Cohomology of group number 144 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 2 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 1.
  • It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 2.
  • The depth exceeds the Duflot bound, which is 1.
  • The Poincaré series is
    t9  −  t8  −  t6  −  t4  −  t2  −  1

    (t  +  1) · (t  −  1)3 · (t2  +  1)2 · (t4  +  1)
  • The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 20 minimal generators of maximal degree 9:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. b_2_1, an element of degree 2
  4. b_2_2, an element of degree 2
  5. b_3_2, an element of degree 3
  6. b_3_3, an element of degree 3
  7. b_4_1, an element of degree 4
  8. b_4_2, an element of degree 4
  9. b_4_5, an element of degree 4
  10. a_5_3, a nilpotent element of degree 5
  11. b_5_6, an element of degree 5
  12. b_5_7, an element of degree 5
  13. b_6_8, an element of degree 6
  14. b_6_9, an element of degree 6
  15. b_7_10, an element of degree 7
  16. b_7_11, an element of degree 7
  17. b_8_13, an element of degree 8
  18. b_8_14, an element of degree 8
  19. c_8_15, a Duflot regular element of degree 8
  20. b_9_18, an element of degree 9

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 152 minimal relations of maximal degree 18:

  1. a_1_02
  2. a_1_0·a_1_1
  3. a_1_13
  4. b_2_2·a_1_1 + b_2_1·a_1_1
  5. b_2_2·a_1_0 + b_2_1·a_1_1
  6. b_2_22 + b_2_1·b_2_2
  7. a_1_1·b_3_2
  8. a_1_0·b_3_2
  9. a_1_0·b_3_3
  10. b_2_2·b_3_2 + b_2_1·b_3_3 + b_2_12·a_1_1
  11. b_2_2·b_3_3 + b_2_2·b_3_2 + b_2_12·a_1_1
  12. a_1_12·b_3_3
  13. b_4_1·a_1_1
  14. b_4_1·a_1_0
  15. b_4_2·a_1_1
  16. b_4_2·a_1_0
  17. b_4_5·a_1_0
  18. b_2_2·b_4_1 + b_2_1·b_4_2 + b_2_1·b_4_1
  19. b_2_2·b_4_2
  20. b_3_22 + b_2_1·b_4_5
  21. b_3_2·b_3_3 + b_2_2·b_4_5
  22. a_1_1·a_5_3
  23. a_1_0·a_5_3
  24. a_1_1·b_5_6
  25. a_1_0·b_5_6
  26. b_3_32 + b_3_2·b_3_3 + a_1_1·b_5_7
  27. a_1_0·b_5_7
  28. b_4_2·b_3_2 + b_4_1·b_3_3 + b_4_1·b_3_2
  29. b_4_2·b_3_3
  30. b_4_1·b_3_2 + b_2_1·b_5_6 + b_2_12·b_3_3 + b_2_13·a_1_1
  31. b_4_1·b_3_3 + b_2_2·b_5_6 + b_2_12·b_3_3 + b_2_13·a_1_1
  32. b_4_1·b_3_3 + b_4_1·b_3_2 + b_2_1·b_5_7 + b_2_12·b_3_3 + b_2_2·a_5_3
  33. b_2_2·b_5_7 + b_2_12·b_3_3 + b_2_2·a_5_3
  34. a_1_12·b_5_7
  35. b_6_8·a_1_1 + b_2_2·a_5_3
  36. b_6_8·a_1_0 + b_2_1·a_5_3
  37. b_6_9·a_1_1 + b_2_2·a_5_3 + b_2_13·a_1_1
  38. b_6_9·a_1_0 + b_2_2·a_5_3 + b_2_13·a_1_1
  39. b_4_22 + b_4_1·b_4_2
  40. b_4_12 + b_2_12·b_4_5
  41. b_4_1·b_4_2 + b_4_12 + b_2_1·b_2_2·b_4_5
  42. b_3_2·a_5_3
  43. b_3_3·a_5_3
  44. b_3_2·b_5_6 + b_4_1·b_4_5 + b_4_1·b_4_2 + b_4_12 + b_4_5·a_1_1·b_3_3
  45. b_3_3·b_5_6 + b_4_2·b_4_5 + b_4_1·b_4_5 + b_4_1·b_4_2 + b_4_12
  46. b_3_2·b_5_7 + b_4_2·b_4_5 + b_4_1·b_4_2 + b_4_12 + b_4_5·a_1_1·b_3_3
  47. b_4_12 + b_2_2·b_6_8 + b_2_1·b_6_9 + b_2_12·b_4_2 + b_2_12·b_4_1 + b_2_13·b_2_2
  48. b_4_1·b_4_2 + b_4_12 + b_2_2·b_6_9 + b_2_2·b_6_8 + b_2_12·b_4_2 + b_2_12·b_4_1
       + b_2_13·b_2_2
  49. a_1_1·b_7_10
  50. a_1_0·b_7_10
  51. b_3_3·b_5_7 + b_4_1·b_4_2 + b_4_12 + a_1_1·b_7_11
  52. a_1_0·b_7_11
  53. b_4_1·a_5_3
  54. b_4_2·a_5_3
  55. b_4_2·b_5_6 + b_2_1·b_4_5·b_3_3 + b_2_1·b_4_5·b_3_2
  56. b_4_1·b_5_6 + b_2_1·b_4_5·b_3_2 + b_2_12·b_5_7 + b_2_12·b_5_6 + b_2_1·b_2_2·a_5_3
       + b_2_14·a_1_1
  57. b_4_1·b_5_7 + b_4_1·b_5_6 + b_2_1·b_4_5·b_3_3 + b_4_5·a_5_3
  58. b_4_2·b_5_7 + b_2_1·b_4_5·b_3_3 + b_2_1·b_4_5·b_3_2 + b_4_5·a_5_3
  59. b_6_9·b_3_2 + b_6_8·b_3_3 + b_4_1·b_5_6 + b_2_13·b_3_3 + b_2_1·b_2_2·a_5_3
       + b_2_14·a_1_1
  60. b_6_9·b_3_3 + b_6_8·b_3_3 + b_4_1·b_5_6 + b_2_1·b_4_5·b_3_3 + b_2_1·b_4_5·b_3_2
       + b_2_13·b_3_3
  61. b_6_8·b_3_2 + b_4_1·b_5_6 + b_2_1·b_7_10 + b_2_1·b_4_5·b_3_3 + b_2_13·b_3_3
       + b_2_1·b_2_2·a_5_3 + b_2_12·a_5_3 + b_2_14·a_1_1
  62. b_6_8·b_3_3 + b_4_1·b_5_6 + b_2_2·b_7_10 + b_2_1·b_4_5·b_3_2 + b_2_13·b_3_3
       + b_2_1·b_2_2·a_5_3 + b_2_14·a_1_1
  63. b_6_8·b_3_3 + b_4_1·b_5_6 + b_2_1·b_7_11 + b_2_1·b_4_5·b_3_3 + b_2_1·b_4_5·b_3_2
       + b_2_1·b_2_2·a_5_3
  64. b_6_8·b_3_3 + b_4_1·b_5_6 + b_2_2·b_7_11 + b_2_1·b_4_5·b_3_3 + b_2_1·b_4_5·b_3_2
       + b_2_1·b_2_2·a_5_3
  65. b_4_5·a_5_3 + a_1_12·b_7_11
  66. b_8_13·a_1_1 + b_4_5·a_5_3 + b_2_1·b_2_2·a_5_3
  67. b_8_13·a_1_0 + b_2_1·b_2_2·a_5_3
  68. b_8_14·a_1_1 + b_4_52·a_1_1
  69. b_8_14·a_1_0
  70. a_5_32
  71. a_5_3·b_5_6
  72. b_5_62 + b_2_1·b_4_52 + b_2_12·b_2_2·b_4_5
  73. a_5_3·b_5_7
  74. b_5_6·b_5_7 + b_2_2·b_4_52 + b_2_1·b_4_52 + b_2_1·b_4_2·b_4_5 + b_2_1·b_4_1·b_4_5
       + b_2_12·b_2_2·b_4_5
  75. b_4_2·b_6_8 + b_4_1·b_6_9 + b_4_1·b_6_8 + b_2_1·b_4_1·b_4_5 + b_2_12·b_2_2·b_4_5
       + b_2_13·b_4_2 + b_2_13·b_4_1
  76. b_4_2·b_6_9 + b_2_1·b_4_2·b_4_5
  77. b_3_2·b_7_10 + b_4_5·b_6_8 + b_2_2·b_4_52 + b_2_1·b_4_52 + b_2_1·b_4_2·b_4_5
       + b_2_1·b_4_1·b_4_5 + b_2_12·b_2_2·b_4_5 + b_4_52·a_1_12
  78. b_3_3·b_7_10 + b_4_5·b_6_9 + b_2_1·b_4_52
  79. b_3_2·b_7_11 + b_4_5·b_6_9 + b_2_2·b_4_52 + b_2_1·b_4_52 + b_2_12·b_2_2·b_4_5
  80. b_5_72 + b_3_3·b_7_11 + b_4_5·b_6_9
  81. b_5_72 + b_2_2·b_4_52 + b_2_1·b_4_52 + b_2_12·b_2_2·b_4_5 + b_4_5·a_1_1·b_5_7
       + c_8_15·a_1_12
  82. b_4_2·b_6_8 + b_4_1·b_6_8 + b_2_1·b_8_13 + b_2_1·b_4_1·b_4_5 + b_2_12·b_6_9
       + b_2_13·b_4_5 + b_2_13·b_4_1 + b_2_14·b_2_2
  83. b_4_2·b_6_8 + b_4_1·b_6_8 + b_2_2·b_8_13 + b_2_1·b_4_2·b_4_5 + b_2_1·b_4_1·b_4_5
       + b_2_12·b_6_9 + b_2_13·b_4_5 + b_2_13·b_4_2 + b_2_13·b_4_1 + b_2_14·b_2_2
  84. b_4_1·b_6_8 + b_2_1·b_8_14 + b_2_1·b_4_52 + b_2_1·b_4_2·b_4_5 + b_2_13·b_4_5
       + b_2_13·b_4_1
  85. b_4_2·b_6_8 + b_4_1·b_6_8 + b_2_2·b_8_14 + b_2_2·b_4_52 + b_2_12·b_2_2·b_4_5
       + b_2_13·b_4_2 + b_2_13·b_4_1
  86. a_1_1·b_9_18 + b_4_52·a_1_12
  87. a_1_0·b_9_18
  88. b_6_9·b_5_7 + b_6_9·b_5_6 + b_6_8·b_5_7 + b_6_8·b_5_6 + b_2_1·b_4_5·b_5_7
       + b_2_1·b_4_5·b_5_6 + b_2_12·b_4_5·b_3_3 + b_2_13·b_5_7 + b_2_13·b_5_6
  89. b_6_9·b_5_6 + b_6_8·b_5_7 + b_4_1·b_7_10 + b_2_1·b_4_5·b_5_7 + b_2_1·b_4_5·b_5_6
       + b_2_12·b_4_5·b_3_3 + b_2_13·b_5_7 + b_2_13·b_5_6 + b_2_14·b_3_3 + b_6_9·a_5_3
       + b_2_12·b_2_2·a_5_3
  90. b_6_9·b_5_6 + b_6_8·b_5_6 + b_4_2·b_7_10 + b_2_1·b_4_5·b_5_7 + b_2_1·b_4_5·b_5_6
       + b_2_14·b_3_3 + b_2_15·a_1_1
  91. b_6_9·b_5_6 + b_6_8·b_5_7 + b_6_8·b_5_6 + b_2_1·b_4_5·b_5_6 + b_2_12·b_7_11
       + b_2_13·b_5_7 + b_2_13·b_5_6 + b_2_14·b_3_3 + b_6_9·a_5_3 + b_2_12·b_2_2·a_5_3
  92. b_6_8·b_5_7 + b_6_8·b_5_6 + b_4_1·b_7_11 + b_2_1·b_4_5·b_5_7 + b_2_1·b_4_5·b_5_6
       + b_2_12·b_4_5·b_3_3 + b_6_9·a_5_3
  93. b_4_2·b_7_11
  94. b_6_9·a_5_3 + b_2_1·c_8_15·a_1_1
  95. b_6_8·a_5_3 + b_2_12·b_2_2·a_5_3 + b_2_1·c_8_15·a_1_0
  96. b_8_13·b_3_2 + b_6_9·b_5_6 + b_2_13·b_5_7 + b_2_12·b_2_2·a_5_3 + b_2_15·a_1_1
  97. b_8_13·b_3_3 + b_6_9·b_5_6 + b_2_1·b_4_5·b_5_7 + b_2_12·b_4_5·b_3_3 + b_2_14·b_3_3
       + b_2_12·b_2_2·a_5_3 + b_2_15·a_1_1
  98. b_8_14·b_3_2 + b_6_9·b_5_6 + b_6_8·b_5_7 + b_4_52·b_3_2 + b_2_1·b_4_5·b_5_7
       + b_2_1·b_4_5·b_5_6 + b_2_12·b_4_5·b_3_2 + b_2_13·b_5_6 + b_6_9·a_5_3
  99. b_8_14·b_3_3 + b_6_8·b_5_7 + b_6_8·b_5_6 + b_4_52·b_3_3 + b_2_12·b_4_5·b_3_3
       + b_2_13·b_5_7 + b_2_13·b_5_6 + b_6_9·a_5_3 + b_2_12·b_2_2·a_5_3 + b_2_15·a_1_1
  100. b_6_8·b_5_6 + b_2_1·b_9_18 + b_2_1·b_4_5·b_5_7 + b_2_1·b_4_5·b_5_6 + b_2_12·b_7_10
       + b_2_12·b_4_5·b_3_3 + b_2_12·b_4_5·b_3_2 + b_2_13·b_5_6 + b_6_8·a_5_3 + b_2_13·a_5_3
  101. b_6_8·b_5_7 + b_6_8·b_5_6 + b_2_2·b_9_18 + b_2_1·b_4_5·b_5_7 + b_2_1·b_4_5·b_5_6
  102. a_5_3·b_7_10
  103. a_5_3·b_7_11
  104. b_5_7·b_7_10 + b_5_6·b_7_11 + b_5_6·b_7_10 + b_4_2·b_4_52 + b_4_1·b_4_52
       + b_2_1·b_4_5·b_6_9 + b_2_1·b_2_2·b_4_52 + b_2_12·b_4_52 + b_2_12·b_4_2·b_4_5
       + b_2_12·b_4_1·b_4_5 + b_2_13·b_2_2·b_4_5
  105. b_6_92 + b_6_8·b_6_9 + b_6_82 + b_2_1·b_4_5·b_6_8 + b_2_1·b_2_2·b_4_52
       + b_2_12·b_4_2·b_4_5 + b_2_12·b_4_1·b_4_5 + b_2_13·b_2_2·b_4_5 + b_2_14·b_4_2
       + b_2_15·b_2_2 + b_2_12·c_8_15
  106. b_6_8·b_6_9 + b_2_1·b_4_5·b_6_8 + b_2_12·b_4_2·b_4_5 + b_2_12·b_4_1·b_4_5
       + b_2_1·b_2_2·c_8_15
  107. b_5_7·b_7_11 + b_2_1·b_4_5·b_6_9 + b_2_1·b_2_2·b_4_52 + b_2_12·b_4_52
       + b_2_13·b_2_2·b_4_5 + b_4_5·a_1_1·b_7_11 + c_8_15·a_1_1·b_3_3
  108. b_6_92 + b_6_8·b_6_9 + b_2_1·b_4_5·b_6_8 + b_2_12·b_8_13 + b_2_12·b_4_52
       + b_2_12·b_4_1·b_4_5 + b_2_13·b_2_2·b_4_5 + b_2_14·b_4_2 + b_2_15·b_2_2
  109. b_6_92 + b_6_8·b_6_9 + b_4_1·b_8_13 + b_2_1·b_4_5·b_6_9 + b_2_1·b_4_5·b_6_8
       + b_2_12·b_4_52 + b_2_12·b_4_2·b_4_5 + b_2_12·b_4_1·b_4_5 + b_2_13·b_6_9
       + b_2_13·b_2_2·b_4_5 + b_2_14·b_4_2 + b_2_14·b_4_1
  110. b_4_2·b_8_13 + b_2_1·b_2_2·b_4_52 + b_2_12·b_4_52 + b_2_13·b_2_2·b_4_5
       + b_2_14·b_4_5
  111. b_5_7·b_7_10 + b_5_6·b_7_10 + b_4_5·b_8_13 + b_4_1·b_4_52 + b_2_1·b_4_5·b_6_9
       + b_2_1·b_2_2·b_4_52 + b_2_12·b_4_52 + b_2_12·b_4_2·b_4_5 + b_2_13·b_2_2·b_4_5
       + b_4_5·a_1_1·b_7_11
  112. b_4_1·b_8_14 + b_4_1·b_4_52 + b_2_1·b_4_5·b_6_8 + b_2_1·b_2_2·b_4_52
       + b_2_12·b_4_52 + b_2_12·b_4_1·b_4_5 + b_2_14·b_4_5
  113. b_4_2·b_8_14 + b_4_2·b_4_52 + b_2_1·b_4_5·b_6_9 + b_2_1·b_4_5·b_6_8
       + b_2_1·b_2_2·b_4_52 + b_2_12·b_4_1·b_4_5 + b_2_14·b_4_5
  114. b_5_6·b_7_10 + b_4_5·b_8_14 + b_4_53 + b_2_1·b_4_5·b_6_9 + b_2_1·b_2_2·b_4_52
       + b_2_12·b_4_2·b_4_5 + b_4_52·a_1_1·b_3_3
  115. b_5_6·b_7_10 + b_3_2·b_9_18 + b_4_1·b_4_52 + b_2_1·b_4_5·b_6_8 + b_2_1·b_2_2·b_4_52
       + b_2_12·b_4_2·b_4_5 + b_2_13·b_2_2·b_4_5 + b_4_52·a_1_1·b_3_3
  116. b_5_7·b_7_10 + b_5_6·b_7_10 + b_3_3·b_9_18 + b_4_2·b_4_52 + b_4_1·b_4_52
       + b_2_1·b_2_2·b_4_52 + b_2_12·b_4_2·b_4_5 + b_2_12·b_4_1·b_4_5
       + b_4_52·a_1_1·b_3_3
  117. b_6_9·b_7_11 + b_6_9·b_7_10 + b_2_1·b_4_5·b_7_10 + b_2_1·b_4_52·b_3_3 + b_2_13·b_7_11
       + b_2_15·b_3_3 + b_2_16·a_1_1
  118. b_6_8·b_7_10 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_5·b_7_10 + b_2_1·b_4_52·b_3_3
       + b_2_12·b_4_5·b_5_7 + b_2_12·b_4_5·b_5_6 + b_2_13·b_4_5·b_3_3 + b_2_14·b_5_7
       + b_2_15·b_3_3 + b_2_13·b_2_2·a_5_3 + b_2_1·c_8_15·b_3_2 + b_2_12·c_8_15·a_1_1
       + b_2_12·c_8_15·a_1_0
  119. b_6_9·b_7_11 + b_6_9·b_7_10 + b_6_8·b_7_11 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_5·b_7_10
       + b_2_13·b_4_5·b_3_3 + b_2_14·b_5_7 + b_2_14·b_5_6 + b_2_15·b_3_3
       + b_2_13·b_2_2·a_5_3 + b_4_5·a_1_12·b_7_11 + b_2_1·c_8_15·b_3_3
       + b_2_12·c_8_15·a_1_1
  120. b_8_13·a_5_3 + b_2_13·b_2_2·a_5_3 + b_2_12·c_8_15·a_1_1
  121. b_8_13·b_5_6 + b_6_9·b_7_11 + b_6_9·b_7_10 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_5·b_7_10
       + b_2_1·b_4_52·b_3_2 + b_2_13·b_4_5·b_3_2 + b_2_14·b_5_7 + b_2_14·b_5_6
       + b_2_15·b_3_3 + b_2_13·b_2_2·a_5_3
  122. b_8_13·b_5_7 + b_6_9·b_7_11 + b_6_8·b_7_11 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_52·b_3_3
       + b_2_1·b_4_52·b_3_2 + b_2_13·b_4_5·b_3_3 + b_2_13·b_4_5·b_3_2 + b_2_14·b_5_7
       + b_2_14·b_5_6 + b_2_13·b_2_2·a_5_3 + b_2_16·a_1_1 + b_4_5·a_1_12·b_7_11
       + b_2_12·c_8_15·a_1_1
  123. b_8_14·a_5_3 + b_4_5·a_1_12·b_7_11
  124. b_8_14·b_5_6 + b_6_9·b_7_10 + b_6_8·b_7_11 + b_4_52·b_5_6 + b_2_1·b_4_5·b_7_11
       + b_2_1·b_4_52·b_3_3 + b_2_12·b_4_5·b_5_6 + b_2_13·b_4_5·b_3_2 + b_2_14·b_5_7
       + b_2_14·b_5_6 + b_2_15·b_3_3 + b_2_13·b_2_2·a_5_3 + b_4_5·a_1_12·b_7_11
  125. b_8_14·b_5_7 + b_6_9·b_7_10 + b_6_8·b_7_11 + b_4_52·b_5_7 + b_2_12·b_4_5·b_5_6
       + b_2_13·b_4_5·b_3_3 + b_2_13·b_4_5·b_3_2 + b_2_14·b_5_7 + b_2_14·b_5_6
       + b_2_15·b_3_3 + b_2_13·b_2_2·a_5_3
  126. b_6_9·b_7_10 + b_6_8·b_7_11 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_5·b_7_10
       + b_2_1·b_4_52·b_3_3 + b_2_1·b_2_2·b_9_18 + b_2_13·b_4_5·b_3_3 + b_2_15·b_3_3
       + b_2_16·a_1_1 + b_4_5·a_1_12·b_7_11 + b_2_12·c_8_15·a_1_1
  127. b_6_9·b_7_11 + b_6_8·b_7_11 + b_4_1·b_9_18 + b_2_1·b_4_5·b_7_11 + b_2_1·b_4_5·b_7_10
       + b_2_1·b_4_52·b_3_2 + b_2_12·b_9_18 + b_2_12·b_4_5·b_5_7 + b_2_12·b_4_5·b_5_6
       + b_2_13·b_7_10 + b_2_13·b_4_5·b_3_3 + b_2_14·b_5_7 + b_2_14·a_5_3 + b_2_16·a_1_1
       + b_4_5·a_1_12·b_7_11 + b_2_12·c_8_15·a_1_0
  128. b_6_9·b_7_11 + b_6_8·b_7_11 + b_4_2·b_9_18 + b_2_1·b_4_5·b_7_10 + b_2_1·b_4_52·b_3_2
       + b_2_12·b_9_18 + b_2_13·b_7_10 + b_2_13·b_4_5·b_3_3 + b_2_14·b_5_7 + b_2_14·a_5_3
       + b_2_16·a_1_1 + b_4_5·a_1_12·b_7_11 + b_2_12·c_8_15·a_1_0
  129. b_7_10·b_7_11 + b_7_102 + b_4_52·b_6_9 + b_2_1·b_4_53 + b_2_12·b_4_5·b_6_9
       + b_2_13·b_4_52 + b_2_13·b_4_2·b_4_5 + b_2_2·b_4_5·c_8_15 + b_2_1·b_4_5·c_8_15
  130. b_7_112 + b_7_10·b_7_11 + b_4_52·b_6_9 + b_2_2·b_4_53 + b_2_1·b_4_53
       + b_2_12·b_4_5·b_6_9 + b_2_13·b_4_52 + b_2_14·b_2_2·b_4_5 + b_4_52·a_1_1·b_5_7
       + c_8_15·a_1_1·b_5_7 + b_4_5·c_8_15·a_1_12
  131. b_6_9·b_8_13 + b_2_1·b_4_1·b_4_52 + b_2_12·b_4_5·b_6_9 + b_2_13·b_4_52
       + b_2_13·b_4_1·b_4_5 + b_2_14·b_2_2·b_4_5 + b_2_1·b_4_2·c_8_15 + b_2_1·b_4_1·c_8_15
       + b_2_12·b_2_2·c_8_15
  132. b_7_102 + b_2_1·b_4_5·b_8_13 + b_2_1·b_4_2·b_4_52 + b_2_12·b_2_2·b_4_52
       + b_2_14·b_2_2·b_4_5 + b_2_1·b_4_5·c_8_15
  133. b_7_102 + b_6_8·b_8_14 + b_6_8·b_8_13 + b_4_52·b_6_8 + b_2_1·b_4_1·b_4_52
       + b_2_12·b_4_5·b_6_9 + b_2_12·b_4_5·b_6_8 + b_2_12·b_2_2·b_4_52 + b_2_13·b_4_52
       + b_2_13·b_4_2·b_4_5 + b_2_14·b_6_9 + b_2_14·b_2_2·b_4_5 + b_2_15·b_4_2
       + b_2_15·b_4_1 + b_2_16·b_2_2 + b_2_1·b_4_5·c_8_15 + b_2_1·b_4_2·c_8_15
       + b_2_12·b_2_2·c_8_15
  134. b_6_9·b_8_14 + b_6_8·b_8_13 + b_4_52·b_6_9 + b_2_1·b_4_2·b_4_52 + b_2_13·b_8_14
       + b_2_13·b_4_2·b_4_5 + b_2_13·b_4_1·b_4_5 + b_2_14·b_6_9 + b_2_15·b_4_1
       + b_2_16·b_2_2 + b_2_12·b_2_2·c_8_15
  135. b_6_9·b_8_14 + b_4_52·b_6_9 + b_2_1·b_4_5·b_8_14 + b_2_1·b_4_53 + b_2_12·b_4_5·b_6_9
       + b_2_12·b_2_2·b_4_52 + b_2_13·b_8_13 + b_2_13·b_4_52 + b_2_13·b_4_1·b_4_5
       + b_2_14·b_6_9 + b_2_14·b_2_2·b_4_5 + b_2_15·b_4_5 + b_2_15·b_4_2 + b_2_16·b_2_2
       + b_2_1·b_4_2·c_8_15 + b_2_1·b_4_1·c_8_15
  136. a_5_3·b_9_18
  137. b_5_6·b_9_18 + b_6_9·b_8_14 + b_4_52·b_6_9 + b_4_52·b_6_8 + b_2_2·b_4_53
       + b_2_1·b_4_1·b_4_52 + b_2_12·b_4_5·b_6_9 + b_2_13·b_8_13 + b_2_13·b_4_52
       + b_2_14·b_6_9 + b_2_14·b_2_2·b_4_5 + b_2_15·b_4_5 + b_2_15·b_4_2 + b_2_16·b_2_2
       + b_4_53·a_1_12 + b_2_1·b_4_2·c_8_15 + b_2_1·b_4_1·c_8_15
  138. b_5_7·b_9_18 + b_6_9·b_8_14 + b_4_52·b_6_8 + b_2_1·b_4_53 + b_2_1·b_4_2·b_4_52
       + b_2_12·b_4_5·b_6_9 + b_2_12·b_2_2·b_4_52 + b_2_13·b_8_13 + b_2_13·b_4_52
       + b_2_14·b_6_9 + b_2_14·b_2_2·b_4_5 + b_2_15·b_4_5 + b_2_15·b_4_2 + b_2_16·b_2_2
       + b_4_52·a_1_1·b_5_7 + b_4_53·a_1_12 + b_2_1·b_4_2·c_8_15 + b_2_1·b_4_1·c_8_15
  139. b_8_14·b_7_11 + b_8_14·b_7_10 + b_8_13·b_7_11 + b_8_13·b_7_10 + b_6_9·b_9_18
       + b_4_52·b_7_11 + b_4_52·b_7_10 + b_2_1·b_4_52·b_5_7 + b_2_12·b_4_5·b_7_11
       + b_2_12·b_4_52·b_3_2 + b_2_13·b_4_5·b_5_7 + b_2_14·b_7_11 + b_2_14·b_4_5·b_3_2
       + b_2_1·c_8_15·b_5_6 + b_2_12·c_8_15·b_3_3 + b_2_2·c_8_15·a_5_3
  140. b_8_14·b_7_11 + b_8_14·b_7_10 + b_6_8·b_9_18 + b_4_52·b_7_11 + b_4_52·b_7_10
       + b_2_1·b_4_52·b_5_7 + b_2_12·b_4_5·b_7_10 + b_2_12·b_4_52·b_3_2
       + b_2_13·b_4_5·b_5_7 + b_2_14·b_4_5·b_3_3 + b_2_15·b_5_6 + b_2_16·b_3_3
       + b_2_17·a_1_1 + b_2_1·c_8_15·b_5_7 + b_2_1·c_8_15·b_5_6 + b_2_12·c_8_15·b_3_3
       + b_2_12·c_8_15·b_3_2 + b_2_2·c_8_15·a_5_3 + b_2_1·c_8_15·a_5_3
  141. b_8_14·b_7_10 + b_4_52·b_7_10 + b_2_12·b_4_5·b_7_10 + b_2_12·b_4_52·b_3_3
       + b_2_13·b_9_18 + b_2_13·b_4_5·b_5_6 + b_2_14·b_7_11 + b_2_14·b_7_10
       + b_2_14·b_4_5·b_3_3 + b_2_15·b_5_6 + b_2_14·b_2_2·a_5_3 + b_2_15·a_5_3
       + b_2_1·c_8_15·b_5_6 + b_2_12·c_8_15·b_3_3 + b_2_13·c_8_15·a_1_1
       + b_2_13·c_8_15·a_1_0
  142. b_8_13·b_7_11 + b_2_1·b_4_52·b_5_7 + b_2_1·b_4_52·b_5_6 + b_2_12·b_4_5·b_7_11
       + b_2_12·b_4_52·b_3_3 + b_2_12·b_2_2·b_9_18 + b_2_13·b_4_5·b_5_7
       + b_2_13·b_4_5·b_5_6 + b_2_14·b_7_11 + b_2_14·b_4_5·b_3_3 + b_2_15·b_5_7
       + b_2_15·b_5_6 + b_2_14·b_2_2·a_5_3 + b_2_17·a_1_1 + b_2_1·c_8_15·b_5_7
       + b_2_1·c_8_15·b_5_6 + b_2_12·c_8_15·b_3_3 + b_2_2·c_8_15·a_5_3 + b_2_13·c_8_15·a_1_1
  143. b_8_14·b_7_10 + b_8_13·b_7_11 + b_8_13·b_7_10 + b_4_52·b_7_10 + b_2_1·b_4_5·b_9_18
       + b_2_1·b_4_52·b_5_7 + b_2_12·b_4_52·b_3_3 + b_2_12·b_4_52·b_3_2
       + b_2_13·b_4_5·b_5_7 + b_2_14·b_7_11 + b_2_14·b_4_5·b_3_3 + b_2_14·b_4_5·b_3_2
       + b_2_1·c_8_15·b_5_6 + b_2_12·c_8_15·b_3_3 + b_2_13·c_8_15·a_1_1
  144. b_8_14·b_7_11 + b_4_52·b_7_11 + b_2_2·b_4_5·b_9_18 + b_2_1·b_4_52·b_5_7
       + b_2_1·b_4_52·b_5_6 + b_2_12·b_4_5·b_7_11 + b_2_12·b_4_52·b_3_3
       + b_2_13·b_4_5·b_5_7 + b_2_13·b_4_5·b_5_6 + b_2_14·b_4_5·b_3_3 + b_2_1·c_8_15·b_5_7
       + b_2_1·c_8_15·b_5_6 + b_2_2·c_8_15·a_5_3 + b_2_13·c_8_15·a_1_1
  145. b_8_132 + b_2_12·b_4_5·b_8_13 + b_2_12·b_4_53 + b_2_12·b_4_2·b_4_52
       + b_2_14·b_8_13 + b_2_15·b_2_2·b_4_5 + b_2_16·b_4_5 + b_2_16·b_4_2
       + b_2_1·b_2_2·b_4_5·c_8_15 + b_2_13·b_2_2·c_8_15
  146. b_8_13·b_8_14 + b_4_52·b_8_13 + b_2_1·b_4_52·b_6_8 + b_2_1·b_2_2·b_4_53
       + b_2_12·b_4_53 + b_2_12·b_4_2·b_4_52 + b_2_13·b_4_5·b_6_9 + b_2_13·b_4_5·b_6_8
       + b_2_14·b_4_52 + b_2_14·b_4_1·b_4_5 + b_2_16·b_4_5 + b_2_1·b_2_2·b_4_5·c_8_15
       + b_2_12·b_4_2·c_8_15 + b_2_12·b_4_1·c_8_15
  147. b_8_142 + b_8_132 + b_4_54 + b_2_12·b_4_53 + b_2_14·b_8_13 + b_2_14·b_4_52
       + b_2_15·b_2_2·b_4_5 + b_2_16·b_4_2 + b_2_1·b_2_2·b_4_5·c_8_15 + b_2_12·b_4_5·c_8_15
       + b_2_13·b_2_2·c_8_15
  148. b_7_10·b_9_18 + b_8_132 + b_4_52·b_8_14 + b_4_54 + b_2_1·b_4_52·b_6_9
       + b_2_1·b_4_52·b_6_8 + b_2_1·b_2_2·b_4_53 + b_2_12·b_4_5·b_8_14 + b_2_12·b_4_53
       + b_2_12·b_4_2·b_4_52 + b_2_13·b_4_5·b_6_9 + b_2_14·b_8_13 + b_2_14·b_4_52
       + b_2_14·b_4_2·b_4_5 + b_2_16·b_4_5 + b_2_16·b_4_2 + b_4_53·a_1_1·b_3_3
       + b_4_1·b_4_5·c_8_15 + b_2_12·b_4_5·c_8_15 + b_2_13·b_2_2·c_8_15
       + b_4_5·c_8_15·a_1_1·b_3_3
  149. b_7_11·b_9_18 + b_8_132 + b_4_2·b_4_53 + b_4_1·b_4_53 + b_2_12·b_4_53
       + b_2_12·b_4_2·b_4_52 + b_2_12·b_4_1·b_4_52 + b_2_13·b_4_5·b_6_9
       + b_2_14·b_8_13 + b_2_14·b_4_52 + b_2_14·b_4_1·b_4_5 + b_2_16·b_4_5 + b_2_16·b_4_2
       + b_4_52·a_1_1·b_7_11 + b_4_2·b_4_5·c_8_15 + b_4_1·b_4_5·c_8_15
       + b_2_1·b_2_2·b_4_5·c_8_15 + b_2_13·b_2_2·c_8_15
  150. b_8_13·b_9_18 + b_2_1·b_4_52·b_7_11 + b_2_1·b_4_52·b_7_10 + b_2_1·b_4_53·b_3_3
       + b_2_1·b_4_53·b_3_2 + b_2_1·b_2_2·b_4_5·b_9_18 + b_2_12·b_4_5·b_9_18
       + b_2_12·b_4_52·b_5_7 + b_2_12·b_4_52·b_5_6 + b_2_13·b_4_52·b_3_3
       + b_2_13·b_4_52·b_3_2 + b_2_14·b_9_18 + b_2_14·b_4_5·b_5_6 + b_2_15·b_7_11
       + b_2_15·b_7_10 + b_2_16·b_5_7 + b_2_16·a_5_3 + b_2_18·a_1_1 + b_4_52·a_1_12·b_7_11
       + b_2_1·b_4_5·c_8_15·b_3_3 + b_2_12·c_8_15·b_5_7 + b_2_12·c_8_15·b_5_6
       + b_2_14·c_8_15·a_1_1 + b_2_14·c_8_15·a_1_0
  151. b_8_14·b_9_18 + b_4_52·b_9_18 + b_2_1·b_4_52·b_7_10 + b_2_12·b_4_52·b_5_6
       + b_2_13·b_4_5·b_7_11 + b_2_13·b_4_5·b_7_10 + b_2_13·b_2_2·b_9_18 + b_2_14·b_9_18
       + b_2_15·b_7_11 + b_2_15·b_7_10 + b_2_15·b_4_5·b_3_3 + b_2_15·b_4_5·b_3_2
       + b_2_16·b_5_7 + b_2_16·a_5_3 + b_2_18·a_1_1 + b_2_1·b_4_5·c_8_15·b_3_2
       + b_2_12·c_8_15·b_5_7 + b_2_13·c_8_15·b_3_3 + b_2_1·b_2_2·c_8_15·a_5_3
       + b_2_14·c_8_15·a_1_1 + b_2_14·c_8_15·a_1_0
  152. b_9_182 + b_2_1·b_4_52·b_8_13 + b_2_1·b_4_54 + b_2_1·b_4_2·b_4_53
       + b_2_12·b_2_2·b_4_53 + b_2_13·b_4_53 + b_2_14·b_2_2·b_4_52 + b_2_15·b_4_52
       + b_2_15·b_4_2·b_4_5 + b_4_54·a_1_12 + b_2_1·b_4_52·c_8_15
       + b_2_12·b_2_2·b_4_5·c_8_15 + b_2_13·b_4_5·c_8_15


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 18.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_8_15, a Duflot regular element of degree 8
    2. b_4_5 + b_2_12, an element of degree 4
    3. b_3_2, an element of degree 3
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 12].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 1

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. b_2_10, an element of degree 2
  4. b_2_20, an element of degree 2
  5. b_3_20, an element of degree 3
  6. b_3_30, an element of degree 3
  7. b_4_10, an element of degree 4
  8. b_4_20, an element of degree 4
  9. b_4_50, an element of degree 4
  10. a_5_30, an element of degree 5
  11. b_5_60, an element of degree 5
  12. b_5_70, an element of degree 5
  13. b_6_80, an element of degree 6
  14. b_6_90, an element of degree 6
  15. b_7_100, an element of degree 7
  16. b_7_110, an element of degree 7
  17. b_8_130, an element of degree 8
  18. b_8_140, an element of degree 8
  19. c_8_15c_1_08, an element of degree 8
  20. b_9_180, an element of degree 9

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. b_2_1c_1_12, an element of degree 2
  4. b_2_20, an element of degree 2
  5. b_3_2c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  6. b_3_30, an element of degree 3
  7. b_4_1c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
  8. b_4_2c_1_12·c_1_22 + c_1_13·c_1_2, an element of degree 4
  9. b_4_5c_1_24 + c_1_12·c_1_22, an element of degree 4
  10. a_5_30, an element of degree 5
  11. b_5_6c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
  12. b_5_7c_1_1·c_1_24 + c_1_13·c_1_22, an element of degree 5
  13. b_6_8c_1_14·c_1_22 + c_1_15·c_1_2 + c_1_0·c_1_13·c_1_22 + c_1_0·c_1_14·c_1_2
       + c_1_02·c_1_12·c_1_22 + c_1_02·c_1_13·c_1_2 + c_1_02·c_1_14
       + c_1_04·c_1_12, an element of degree 6
  14. b_6_9c_1_12·c_1_24 + c_1_14·c_1_22, an element of degree 6
  15. b_7_10c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_14·c_1_23 + c_1_15·c_1_22
       + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
       + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
  16. b_7_110, an element of degree 7
  17. b_8_13c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
       + c_1_16·c_1_22 + c_1_17·c_1_2, an element of degree 8
  18. b_8_14c_1_28 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_16·c_1_22
       + c_1_17·c_1_2 + c_1_0·c_1_13·c_1_24 + c_1_0·c_1_15·c_1_22
       + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_15·c_1_2 + c_1_04·c_1_12·c_1_22
       + c_1_04·c_1_13·c_1_2, an element of degree 8
  19. c_8_15c_1_28 + c_1_17·c_1_2 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
       + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
  20. b_9_18c_1_13·c_1_26 + c_1_14·c_1_25 + c_1_15·c_1_24 + c_1_16·c_1_23
       + c_1_0·c_1_12·c_1_26 + c_1_0·c_1_13·c_1_25 + c_1_0·c_1_15·c_1_23
       + c_1_0·c_1_16·c_1_22 + c_1_02·c_1_1·c_1_26 + c_1_02·c_1_12·c_1_25
       + c_1_02·c_1_13·c_1_24 + c_1_02·c_1_14·c_1_23 + c_1_02·c_1_15·c_1_22
       + c_1_02·c_1_16·c_1_2 + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_14·c_1_2, an element of degree 9

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. b_2_1c_1_22, an element of degree 2
  4. b_2_2c_1_22, an element of degree 2
  5. b_3_2c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  6. b_3_3c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
  7. b_4_1c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
  8. b_4_20, an element of degree 4
  9. b_4_5c_1_12·c_1_22 + c_1_14, an element of degree 4
  10. a_5_30, an element of degree 5
  11. b_5_6c_1_1·c_1_24 + c_1_14·c_1_2, an element of degree 5
  12. b_5_7c_1_1·c_1_24 + c_1_12·c_1_23, an element of degree 5
  13. b_6_8c_1_1·c_1_25 + c_1_14·c_1_22 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_23
       + c_1_02·c_1_24 + c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_22
       + c_1_04·c_1_22, an element of degree 6
  14. b_6_9c_1_26 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_23 + c_1_02·c_1_24
       + c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_22 + c_1_04·c_1_22, an element of degree 6
  15. b_7_10c_1_1·c_1_26 + c_1_12·c_1_25 + c_1_13·c_1_24 + c_1_14·c_1_23
       + c_1_15·c_1_22 + c_1_16·c_1_2 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22
       + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22
       + c_1_04·c_1_12·c_1_2, an element of degree 7
  16. b_7_11c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_1·c_1_24
       + c_1_02·c_1_14·c_1_2 + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2, an element of degree 7
  17. b_8_13c_1_1·c_1_27 + c_1_12·c_1_26 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_14·c_1_23
       + c_1_02·c_1_26 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
       + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_22, an element of degree 8
  18. b_8_14c_1_1·c_1_27 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_15·c_1_23
       + c_1_16·c_1_22 + c_1_18 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_14·c_1_23
       + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_1·c_1_23
       + c_1_04·c_1_12·c_1_22, an element of degree 8
  19. c_8_15c_1_1·c_1_27 + c_1_18 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_14·c_1_23
       + c_1_02·c_1_26 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_14 + c_1_08, an element of degree 8
  20. b_9_18c_1_13·c_1_26 + c_1_14·c_1_25 + c_1_15·c_1_24 + c_1_16·c_1_23
       + c_1_0·c_1_13·c_1_25 + c_1_0·c_1_14·c_1_24 + c_1_0·c_1_15·c_1_23
       + c_1_0·c_1_16·c_1_22 + c_1_02·c_1_12·c_1_25 + c_1_02·c_1_13·c_1_24
       + c_1_02·c_1_15·c_1_22 + c_1_02·c_1_16·c_1_2 + c_1_04·c_1_12·c_1_23
       + c_1_04·c_1_14·c_1_2, an element of degree 9


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009