1_06·b_3_10 + a_1_1·b_1_08·b_1_3
       + c_4_27·b_1_03·b_3_13 + c_4_27·b_1_03·b_3_12 + c_4_27·b_1_03·b_3_11
       + c_4_27·b_1_05·b_1_3 + c_4_26·b_1_23·b_3_12 + c_4_26·b_1_05·b_1_3 + c_4_26·b_1_06
       + c_2_7·b_1_25·b_3_12 + c_2_7·b_1_08 + c_4_27·a_1_1·b_1_25
       + c_4_27·a_1_1·b_1_02·b_3_12 + c_4_27·a_1_1·b_1_02·b_3_10
       + c_4_26·a_1_1·b_1_02·b_3_13 + c_4_26·a_1_1·b_1_02·b_3_12
       + c_4_26·a_1_1·b_1_02·b_3_11 + c_4_26·a_1_1·b_1_04·b_1_3
       + c_2_7·a_1_1·b_1_24·b_3_14 + c_2_7·a_1_1·b_1_24·b_3_12
       + c_2_7·a_1_1·b_1_04·b_3_13 + c_2_7·a_1_1·b_1_04·b_3_12
       + c_2_7·a_1_1·b_1_04·b_3_11 + c_2_7·a_1_1·b_1_07 + c_4_272·b_1_22
       + c_4_26·c_4_27·b_1_0·b_1_3 + c_4_26·c_4_27·b_1_02 + c_4_262·b_1_22
       + c_2_7·c_4_27·b_1_04 + c_2_72·b_1_26 + c_2_72·b_1_03·b_3_12
       + c_2_72·b_1_03·b_3_11 + c_4_26·c_4_27·a_1_1·b_1_3 + c_4_26·c_4_27·a_1_1·b_1_2
       + c_4_26·c_4_27·a_1_1·b_1_0 + c_2_7·c_4_27·a_1_1·b_1_02·b_1_3
       + c_2_7·c_4_26·a_1_1·b_1_02·b_1_3 + c_2_72·a_1_1·b_1_25
       + c_2_72·a_1_1·b_1_02·b_3_13 + c_2_72·a_1_1·b_1_02·b_3_12
       + c_4_26·c_4_27·a_1_12 + c_4_262·a_1_12 + c_2_72·c_4_27·b_1_0·b_1_3
       + c_2_72·c_4_27·b_1_02 + c_2_72·c_4_26·b_1_0·b_1_3 + c_2_72·c_4_26·b_1_02
       + c_2_73·b_1_04 + c_2_72·c_4_27·a_1_1·b_1_3 + c_2_72·c_4_27·a_1_1·b_1_2
       + c_2_72·c_4_27·a_1_1·b_1_0 + c_2_72·c_4_26·a_1_1·b_1_3
       + c_2_72·c_4_26·a_1_1·b_1_2 + c_2_72·c_4_26·a_1_1·b_1_0 + c_2_72·c_4_26·a_1_12
       + c_2_74·b_1_0·b_1_3 + c_2_74·b_1_02 + c_2_74·a_1_1·b_1_3 + c_2_74·a_1_1·b_1_2
       + c_2_74·a_1_1·b_1_0
  56. b_5_432 + b_1_27·b_3_12 + b_1_07·b_3_12 + b_1_07·b_3_11 + b_1_09·b_1_3
       + a_1_1·b_1_04·b_5_44 + a_1_1·b_1_04·b_5_43 + a_1_1·b_1_06·b_3_12
       + a_1_1·b_1_06·b_3_11 + a_1_1·b_1_06·b_3_10 + a_1_1·b_1_08·b_1_3 + a_1_1·b_1_09
       + c_4_27·b_1_03·b_3_12 + c_4_27·b_1_03·b_3_11 + c_4_27·b_1_05·b_1_3
       + c_4_26·b_1_03·b_3_13 + c_4_26·b_1_05·b_1_3 + c_4_26·b_1_06 + c_2_7·b_1_08
       + c_4_27·a_1_1·b_1_02·b_3_11 + c_4_27·a_1_1·b_1_05 + c_4_26·a_1_1·b_1_02·b_3_13
       + c_4_26·a_1_1·b_1_02·b_3_10 + c_4_26·a_1_1·b_1_04·b_1_3 + c_4_26·a_1_1·b_1_05
       + c_2_7·a_1_1·b_1_04·b_3_12 + c_2_7·a_1_1·b_1_04·b_3_11
       + c_2_7·a_1_1·b_1_04·b_3_10 + c_2_7·a_1_1·b_1_06·b_1_3 + c_4_272·b_1_22
       + c_4_272·b_1_02 + c_4_26·c_4_27·b_1_0·b_1_3 + c_4_26·c_4_27·b_1_02
       + c_4_262·b_1_02 + c_2_7·c_4_27·b_1_04 + c_2_72·b_1_23·b_3_12 + c_2_72·b_1_26
       + c_2_72·b_1_06 + c_4_26·c_4_27·a_1_1·b_1_3 + c_4_26·c_4_27·a_1_1·b_1_2
       + c_4_26·c_4_27·a_1_1·b_1_0 + c_2_7·c_4_27·a_1_1·b_1_02·b_1_3
       + c_2_7·c_4_26·a_1_1·b_1_02·b_1_3 + c_2_72·a_1_1·b_1_22·b_3_14
       + c_2_72·a_1_1·b_1_22·b_3_12 + c_2_72·a_1_1·b_1_02·b_3_13
       + c_2_72·a_1_1·b_1_02·b_3_12 + c_2_72·a_1_1·b_1_02·b_3_10
       + c_2_72·c_4_27·b_1_02 + c_2_72·c_4_26·b_1_22 + c_2_72·c_4_26·b_1_0·b_1_3
       + c_2_73·b_1_24 + c_2_72·c_4_26·a_1_1·b_1_3 + c_2_72·c_4_26·a_1_1·b_1_2
       + c_2_72·c_4_26·a_1_1·b_1_0 + c_2_73·a_1_1·b_1_23 + c_2_73·a_1_1·b_1_02·b_1_3
       + c_2_74·b_1_22 + c_2_74·b_1_0·b_1_3 + c_2_74·b_1_02 + c_2_74·a_1_1·b_1_3
       + c_2_74·a_1_1·b_1_2 + c_2_74·a_1_1·b_1_0 + c_2_74·a_1_12
  57. b_5_442 + b_5_43·b_5_44 + b_1_25·b_5_44 + b_1_27·b_3_14 + b_1_05·b_5_44
       + b_1_05·b_5_43 + a_1_1·b_1_26·b_3_12 + a_1_1·b_1_04·b_5_43 + a_1_1·b_1_06·b_3_12
       + a_1_1·b_1_06·b_3_11 + a_1_1·b_1_08·b_1_3 + c_4_27·b_1_2·b_5_44
       + c_4_27·b_1_23·b_3_14 + c_4_27·b_1_26 + c_4_27·b_1_0·b_5_44 + c_4_27·b_1_06
       + c_4_26·b_1_23·b_3_14 + c_4_26·b_1_23·b_3_12 + c_4_26·b_1_0·b_5_44 + c_4_26·b_1_06
       + c_2_7·b_1_23·b_5_44 + c_2_7·b_1_25·b_3_12 + c_2_7·b_1_03·b_5_44
       + c_2_7·b_1_05·b_3_12 + c_2_7·b_1_08 + c_4_27·a_1_1·b_5_44
       + c_4_27·a_1_1·b_1_22·b_3_14 + c_4_27·a_1_1·b_1_22·b_3_12
       + c_4_27·a_1_1·b_1_02·b_3_12 + c_4_27·a_1_1·b_1_02·b_3_11 + c_4_27·a_1_1·b_1_05
       + c_4_26·a_1_1·b_5_44 + c_4_26·a_1_1·b_5_43 + c_4_26·a_1_1·b_1_22·b_3_14
       + c_4_26·a_1_1·b_1_02·b_3_13 + c_4_26·a_1_1·b_1_04·b_1_3
       + c_2_7·a_1_1·b_1_24·b_3_12 + c_2_7·a_1_1·b_1_02·b_5_44
       + c_2_7·a_1_1·b_1_02·b_5_43 + c_2_7·a_1_1·b_1_04·b_3_12
       + c_2_7·a_1_1·b_1_04·b_3_11 + c_2_7·a_1_1·b_1_04·b_3_10 + c_2_7·a_1_1·b_1_06·b_1_3
       + c_4_272·b_1_22 + c_4_262·b_1_22 + c_2_7·c_4_27·b_1_2·b_3_12
       + c_2_7·c_4_27·b_1_04 + c_2_7·c_4_26·b_1_2·b_3_14 + c_2_7·c_4_26·b_1_2·b_3_12
       + c_2_7·c_4_26·b_1_24 + c_2_7·c_4_26·b_1_0·b_3_13 + c_2_7·c_4_26·b_1_0·b_3_12
       + c_2_7·c_4_26·b_1_0·b_3_11 + c_2_7·c_4_26·b_1_03·b_1_3 + c_2_7·c_4_26·b_1_04
       + c_2_72·b_1_2·b_5_44 + c_2_72·b_1_26 + c_2_72·b_1_0·b_5_43
       + c_2_72·b_1_03·b_3_12 + c_2_72·b_1_03·b_3_11 + c_2_72·b_1_03·b_3_10
       + c_2_72·b_1_05·b_1_3 + c_2_72·b_1_06 + c_4_272·a_1_1·b_1_2
       + c_4_26·c_4_27·a_1_1·b_1_3 + c_4_262·a_1_1·b_1_2 + c_4_262·a_1_1·b_1_0
       + c_2_7·c_4_27·a_1_1·b_3_15 + c_2_7·c_4_27·a_1_1·b_3_13 + c_2_7·c_4_27·a_1_1·b_3_12
       + c_2_7·c_4_27·a_1_1·b_3_11 + c_2_7·c_4_27·a_1_1·b_3_10
       + c_2_7·c_4_27·a_1_1·b_1_02·b_1_3 + c_2_7·c_4_27·a_1_1·b_1_03
       + c_2_7·c_4_26·a_1_1·b_3_14 + c_2_7·c_4_26·a_1_1·b_3_12 + c_2_7·c_4_26·a_1_1·b_3_10
       + c_2_7·c_4_26·a_1_1·b_1_03 + c_2_72·a_1_1·b_5_43 + c_2_72·a_1_1·b_1_22·b_3_12
       + c_2_72·a_1_1·b_1_25 + c_2_72·a_1_1·b_1_02·b_3_12
       + c_2_72·a_1_1·b_1_02·b_3_11 + c_4_26·c_4_27·a_1_12 + c_2_72·c_4_27·b_1_22
       + c_2_72·c_4_27·b_1_02 + c_2_72·c_4_26·b_1_22 + c_2_72·c_4_26·b_1_0·b_1_3
       + c_2_72·c_4_26·b_1_02 + c_2_73·b_1_0·b_3_12 + c_2_73·b_1_0·b_3_11
       + c_2_73·b_1_0·b_3_10 + c_2_72·c_4_27·a_1_1·b_1_2 + c_2_72·c_4_27·a_1_1·b_1_0
       + c_2_72·c_4_26·a_1_1·b_1_3 + c_2_72·c_4_26·a_1_1·b_1_2 + c_2_73·a_1_1·b_3_13
       + c_2_73·a_1_1·b_3_12 + c_2_73·a_1_1·b_3_10 + c_2_73·a_1_1·b_1_02·b_1_3
       + c_2_73·a_1_1·b_1_03 + c_2_72·c_4_27·a_1_12 + c_2_72·c_4_26·a_1_12
       + c_2_74·b_1_0·b_1_3 + c_2_74·a_1_1·b_1_2 + c_2_74·a_1_12


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 10.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_2_7, a Duflot regular element of degree 2
    2. c_4_26, a Duflot regular element of degree 4
    3. c_4_27, a Duflot regular element of degree 4
    4. b_1_22 + b_1_02, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 5, 8].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 3

  1. a_1_10, an element of degree 1
  2. b_1_00, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_30, an element of degree 1
  5. c_2_7c_1_22, an element of degree 2
  6. b_3_100, an element of degree 3
  7. b_3_110, an element of degree 3
  8. b_3_120, an element of degree 3
  9. b_3_130, an element of degree 3
  10. b_3_140, an element of degree 3
  11. b_3_150, an element of degree 3
  12. c_4_26c_1_24 + c_1_14, an element of degree 4
  13. c_4_27c_1_14 + c_1_04, an element of degree 4
  14. b_5_430, an element of degree 5
  15. b_5_440, an element of degree 5

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_10, an element of degree 1
  2. b_1_0c_1_3, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_30, an element of degree 1
  5. c_2_7c_1_22, an element of degree 2
  6. b_3_10c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  7. b_3_11c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  8. b_3_12c_1_2·c_1_32 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  9. b_3_130, an element of degree 3
  10. b_3_14c_1_22·c_1_3, an element of degree 3
  11. b_3_15c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  12. c_4_26c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_33 + c_1_14 + c_1_0·c_1_33
       + c_1_02·c_1_32, an element of degree 4
  13. c_4_27c_1_12·c_1_32 + c_1_14 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  14. b_5_43c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_1·c_1_2·c_1_33 + c_1_12·c_1_33
       + c_1_12·c_1_2·c_1_32 + c_1_14·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33
       + c_1_0·c_1_1·c_1_33 + c_1_0·c_1_12·c_1_32 + c_1_02·c_1_2·c_1_32
       + c_1_02·c_1_1·c_1_32 + c_1_02·c_1_12·c_1_3 + c_1_04·c_1_3, an element of degree 5
  15. b_5_44c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_1·c_1_34
       + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32 + c_1_12·c_1_2·c_1_32
       + c_1_12·c_1_22·c_1_3 + c_1_14·c_1_3 + c_1_0·c_1_2·c_1_33 + c_1_0·c_1_1·c_1_33
       + c_1_0·c_1_12·c_1_32 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_1·c_1_32
       + c_1_02·c_1_12·c_1_3, an element of degree 5

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_10, an element of degree 1
  2. b_1_00, an element of degree 1
  3. b_1_2c_1_3, an element of degree 1
  4. b_1_3c_1_3, an element of degree 1
  5. c_2_7c_1_2·c_1_3 + c_1_22, an element of degree 2
  6. b_3_10c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  7. b_3_110, an element of degree 3
  8. b_3_12c_1_12·c_1_3, an element of degree 3
  9. b_3_130, an element of degree 3
  10. b_3_14c_1_1·c_1_32, an element of degree 3
  11. b_3_15c_1_12·c_1_3, an element of degree 3
  12. c_4_26c_1_2·c_1_33 + c_1_24 + c_1_12·c_1_32 + c_1_14, an element of degree 4
  13. c_4_27c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_14 + c_1_02·c_1_32
       + c_1_04, an element of degree 4
  14. b_5_43c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_14·c_1_3 + c_1_02·c_1_33
       + c_1_04·c_1_3, an element of degree 5
  15. b_5_44c_1_2·c_1_34 + c_1_24·c_1_3 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32
       + c_1_13·c_1_32 + c_1_02·c_1_33 + c_1_04·c_1_3, an element of degree 5

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_10, an element of degree 1
  2. b_1_0c_1_3, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_3c_1_3, an element of degree 1
  5. c_2_7c_1_2·c_1_3 + c_1_22, an element of degree 2
  6. b_3_10c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_32, an element of degree 3
  7. b_3_11c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  8. b_3_12c_1_33 + c_1_02·c_1_3, an element of degree 3
  9. b_3_13c_1_02·c_1_3, an element of degree 3
  10. b_3_14c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  11. b_3_15c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  12. c_4_26c_1_22·c_1_32 + c_1_24 + c_1_12·c_1_32 + c_1_14 + c_1_02·c_1_32, an element of degree 4
  13. c_4_27c_1_12·c_1_32 + c_1_14 + c_1_04, an element of degree 4
  14. b_5_43c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_0·c_1_34 + c_1_02·c_1_2·c_1_32
       + c_1_02·c_1_22·c_1_3 + c_1_03·c_1_32 + c_1_04·c_1_3, an element of degree 5
  15. b_5_44c_1_35 + c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_0·c_1_2·c_1_33
       + c_1_0·c_1_22·c_1_32, an element of degree 5


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009