Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 144 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
t9 − t8 − t6 − t4 − t2 − 1 |
| (t + 1) · (t − 1)3 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 20 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- b_2_1, an element of degree 2
- b_2_2, an element of degree 2
- b_3_2, an element of degree 3
- b_3_3, an element of degree 3
- b_4_1, an element of degree 4
- b_4_2, an element of degree 4
- b_4_5, an element of degree 4
- a_5_3, a nilpotent element of degree 5
- b_5_6, an element of degree 5
- b_5_7, an element of degree 5
- b_6_8, an element of degree 6
- b_6_9, an element of degree 6
- b_7_10, an element of degree 7
- b_7_11, an element of degree 7
- b_8_13, an element of degree 8
- b_8_14, an element of degree 8
- c_8_15, a Duflot regular element of degree 8
- b_9_18, an element of degree 9
Ring relations
There are 152 minimal relations of maximal degree 18:
- a_1_02
- a_1_0·a_1_1
- a_1_13
- b_2_2·a_1_1 + b_2_1·a_1_1
- b_2_2·a_1_0 + b_2_1·a_1_1
- b_2_22 + b_2_1·b_2_2
- a_1_1·b_3_2
- a_1_0·b_3_2
- a_1_0·b_3_3
- b_2_2·b_3_2 + b_2_1·b_3_3 + b_2_12·a_1_1
- b_2_2·b_3_3 + b_2_2·b_3_2 + b_2_12·a_1_1
- a_1_12·b_3_3
- b_4_1·a_1_1
- b_4_1·a_1_0
- b_4_2·a_1_1
- b_4_2·a_1_0
- b_4_5·a_1_0
- b_2_2·b_4_1 + b_2_1·b_4_2 + b_2_1·b_4_1
- b_2_2·b_4_2
- b_3_22 + b_2_1·b_4_5
- b_3_2·b_3_3 + b_2_2·b_4_5
- a_1_1·a_5_3
- a_1_0·a_5_3
- a_1_1·b_5_6
- a_1_0·b_5_6
- b_3_32 + b_3_2·b_3_3 + a_1_1·b_5_7
- a_1_0·b_5_7
- b_4_2·b_3_2 + b_4_1·b_3_3 + b_4_1·b_3_2
- b_4_2·b_3_3
- b_4_1·b_3_2 + b_2_1·b_5_6 + b_2_12·b_3_3 + b_2_13·a_1_1
- b_4_1·b_3_3 + b_2_2·b_5_6 + b_2_12·b_3_3 + b_2_13·a_1_1
- b_4_1·b_3_3 + b_4_1·b_3_2 + b_2_1·b_5_7 + b_2_12·b_3_3 + b_2_2·a_5_3
- b_2_2·b_5_7 + b_2_12·b_3_3 + b_2_2·a_5_3
- a_1_12·b_5_7
- b_6_8·a_1_1 + b_2_2·a_5_3
- b_6_8·a_1_0 + b_2_1·a_5_3
- b_6_9·a_1_1 + b_2_2·a_5_3 + b_2_13·a_1_1
- b_6_9·a_1_0 + b_2_2·a_5_3 + b_2_13·a_1_1
- b_4_22 + b_4_1·b_4_2
- b_4_12 + b_2_12·b_4_5
- b_4_1·b_4_2 + b_4_12 + b_2_1·b_2_2·b_4_5
- b_3_2·a_5_3
- b_3_3·a_5_3
- b_3_2·b_5_6 + b_4_1·b_4_5 + b_4_1·b_4_2 + b_4_12 + b_4_5·a_1_1·b_3_3
- b_3_3·b_5_6 + b_4_2·b_4_5 + b_4_1·b_4_5 + b_4_1·b_4_2 + b_4_12
- b_3_2·b_5_7 + b_4_2·b_4_5 + b_4_1·b_4_2 + b_4_12 + b_4_5·a_1_1·b_3_3
- b_4_12 + b_2_2·b_6_8 + b_2_1·b_6_9 + b_2_12·b_4_2 + b_2_12·b_4_1 + b_2_13·b_2_2
- b_4_1·b_4_2 + b_4_12 + b_2_2·b_6_9 + b_2_2·b_6_8 + b_2_12·b_4_2 + b_2_12·b_4_1
+ b_2_13·b_2_2
- a_1_1·b_7_10
- a_1_0·b_7_10
- b_3_3·b_5_7 + b_4_1·b_4_2 + b_4_12 + a_1_1·b_7_11
- a_1_0·b_7_11
- b_4_1·a_5_3
- b_4_2·a_5_3
- b_4_2·b_5_6 + b_2_1·b_4_5·b_3_3 + b_2_1·b_4_5·b_3_2
- b_4_1·b_5_6 + b_2_1·b_4_5·b_3_2 + b_2_12·b_5_7 + b_2_12·b_5_6 + b_2_1·b_2_2·a_5_3
+ b_2_14·a_1_1
- b_4_1·b_5_7 + b_4_1·b_5_6 + b_2_1·b_4_5·b_3_3 + b_4_5·a_5_3
- b_4_2·b_5_7 + b_2_1·b_4_5·b_3_3 + b_2_1·b_4_5·b_3_2 + b_4_5·a_5_3
- b_6_9·b_3_2 + b_6_8·b_3_3 + b_4_1·b_5_6 + b_2_13·b_3_3 + b_2_1·b_2_2·a_5_3
+ b_2_14·a_1_1
- b_6_9·b_3_3 + b_6_8·b_3_3 + b_4_1·b_5_6 + b_2_1·b_4_5·b_3_3 + b_2_1·b_4_5·b_3_2
+ b_2_13·b_3_3
- b_6_8·b_3_2 + b_4_1·b_5_6 + b_2_1·b_7_10 + b_2_1·b_4_5·b_3_3 + b_2_13·b_3_3
+ b_2_1·b_2_2·a_5_3 + b_2_12·a_5_3 + b_2_14·a_1_1
- b_6_8·b_3_3 + b_4_1·b_5_6 + b_2_2·b_7_10 + b_2_1·b_4_5·b_3_2 + b_2_13·b_3_3
+ b_2_1·b_2_2·a_5_3 + b_2_14·a_1_1
- b_6_8·b_3_3 + b_4_1·b_5_6 + b_2_1·b_7_11 + b_2_1·b_4_5·b_3_3 + b_2_1·b_4_5·b_3_2
+ b_2_1·b_2_2·a_5_3
- b_6_8·b_3_3 + b_4_1·b_5_6 + b_2_2·b_7_11 + b_2_1·b_4_5·b_3_3 + b_2_1·b_4_5·b_3_2
+ b_2_1·b_2_2·a_5_3
- b_4_5·a_5_3 + a_1_12·b_7_11
- b_8_13·a_1_1 + b_4_5·a_5_3 + b_2_1·b_2_2·a_5_3
- b_8_13·a_1_0 + b_2_1·b_2_2·a_5_3
- b_8_14·a_1_1 + b_4_52·a_1_1
- b_8_14·a_1_0
- a_5_32
- a_5_3·b_5_6
- b_5_62 + b_2_1·b_4_52 + b_2_12·b_2_2·b_4_5
- a_5_3·b_5_7
- b_5_6·b_5_7 + b_2_2·b_4_52 + b_2_1·b_4_52 + b_2_1·b_4_2·b_4_5 + b_2_1·b_4_1·b_4_5
+ b_2_12·b_2_2·b_4_5
- b_4_2·b_6_8 + b_4_1·b_6_9 + b_4_1·b_6_8 + b_2_1·b_4_1·b_4_5 + b_2_12·b_2_2·b_4_5
+ b_2_13·b_4_2 + b_2_13·b_4_1
- b_4_2·b_6_9 + b_2_1·b_4_2·b_4_5
- b_3_2·b_7_10 + b_4_5·b_6_8 + b_2_2·b_4_52 + b_2_1·b_4_52 + b_2_1·b_4_2·b_4_5
+ b_2_1·b_4_1·b_4_5 + b_2_12·b_2_2·b_4_5 + b_4_52·a_1_12
- b_3_3·b_7_10 + b_4_5·b_6_9 + b_2_1·b_4_52
- b_3_2·b_7_11 + b_4_5·b_6_9 + b_2_2·b_4_52 + b_2_1·b_4_52 + b_2_12·b_2_2·b_4_5
- b_5_72 + b_3_3·b_7_11 + b_4_5·b_6_9
- b_5_72 + b_2_2·b_4_52 + b_2_1·b_4_52 + b_2_12·b_2_2·b_4_5 + b_4_5·a_1_1·b_5_7
+ c_8_15·a_1_12
- b_4_2·b_6_8 + b_4_1·b_6_8 + b_2_1·b_8_13 + b_2_1·b_4_1·b_4_5 + b_2_12·b_6_9
+ b_2_13·b_4_5 + b_2_13·b_4_1 + b_2_14·b_2_2
- b_4_2·b_6_8 + b_4_1·b_6_8 + b_2_2·b_8_13 + b_2_1·b_4_2·b_4_5 + b_2_1·b_4_1·b_4_5
+ b_2_12·b_6_9 + b_2_13·b_4_5 + b_2_13·b_4_2 + b_2_13·b_4_1 + b_2_14·b_2_2
- b_4_1·b_6_8 + b_2_1·b_8_14 + b_2_1·b_4_52 + b_2_1·b_4_2·b_4_5 + b_2_13·b_4_5
+ b_2_13·b_4_1
- b_4_2·b_6_8 + b_4_1·b_6_8 + b_2_2·b_8_14 + b_2_2·b_4_52 + b_2_12·b_2_2·b_4_5
+ b_2_13·b_4_2 + b_2_13·b_4_1
- a_1_1·b_9_18 + b_4_52·a_1_12
- a_1_0·b_9_18
- b_6_9·b_5_7 + b_6_9·b_5_6 + b_6_8·b_5_7 + b_6_8·b_5_6 + b_2_1·b_4_5·b_5_7
+ b_2_1·b_4_5·b_5_6 + b_2_12·b_4_5·b_3_3 + b_2_13·b_5_7 + b_2_13·b_5_6
- b_6_9·b_5_6 + b_6_8·b_5_7 + b_4_1·b_7_10 + b_2_1·b_4_5·b_5_7 + b_2_1·b_4_5·b_5_6
+ b_2_12·b_4_5·b_3_3 + b_2_13·b_5_7 + b_2_13·b_5_6 + b_2_14·b_3_3 + b_6_9·a_5_3 + b_2_12·b_2_2·a_5_3
- b_6_9·b_5_6 + b_6_8·b_5_6 + b_4_2·b_7_10 + b_2_1·b_4_5·b_5_7 + b_2_1·b_4_5·b_5_6
+ b_2_14·b_3_3 + b_2_15·a_1_1
- b_6_9·b_5_6 + b_6_8·b_5_7 + b_6_8·b_5_6 + b_2_1·b_4_5·b_5_6 + b_2_12·b_7_11
+ b_2_13·b_5_7 + b_2_13·b_5_6 + b_2_14·b_3_3 + b_6_9·a_5_3 + b_2_12·b_2_2·a_5_3
- b_6_8·b_5_7 + b_6_8·b_5_6 + b_4_1·b_7_11 + b_2_1·b_4_5·b_5_7 + b_2_1·b_4_5·b_5_6
+ b_2_12·b_4_5·b_3_3 + b_6_9·a_5_3
- b_4_2·b_7_11
- b_6_9·a_5_3 + b_2_1·c_8_15·a_1_1
- b_6_8·a_5_3 + b_2_12·b_2_2·a_5_3 + b_2_1·c_8_15·a_1_0
- b_8_13·b_3_2 + b_6_9·b_5_6 + b_2_13·b_5_7 + b_2_12·b_2_2·a_5_3 + b_2_15·a_1_1
- b_8_13·b_3_3 + b_6_9·b_5_6 + b_2_1·b_4_5·b_5_7 + b_2_12·b_4_5·b_3_3 + b_2_14·b_3_3
+ b_2_12·b_2_2·a_5_3 + b_2_15·a_1_1
- b_8_14·b_3_2 + b_6_9·b_5_6 + b_6_8·b_5_7 + b_4_52·b_3_2 + b_2_1·b_4_5·b_5_7
+ b_2_1·b_4_5·b_5_6 + b_2_12·b_4_5·b_3_2 + b_2_13·b_5_6 + b_6_9·a_5_3
- b_8_14·b_3_3 + b_6_8·b_5_7 + b_6_8·b_5_6 + b_4_52·b_3_3 + b_2_12·b_4_5·b_3_3
+ b_2_13·b_5_7 + b_2_13·b_5_6 + b_6_9·a_5_3 + b_2_12·b_2_2·a_5_3 + b_2_15·a_1_1
- b_6_8·b_5_6 + b_2_1·b_9_18 + b_2_1·b_4_5·b_5_7 + b_2_1·b_4_5·b_5_6 + b_2_12·b_7_10
+ b_2_12·b_4_5·b_3_3 + b_2_12·b_4_5·b_3_2 + b_2_13·b_5_6 + b_6_8·a_5_3 + b_2_13·a_5_3
- b_6_8·b_5_7 + b_6_8·b_5_6 + b_2_2·b_9_18 + b_2_1·b_4_5·b_5_7 + b_2_1·b_4_5·b_5_6
- a_5_3·b_7_10
- a_5_3·b_7_11
- b_5_7·b_7_10 + b_5_6·b_7_11 + b_5_6·b_7_10 + b_4_2·b_4_52 + b_4_1·b_4_52
+ b_2_1·b_4_5·b_6_9 + b_2_1·b_2_2·b_4_52 + b_2_12·b_4_52 + b_2_12·b_4_2·b_4_5 + b_2_12·b_4_1·b_4_5 + b_2_13·b_2_2·b_4_5
- b_6_92 + b_6_8·b_6_9 + b_6_82 + b_2_1·b_4_5·b_6_8 + b_2_1·b_2_2·b_4_52
+ b_2_12·b_4_2·b_4_5 + b_2_12·b_4_1·b_4_5 + b_2_13·b_2_2·b_4_5 + b_2_14·b_4_2 + b_2_15·b_2_2 + b_2_12·c_8_15
- b_6_8·b_6_9 + b_2_1·b_4_5·b_6_8 + b_2_12·b_4_2·b_4_5 + b_2_12·b_4_1·b_4_5
+ b_2_1·b_2_2·c_8_15
- b_5_7·b_7_11 + b_2_1·b_4_5·b_6_9 + b_2_1·b_2_2·b_4_52 + b_2_12·b_4_52
+ b_2_13·b_2_2·b_4_5 + b_4_5·a_1_1·b_7_11 + c_8_15·a_1_1·b_3_3
- b_6_92 + b_6_8·b_6_9 + b_2_1·b_4_5·b_6_8 + b_2_12·b_8_13 + b_2_12·b_4_52
+ b_2_12·b_4_1·b_4_5 + b_2_13·b_2_2·b_4_5 + b_2_14·b_4_2 + b_2_15·b_2_2
- b_6_92 + b_6_8·b_6_9 + b_4_1·b_8_13 + b_2_1·b_4_5·b_6_9 + b_2_1·b_4_5·b_6_8
+ b_2_12·b_4_52 + b_2_12·b_4_2·b_4_5 + b_2_12·b_4_1·b_4_5 + b_2_13·b_6_9 + b_2_13·b_2_2·b_4_5 + b_2_14·b_4_2 + b_2_14·b_4_1
- b_4_2·b_8_13 + b_2_1·b_2_2·b_4_52 + b_2_12·b_4_52 + b_2_13·b_2_2·b_4_5
+ b_2_14·b_4_5
- b_5_7·b_7_10 + b_5_6·b_7_10 + b_4_5·b_8_13 + b_4_1·b_4_52 + b_2_1·b_4_5·b_6_9
+ b_2_1·b_2_2·b_4_52 + b_2_12·b_4_52 + b_2_12·b_4_2·b_4_5 + b_2_13·b_2_2·b_4_5 + b_4_5·a_1_1·b_7_11
- b_4_1·b_8_14 + b_4_1·b_4_52 + b_2_1·b_4_5·b_6_8 + b_2_1·b_2_2·b_4_52
+ b_2_12·b_4_52 + b_2_12·b_4_1·b_4_5 + b_2_14·b_4_5
- b_4_2·b_8_14 + b_4_2·b_4_52 + b_2_1·b_4_5·b_6_9 + b_2_1·b_4_5·b_6_8
+ b_2_1·b_2_2·b_4_52 + b_2_12·b_4_1·b_4_5 + b_2_14·b_4_5
- b_5_6·b_7_10 + b_4_5·b_8_14 + b_4_53 + b_2_1·b_4_5·b_6_9 + b_2_1·b_2_2·b_4_52
+ b_2_12·b_4_2·b_4_5 + b_4_52·a_1_1·b_3_3
- b_5_6·b_7_10 + b_3_2·b_9_18 + b_4_1·b_4_52 + b_2_1·b_4_5·b_6_8 + b_2_1·b_2_2·b_4_52
+ b_2_12·b_4_2·b_4_5 + b_2_13·b_2_2·b_4_5 + b_4_52·a_1_1·b_3_3
- b_5_7·b_7_10 + b_5_6·b_7_10 + b_3_3·b_9_18 + b_4_2·b_4_52 + b_4_1·b_4_52
+ b_2_1·b_2_2·b_4_52 + b_2_12·b_4_2·b_4_5 + b_2_12·b_4_1·b_4_5 + b_4_52·a_1_1·b_3_3
- b_6_9·b_7_11 + b_6_9·b_7_10 + b_2_1·b_4_5·b_7_10 + b_2_1·b_4_52·b_3_3 + b_2_13·b_7_11
+ b_2_15·b_3_3 + b_2_16·a_1_1
- b_6_8·b_7_10 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_5·b_7_10 + b_2_1·b_4_52·b_3_3
+ b_2_12·b_4_5·b_5_7 + b_2_12·b_4_5·b_5_6 + b_2_13·b_4_5·b_3_3 + b_2_14·b_5_7 + b_2_15·b_3_3 + b_2_13·b_2_2·a_5_3 + b_2_1·c_8_15·b_3_2 + b_2_12·c_8_15·a_1_1 + b_2_12·c_8_15·a_1_0
- b_6_9·b_7_11 + b_6_9·b_7_10 + b_6_8·b_7_11 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_5·b_7_10
+ b_2_13·b_4_5·b_3_3 + b_2_14·b_5_7 + b_2_14·b_5_6 + b_2_15·b_3_3 + b_2_13·b_2_2·a_5_3 + b_4_5·a_1_12·b_7_11 + b_2_1·c_8_15·b_3_3 + b_2_12·c_8_15·a_1_1
- b_8_13·a_5_3 + b_2_13·b_2_2·a_5_3 + b_2_12·c_8_15·a_1_1
- b_8_13·b_5_6 + b_6_9·b_7_11 + b_6_9·b_7_10 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_5·b_7_10
+ b_2_1·b_4_52·b_3_2 + b_2_13·b_4_5·b_3_2 + b_2_14·b_5_7 + b_2_14·b_5_6 + b_2_15·b_3_3 + b_2_13·b_2_2·a_5_3
- b_8_13·b_5_7 + b_6_9·b_7_11 + b_6_8·b_7_11 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_52·b_3_3
+ b_2_1·b_4_52·b_3_2 + b_2_13·b_4_5·b_3_3 + b_2_13·b_4_5·b_3_2 + b_2_14·b_5_7 + b_2_14·b_5_6 + b_2_13·b_2_2·a_5_3 + b_2_16·a_1_1 + b_4_5·a_1_12·b_7_11 + b_2_12·c_8_15·a_1_1
- b_8_14·a_5_3 + b_4_5·a_1_12·b_7_11
- b_8_14·b_5_6 + b_6_9·b_7_10 + b_6_8·b_7_11 + b_4_52·b_5_6 + b_2_1·b_4_5·b_7_11
+ b_2_1·b_4_52·b_3_3 + b_2_12·b_4_5·b_5_6 + b_2_13·b_4_5·b_3_2 + b_2_14·b_5_7 + b_2_14·b_5_6 + b_2_15·b_3_3 + b_2_13·b_2_2·a_5_3 + b_4_5·a_1_12·b_7_11
- b_8_14·b_5_7 + b_6_9·b_7_10 + b_6_8·b_7_11 + b_4_52·b_5_7 + b_2_12·b_4_5·b_5_6
+ b_2_13·b_4_5·b_3_3 + b_2_13·b_4_5·b_3_2 + b_2_14·b_5_7 + b_2_14·b_5_6 + b_2_15·b_3_3 + b_2_13·b_2_2·a_5_3
- b_6_9·b_7_10 + b_6_8·b_7_11 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_5·b_7_10
+ b_2_1·b_4_52·b_3_3 + b_2_1·b_2_2·b_9_18 + b_2_13·b_4_5·b_3_3 + b_2_15·b_3_3 + b_2_16·a_1_1 + b_4_5·a_1_12·b_7_11 + b_2_12·c_8_15·a_1_1
- b_6_9·b_7_11 + b_6_8·b_7_11 + b_4_1·b_9_18 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_5·b_7_10
+ b_2_1·b_4_52·b_3_2 + b_2_12·b_9_18 + b_2_12·b_4_5·b_5_7 + b_2_12·b_4_5·b_5_6 + b_2_13·b_7_10 + b_2_13·b_4_5·b_3_3 + b_2_14·b_5_7 + b_2_14·a_5_3 + b_2_16·a_1_1 + b_4_5·a_1_12·b_7_11 + b_2_12·c_8_15·a_1_0
- b_6_9·b_7_11 + b_6_8·b_7_11 + b_4_2·b_9_18 + b_2_1·b_4_5·b_7_10 + b_2_1·b_4_52·b_3_2
+ b_2_12·b_9_18 + b_2_13·b_7_10 + b_2_13·b_4_5·b_3_3 + b_2_14·b_5_7 + b_2_14·a_5_3 + b_2_16·a_1_1 + b_4_5·a_1_12·b_7_11 + b_2_12·c_8_15·a_1_0
- b_7_10·b_7_11 + b_7_102 + b_4_52·b_6_9 + b_2_1·b_4_53 + b_2_12·b_4_5·b_6_9
+ b_2_13·b_4_52 + b_2_13·b_4_2·b_4_5 + b_2_2·b_4_5·c_8_15 + b_2_1·b_4_5·c_8_15
- b_7_112 + b_7_10·b_7_11 + b_4_52·b_6_9 + b_2_2·b_4_53 + b_2_1·b_4_53
+ b_2_12·b_4_5·b_6_9 + b_2_13·b_4_52 + b_2_14·b_2_2·b_4_5 + b_4_52·a_1_1·b_5_7 + c_8_15·a_1_1·b_5_7 + b_4_5·c_8_15·a_1_12
- b_6_9·b_8_13 + b_2_1·b_4_1·b_4_52 + b_2_12·b_4_5·b_6_9 + b_2_13·b_4_52
+ b_2_13·b_4_1·b_4_5 + b_2_14·b_2_2·b_4_5 + b_2_1·b_4_2·c_8_15 + b_2_1·b_4_1·c_8_15 + b_2_12·b_2_2·c_8_15
- b_7_102 + b_2_1·b_4_5·b_8_13 + b_2_1·b_4_2·b_4_52 + b_2_12·b_2_2·b_4_52
+ b_2_14·b_2_2·b_4_5 + b_2_1·b_4_5·c_8_15
- b_7_102 + b_6_8·b_8_14 + b_6_8·b_8_13 + b_4_52·b_6_8 + b_2_1·b_4_1·b_4_52
+ b_2_12·b_4_5·b_6_9 + b_2_12·b_4_5·b_6_8 + b_2_12·b_2_2·b_4_52 + b_2_13·b_4_52 + b_2_13·b_4_2·b_4_5 + b_2_14·b_6_9 + b_2_14·b_2_2·b_4_5 + b_2_15·b_4_2 + b_2_15·b_4_1 + b_2_16·b_2_2 + b_2_1·b_4_5·c_8_15 + b_2_1·b_4_2·c_8_15 + b_2_12·b_2_2·c_8_15
- b_6_9·b_8_14 + b_6_8·b_8_13 + b_4_52·b_6_9 + b_2_1·b_4_2·b_4_52 + b_2_13·b_8_14
+ b_2_13·b_4_2·b_4_5 + b_2_13·b_4_1·b_4_5 + b_2_14·b_6_9 + b_2_15·b_4_1 + b_2_16·b_2_2 + b_2_12·b_2_2·c_8_15
- b_6_9·b_8_14 + b_4_52·b_6_9 + b_2_1·b_4_5·b_8_14 + b_2_1·b_4_53 + b_2_12·b_4_5·b_6_9
+ b_2_12·b_2_2·b_4_52 + b_2_13·b_8_13 + b_2_13·b_4_52 + b_2_13·b_4_1·b_4_5 + b_2_14·b_6_9 + b_2_14·b_2_2·b_4_5 + b_2_15·b_4_5 + b_2_15·b_4_2 + b_2_16·b_2_2 + b_2_1·b_4_2·c_8_15 + b_2_1·b_4_1·c_8_15
- a_5_3·b_9_18
- b_5_6·b_9_18 + b_6_9·b_8_14 + b_4_52·b_6_9 + b_4_52·b_6_8 + b_2_2·b_4_53
+ b_2_1·b_4_1·b_4_52 + b_2_12·b_4_5·b_6_9 + b_2_13·b_8_13 + b_2_13·b_4_52 + b_2_14·b_6_9 + b_2_14·b_2_2·b_4_5 + b_2_15·b_4_5 + b_2_15·b_4_2 + b_2_16·b_2_2 + b_4_53·a_1_12 + b_2_1·b_4_2·c_8_15 + b_2_1·b_4_1·c_8_15
- b_5_7·b_9_18 + b_6_9·b_8_14 + b_4_52·b_6_8 + b_2_1·b_4_53 + b_2_1·b_4_2·b_4_52
+ b_2_12·b_4_5·b_6_9 + b_2_12·b_2_2·b_4_52 + b_2_13·b_8_13 + b_2_13·b_4_52 + b_2_14·b_6_9 + b_2_14·b_2_2·b_4_5 + b_2_15·b_4_5 + b_2_15·b_4_2 + b_2_16·b_2_2 + b_4_52·a_1_1·b_5_7 + b_4_53·a_1_12 + b_2_1·b_4_2·c_8_15 + b_2_1·b_4_1·c_8_15
- b_8_14·b_7_11 + b_8_14·b_7_10 + b_8_13·b_7_11 + b_8_13·b_7_10 + b_6_9·b_9_18
+ b_4_52·b_7_11 + b_4_52·b_7_10 + b_2_1·b_4_52·b_5_7 + b_2_12·b_4_5·b_7_11 + b_2_12·b_4_52·b_3_2 + b_2_13·b_4_5·b_5_7 + b_2_14·b_7_11 + b_2_14·b_4_5·b_3_2 + b_2_1·c_8_15·b_5_6 + b_2_12·c_8_15·b_3_3 + b_2_2·c_8_15·a_5_3
- b_8_14·b_7_11 + b_8_14·b_7_10 + b_6_8·b_9_18 + b_4_52·b_7_11 + b_4_52·b_7_10
+ b_2_1·b_4_52·b_5_7 + b_2_12·b_4_5·b_7_10 + b_2_12·b_4_52·b_3_2 + b_2_13·b_4_5·b_5_7 + b_2_14·b_4_5·b_3_3 + b_2_15·b_5_6 + b_2_16·b_3_3 + b_2_17·a_1_1 + b_2_1·c_8_15·b_5_7 + b_2_1·c_8_15·b_5_6 + b_2_12·c_8_15·b_3_3 + b_2_12·c_8_15·b_3_2 + b_2_2·c_8_15·a_5_3 + b_2_1·c_8_15·a_5_3
- b_8_14·b_7_10 + b_4_52·b_7_10 + b_2_12·b_4_5·b_7_10 + b_2_12·b_4_52·b_3_3
+ b_2_13·b_9_18 + b_2_13·b_4_5·b_5_6 + b_2_14·b_7_11 + b_2_14·b_7_10 + b_2_14·b_4_5·b_3_3 + b_2_15·b_5_6 + b_2_14·b_2_2·a_5_3 + b_2_15·a_5_3 + b_2_1·c_8_15·b_5_6 + b_2_12·c_8_15·b_3_3 + b_2_13·c_8_15·a_1_1 + b_2_13·c_8_15·a_1_0
- b_8_13·b_7_11 + b_2_1·b_4_52·b_5_7 + b_2_1·b_4_52·b_5_6 + b_2_12·b_4_5·b_7_11
+ b_2_12·b_4_52·b_3_3 + b_2_12·b_2_2·b_9_18 + b_2_13·b_4_5·b_5_7 + b_2_13·b_4_5·b_5_6 + b_2_14·b_7_11 + b_2_14·b_4_5·b_3_3 + b_2_15·b_5_7 + b_2_15·b_5_6 + b_2_14·b_2_2·a_5_3 + b_2_17·a_1_1 + b_2_1·c_8_15·b_5_7 + b_2_1·c_8_15·b_5_6 + b_2_12·c_8_15·b_3_3 + b_2_2·c_8_15·a_5_3 + b_2_13·c_8_15·a_1_1
- b_8_14·b_7_10 + b_8_13·b_7_11 + b_8_13·b_7_10 + b_4_52·b_7_10 + b_2_1·b_4_5·b_9_18
+ b_2_1·b_4_52·b_5_7 + b_2_12·b_4_52·b_3_3 + b_2_12·b_4_52·b_3_2 + b_2_13·b_4_5·b_5_7 + b_2_14·b_7_11 + b_2_14·b_4_5·b_3_3 + b_2_14·b_4_5·b_3_2 + b_2_1·c_8_15·b_5_6 + b_2_12·c_8_15·b_3_3 + b_2_13·c_8_15·a_1_1
- b_8_14·b_7_11 + b_4_52·b_7_11 + b_2_2·b_4_5·b_9_18 + b_2_1·b_4_52·b_5_7
+ b_2_1·b_4_52·b_5_6 + b_2_12·b_4_5·b_7_11 + b_2_12·b_4_52·b_3_3 + b_2_13·b_4_5·b_5_7 + b_2_13·b_4_5·b_5_6 + b_2_14·b_4_5·b_3_3 + b_2_1·c_8_15·b_5_7 + b_2_1·c_8_15·b_5_6 + b_2_2·c_8_15·a_5_3 + b_2_13·c_8_15·a_1_1
- b_8_132 + b_2_12·b_4_5·b_8_13 + b_2_12·b_4_53 + b_2_12·b_4_2·b_4_52
+ b_2_14·b_8_13 + b_2_15·b_2_2·b_4_5 + b_2_16·b_4_5 + b_2_16·b_4_2 + b_2_1·b_2_2·b_4_5·c_8_15 + b_2_13·b_2_2·c_8_15
- b_8_13·b_8_14 + b_4_52·b_8_13 + b_2_1·b_4_52·b_6_8 + b_2_1·b_2_2·b_4_53
+ b_2_12·b_4_53 + b_2_12·b_4_2·b_4_52 + b_2_13·b_4_5·b_6_9 + b_2_13·b_4_5·b_6_8 + b_2_14·b_4_52 + b_2_14·b_4_1·b_4_5 + b_2_16·b_4_5 + b_2_1·b_2_2·b_4_5·c_8_15 + b_2_12·b_4_2·c_8_15 + b_2_12·b_4_1·c_8_15
- b_8_142 + b_8_132 + b_4_54 + b_2_12·b_4_53 + b_2_14·b_8_13 + b_2_14·b_4_52
+ b_2_15·b_2_2·b_4_5 + b_2_16·b_4_2 + b_2_1·b_2_2·b_4_5·c_8_15 + b_2_12·b_4_5·c_8_15 + b_2_13·b_2_2·c_8_15
- b_7_10·b_9_18 + b_8_132 + b_4_52·b_8_14 + b_4_54 + b_2_1·b_4_52·b_6_9
+ b_2_1·b_4_52·b_6_8 + b_2_1·b_2_2·b_4_53 + b_2_12·b_4_5·b_8_14 + b_2_12·b_4_53 + b_2_12·b_4_2·b_4_52 + b_2_13·b_4_5·b_6_9 + b_2_14·b_8_13 + b_2_14·b_4_52 + b_2_14·b_4_2·b_4_5 + b_2_16·b_4_5 + b_2_16·b_4_2 + b_4_53·a_1_1·b_3_3 + b_4_1·b_4_5·c_8_15 + b_2_12·b_4_5·c_8_15 + b_2_13·b_2_2·c_8_15 + b_4_5·c_8_15·a_1_1·b_3_3
- b_7_11·b_9_18 + b_8_132 + b_4_2·b_4_53 + b_4_1·b_4_53 + b_2_12·b_4_53
+ b_2_12·b_4_2·b_4_52 + b_2_12·b_4_1·b_4_52 + b_2_13·b_4_5·b_6_9 + b_2_14·b_8_13 + b_2_14·b_4_52 + b_2_14·b_4_1·b_4_5 + b_2_16·b_4_5 + b_2_16·b_4_2 + b_4_52·a_1_1·b_7_11 + b_4_2·b_4_5·c_8_15 + b_4_1·b_4_5·c_8_15 + b_2_1·b_2_2·b_4_5·c_8_15 + b_2_13·b_2_2·c_8_15
- b_8_13·b_9_18 + b_2_1·b_4_52·b_7_11 + b_2_1·b_4_52·b_7_10 + b_2_1·b_4_53·b_3_3
+ b_2_1·b_4_53·b_3_2 + b_2_1·b_2_2·b_4_5·b_9_18 + b_2_12·b_4_5·b_9_18 + b_2_12·b_4_52·b_5_7 + b_2_12·b_4_52·b_5_6 + b_2_13·b_4_52·b_3_3 + b_2_13·b_4_52·b_3_2 + b_2_14·b_9_18 + b_2_14·b_4_5·b_5_6 + b_2_15·b_7_11 + b_2_15·b_7_10 + b_2_16·b_5_7 + b_2_16·a_5_3 + b_2_18·a_1_1 + b_4_52·a_1_12·b_7_11 + b_2_1·b_4_5·c_8_15·b_3_3 + b_2_12·c_8_15·b_5_7 + b_2_12·c_8_15·b_5_6 + b_2_14·c_8_15·a_1_1 + b_2_14·c_8_15·a_1_0
- b_8_14·b_9_18 + b_4_52·b_9_18 + b_2_1·b_4_52·b_7_10 + b_2_12·b_4_52·b_5_6
+ b_2_13·b_4_5·b_7_11 + b_2_13·b_4_5·b_7_10 + b_2_13·b_2_2·b_9_18 + b_2_14·b_9_18 + b_2_15·b_7_11 + b_2_15·b_7_10 + b_2_15·b_4_5·b_3_3 + b_2_15·b_4_5·b_3_2 + b_2_16·b_5_7 + b_2_16·a_5_3 + b_2_18·a_1_1 + b_2_1·b_4_5·c_8_15·b_3_2 + b_2_12·c_8_15·b_5_7 + b_2_13·c_8_15·b_3_3 + b_2_1·b_2_2·c_8_15·a_5_3 + b_2_14·c_8_15·a_1_1 + b_2_14·c_8_15·a_1_0
- b_9_182 + b_2_1·b_4_52·b_8_13 + b_2_1·b_4_54 + b_2_1·b_4_2·b_4_53
+ b_2_12·b_2_2·b_4_53 + b_2_13·b_4_53 + b_2_14·b_2_2·b_4_52 + b_2_15·b_4_52 + b_2_15·b_4_2·b_4_5 + b_4_54·a_1_12 + b_2_1·b_4_52·c_8_15 + b_2_12·b_2_2·b_4_5·c_8_15 + b_2_13·b_4_5·c_8_15
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_15, a Duflot regular element of degree 8
- b_4_5 + b_2_12, an element of degree 4
- b_3_2, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_3_2 → 0, an element of degree 3
- b_3_3 → 0, an element of degree 3
- b_4_1 → 0, an element of degree 4
- b_4_2 → 0, an element of degree 4
- b_4_5 → 0, an element of degree 4
- a_5_3 → 0, an element of degree 5
- b_5_6 → 0, an element of degree 5
- b_5_7 → 0, an element of degree 5
- b_6_8 → 0, an element of degree 6
- b_6_9 → 0, an element of degree 6
- b_7_10 → 0, an element of degree 7
- b_7_11 → 0, an element of degree 7
- b_8_13 → 0, an element of degree 8
- b_8_14 → 0, an element of degree 8
- c_8_15 → c_1_08, an element of degree 8
- b_9_18 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_2_1 → c_1_12, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_3_2 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_3 → 0, an element of degree 3
- b_4_1 → c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
- b_4_2 → c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
- b_4_5 → c_1_24 + c_1_12·c_1_22, an element of degree 4
- a_5_3 → 0, an element of degree 5
- b_5_6 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_5_7 → c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
- b_6_8 → c_1_14·c_1_22 + c_1_15·c_1_2 + c_1_0·c_1_13·c_1_22 + c_1_0·c_1_14·c_1_2
+ c_1_02·c_1_12·c_1_22 + c_1_02·c_1_13·c_1_2 + c_1_02·c_1_14 + c_1_04·c_1_12, an element of degree 6
- b_6_9 → c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
- b_7_10 → c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_14·c_1_23 + c_1_15·c_1_22
+ c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_11 → 0, an element of degree 7
- b_8_13 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_16·c_1_22 + c_1_17·c_1_2, an element of degree 8
- b_8_14 → c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
+ c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_13·c_1_2, an element of degree 8
- c_8_15 → c_1_28 + c_1_17·c_1_2 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
+ c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_9_18 → c_1_13·c_1_26 + c_1_14·c_1_25 + c_1_15·c_1_24 + c_1_16·c_1_23
+ c_1_0·c_1_12·c_1_26 + c_1_0·c_1_13·c_1_25 + c_1_0·c_1_15·c_1_23 + c_1_0·c_1_16·c_1_22 + c_1_02·c_1_1·c_1_26 + c_1_02·c_1_12·c_1_25 + c_1_02·c_1_13·c_1_24 + c_1_02·c_1_14·c_1_23 + c_1_02·c_1_15·c_1_22 + c_1_02·c_1_16·c_1_2 + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_14·c_1_2, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_2_1 → c_1_22, an element of degree 2
- b_2_2 → c_1_22, an element of degree 2
- b_3_2 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_3 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_1 → c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
- b_4_2 → 0, an element of degree 4
- b_4_5 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- a_5_3 → 0, an element of degree 5
- b_5_6 → c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
- b_5_7 → c_1_1·c_1_24 + c_1_12·c_1_23, an element of degree 5
- b_6_8 → c_1_1·c_1_25 + c_1_14·c_1_22 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_23
+ c_1_02·c_1_24 + c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_22 + c_1_04·c_1_22, an element of degree 6
- b_6_9 → c_1_26 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_23 + c_1_02·c_1_24
+ c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_22 + c_1_04·c_1_22, an element of degree 6
- b_7_10 → c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_13·c_1_24 + c_1_14·c_1_23
+ c_1_15·c_1_22 + c_1_16·c_1_2 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_7_11 → c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
+ c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
- b_8_13 → c_1_1·c_1_27 + c_1_12·c_1_26 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_14·c_1_23
+ c_1_02·c_1_26 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_22, an element of degree 8
- b_8_14 → c_1_1·c_1_27 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23
+ c_1_16·c_1_22 + c_1_18 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_14·c_1_23 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_22, an element of degree 8
- c_8_15 → c_1_1·c_1_27 + c_1_18 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_14·c_1_23
+ c_1_02·c_1_26 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_14 + c_1_08, an element of degree 8
- b_9_18 → c_1_13·c_1_26 + c_1_14·c_1_25 + c_1_15·c_1_24 + c_1_16·c_1_23
+ c_1_0·c_1_13·c_1_25 + c_1_0·c_1_14·c_1_24 + c_1_0·c_1_15·c_1_23 + c_1_0·c_1_16·c_1_22 + c_1_02·c_1_12·c_1_25 + c_1_02·c_1_13·c_1_24 + c_1_02·c_1_15·c_1_22 + c_1_02·c_1_16·c_1_2 + c_1_04·c_1_12·c_1_23 + c_1_04·c_1_14·c_1_2, an element of degree 9
|