Cohomology of group number 1462 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 4 minimal generators and exponent 4.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 3.
  • It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 3.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    t6  −  t5  +  2·t4  +  2·t3  +  t2  +  2·t  +  1

    (t  +  1)2 · (t  −  1)4 · (t2  +  1)2
  • The a-invariants are -∞,-∞,-∞,-5,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 12 minimal generators of maximal degree 6:

  1. a_1_0, a nilpotent element of degree 1
  2. b_1_1, an element of degree 1
  3. b_1_2, an element of degree 1
  4. b_1_3, an element of degree 1
  5. c_2_7, a Duflot regular element of degree 2
  6. b_3_10, an element of degree 3
  7. b_3_11, an element of degree 3
  8. b_3_12, an element of degree 3
  9. b_3_13, an element of degree 3
  10. c_4_22, a Duflot regular element of degree 4
  11. c_4_23, a Duflot regular element of degree 4
  12. b_6_48, an element of degree 6

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 29 minimal relations of maximal degree 12:

  1. b_1_1·b_1_2
  2. b_1_32 + b_1_2·b_1_3 + a_1_0·b_1_3 + a_1_0·b_1_2 + a_1_02
  3. b_1_1·b_1_3 + a_1_0·b_1_2 + a_1_0·b_1_1
  4. a_1_02·b_1_1
  5. a_1_02·b_1_2 + a_1_03
  6. b_1_1·b_3_10 + c_2_7·a_1_0·b_1_1
  7. b_1_2·b_3_11 + a_1_0·b_3_10 + c_2_7·a_1_0·b_1_2 + c_2_7·a_1_02
  8. b_1_3·b_3_11 + a_1_0·b_3_12 + c_2_7·a_1_0·b_1_3
  9. b_1_1·b_3_12 + b_1_1·b_3_11 + a_1_0·b_3_10 + c_2_7·a_1_0·b_1_1 + c_2_7·a_1_02
  10. b_1_2·b_3_13 + b_1_2·b_3_12 + b_1_2·b_3_10 + c_2_7·a_1_0·b_1_2
  11. b_1_3·b_3_13 + b_1_3·b_3_12 + b_1_3·b_3_11 + b_1_3·b_3_10 + a_1_0·b_3_13
  12. a_1_02·b_3_11 + a_1_02·b_3_10
  13. b_3_12·b_3_13 + b_3_122 + b_3_11·b_3_13 + b_3_11·b_3_12 + b_3_10·b_3_13 + b_3_102
       + c_2_7·a_1_0·b_3_12 + c_2_72·a_1_02
  14. b_3_10·b_3_13 + b_3_10·b_3_12 + b_3_102 + c_2_7·a_1_0·b_3_13 + c_2_7·a_1_0·b_3_12
       + c_2_72·a_1_02
  15. b_3_102 + b_1_23·b_3_10 + c_4_22·b_1_22 + c_2_7·b_1_23·b_1_3 + c_2_7·b_1_24
       + c_2_72·b_1_22 + c_2_72·a_1_02
  16. b_3_10·b_3_11 + c_4_22·a_1_0·b_1_2 + c_2_7·a_1_0·b_3_11 + c_2_7·a_1_0·b_3_10
       + c_2_72·a_1_0·b_1_2 + c_2_72·a_1_02
  17. b_3_11·b_3_12 + b_3_112 + c_4_22·a_1_0·b_1_3 + c_2_7·a_1_0·b_3_12 + c_4_22·a_1_02
       + c_2_72·a_1_0·b_1_3
  18. b_3_132 + b_3_122 + b_3_102 + a_1_0·b_1_12·b_3_11 + c_4_22·b_1_12
       + c_2_72·b_1_12 + c_2_72·a_1_02
  19. b_3_122 + b_3_112 + b_3_10·b_3_11 + b_3_102 + b_1_22·b_1_3·b_3_12
       + b_1_22·b_1_3·b_3_10 + b_1_23·b_3_10 + b_1_25·b_1_3 + c_4_23·b_1_22
       + c_4_22·b_1_2·b_1_3 + c_2_7·b_1_24 + c_4_22·a_1_0·b_1_3 + c_2_7·a_1_0·b_3_11
       + c_2_7·a_1_0·b_3_10 + c_2_72·b_1_2·b_1_3 + c_2_72·b_1_22 + c_2_72·a_1_0·b_1_3
       + c_2_72·a_1_02
  20. b_3_132 + b_3_122 + b_3_11·b_3_12 + b_3_102 + c_4_23·b_1_12 + c_4_22·a_1_0·b_1_3
       + c_2_7·a_1_0·b_3_12 + c_2_7·a_1_0·b_1_13 + c_2_72·b_1_12 + c_2_72·a_1_0·b_1_3
       + c_2_72·a_1_02
  21. b_1_23·b_1_3·b_3_10 + b_1_26·b_1_3 + b_6_48·b_1_3 + a_1_0·b_1_13·b_3_13
       + a_1_0·b_1_13·b_3_11 + c_2_7·b_1_2·b_1_3·b_3_12 + c_2_7·b_1_24·b_1_3
       + c_4_22·a_1_0·b_1_12 + c_2_7·a_1_0·b_1_1·b_3_13 + c_2_7·a_1_0·b_1_1·b_3_11
       + c_4_22·a_1_02·b_1_3 + c_2_7·a_1_02·b_3_12 + c_2_7·a_1_02·b_3_10 + c_4_23·a_1_03
       + c_4_22·a_1_03 + c_2_72·a_1_0·b_1_12 + c_2_72·a_1_02·b_1_3
  22. b_1_3·b_3_10·b_3_12 + b_1_2·b_3_10·b_3_12 + b_1_23·b_1_3·b_3_12 + b_1_24·b_3_12
       + b_1_24·b_3_10 + b_1_27 + b_6_48·b_1_2 + c_4_23·b_1_22·b_1_3 + c_4_23·b_1_23
       + c_2_7·b_1_2·b_1_3·b_3_12 + c_2_7·b_1_2·b_1_3·b_3_10 + c_2_7·b_1_22·b_3_10
       + c_2_7·b_1_25 + c_2_7·a_1_02·b_3_12 + c_2_7·a_1_02·b_3_10 + c_4_23·a_1_03
  23. a_1_0·b_1_13·b_3_13 + a_1_0·b_1_13·b_3_11 + b_6_48·a_1_0 + c_4_22·a_1_0·b_1_12
       + c_2_7·a_1_0·b_1_1·b_3_13 + c_2_7·a_1_0·b_1_1·b_3_11 + c_4_23·a_1_02·b_1_3
       + c_2_7·a_1_02·b_3_13 + c_2_7·a_1_02·b_3_10 + c_4_23·a_1_03
       + c_2_72·a_1_0·b_1_12 + c_2_72·a_1_02·b_1_3 + c_2_72·a_1_03
  24. b_1_14·b_3_13 + b_1_14·b_3_11 + b_6_48·b_1_1 + a_1_0·b_3_11·b_3_13
       + a_1_0·b_1_13·b_3_11 + a_1_0·b_1_16 + c_4_22·b_1_13 + c_2_7·b_1_12·b_3_13
       + c_2_7·b_1_12·b_3_11 + c_4_23·a_1_0·b_1_12 + c_2_7·a_1_0·b_1_1·b_3_13
       + c_2_7·a_1_0·b_1_1·b_3_11 + c_2_7·a_1_0·b_1_14 + c_4_22·a_1_02·b_1_3
       + c_2_7·a_1_02·b_3_12 + c_2_7·a_1_02·b_3_10 + c_4_23·a_1_03 + c_4_22·a_1_03
       + c_2_72·b_1_13 + c_2_72·a_1_02·b_1_3 + c_2_72·a_1_03
  25. b_1_23·b_3_10·b_3_12 + b_1_26·b_3_12 + b_1_13·b_3_11·b_3_13 + b_6_48·b_3_13
       + a_1_0·b_1_12·b_3_11·b_3_13 + a_1_0·b_1_15·b_3_11 + b_6_48·a_1_0·b_1_12
       + c_4_23·b_1_2·b_1_3·b_3_12 + c_4_23·b_1_22·b_3_12 + c_4_23·b_1_24·b_1_3
       + c_4_23·b_1_25 + c_4_23·b_1_15 + c_4_22·b_1_2·b_1_3·b_3_12
       + c_4_22·b_1_2·b_1_3·b_3_10 + c_4_22·b_1_22·b_3_12 + c_4_22·b_1_22·b_3_10
       + c_4_22·b_1_24·b_1_3 + c_4_22·b_1_12·b_3_13 + c_2_7·b_1_2·b_3_10·b_3_12
       + c_2_7·b_1_27 + c_2_7·b_1_1·b_3_11·b_3_13 + c_4_23·a_1_0·b_1_1·b_3_13
       + c_4_23·a_1_0·b_1_1·b_3_11 + c_4_22·a_1_0·b_1_14 + c_2_7·a_1_0·b_3_11·b_3_13
       + c_2_7·a_1_0·b_1_13·b_3_11 + c_2_7·a_1_0·b_1_16 + c_4_23·a_1_02·b_3_10
       + c_4_22·a_1_02·b_3_12 + c_4_22·a_1_02·b_3_10 + c_2_7·c_4_23·b_1_22·b_1_3
       + c_2_7·c_4_23·b_1_13 + c_2_7·c_4_22·b_1_22·b_1_3 + c_2_7·c_4_22·b_1_23
       + c_2_72·b_1_2·b_1_3·b_3_12 + c_2_72·b_1_22·b_3_12 + c_2_72·b_1_12·b_3_13
       + c_2_72·b_1_15 + c_2_7·c_4_23·a_1_0·b_1_12 + c_2_72·a_1_0·b_1_1·b_3_11
       + c_2_72·a_1_02·b_3_13 + c_2_72·a_1_02·b_3_12 + c_2_7·c_4_23·a_1_03
       + c_2_7·c_4_22·a_1_03 + c_2_73·b_1_23 + c_2_73·b_1_13 + c_2_73·a_1_0·b_1_12
  26. b_1_23·b_3_10·b_3_12 + b_1_26·b_3_12 + b_1_13·b_3_11·b_3_13 + b_6_48·b_3_12
       + b_6_48·b_3_10 + c_4_23·b_1_2·b_1_3·b_3_12 + c_4_23·b_1_22·b_3_12
       + c_4_23·b_1_24·b_1_3 + c_4_23·b_1_25 + c_4_23·b_1_15 + c_4_22·b_1_2·b_1_3·b_3_12
       + c_4_22·b_1_2·b_1_3·b_3_10 + c_4_22·b_1_22·b_3_12 + c_4_22·b_1_22·b_3_10
       + c_4_22·b_1_24·b_1_3 + c_4_22·b_1_12·b_3_11 + c_4_22·b_1_15
       + c_2_7·b_1_2·b_3_10·b_3_12 + c_2_7·b_1_27 + c_2_7·b_1_1·b_3_11·b_3_13
       + c_4_23·a_1_0·b_1_1·b_3_13 + c_4_23·a_1_0·b_1_1·b_3_11 + c_4_23·a_1_0·b_1_14
       + c_4_22·a_1_0·b_1_1·b_3_13 + c_4_22·a_1_0·b_1_14 + c_2_7·a_1_0·b_3_11·b_3_13
       + c_2_7·a_1_0·b_1_16 + c_4_22·a_1_02·b_3_12 + c_2_7·c_4_23·b_1_22·b_1_3
       + c_2_7·c_4_23·b_1_13 + c_2_7·c_4_22·b_1_22·b_1_3 + c_2_7·c_4_22·b_1_23
       + c_2_7·c_4_22·b_1_13 + c_2_72·b_1_2·b_1_3·b_3_12 + c_2_72·b_1_22·b_3_12
       + c_2_72·b_1_12·b_3_11 + c_2_7·c_4_23·a_1_0·b_1_12 + c_2_7·c_4_22·a_1_0·b_1_12
       + c_2_72·a_1_0·b_1_14 + c_2_7·c_4_23·a_1_02·b_1_3 + c_2_72·a_1_02·b_3_12
       + c_2_72·a_1_02·b_3_10 + c_2_7·c_4_23·a_1_03 + c_2_7·c_4_22·a_1_03
       + c_2_73·b_1_23 + c_2_73·a_1_02·b_1_3
  27. b_1_13·b_3_11·b_3_13 + b_6_48·b_3_11 + c_4_23·b_1_15 + c_4_22·b_1_12·b_3_11
       + c_4_22·b_1_15 + c_2_7·b_1_1·b_3_11·b_3_13 + c_4_23·a_1_0·b_1_1·b_3_13
       + c_4_23·a_1_0·b_1_1·b_3_11 + c_4_23·a_1_0·b_1_14 + c_4_22·a_1_0·b_1_1·b_3_13
       + c_4_22·a_1_0·b_1_14 + c_2_7·a_1_0·b_3_11·b_3_13 + c_2_7·a_1_0·b_1_16
       + c_4_23·a_1_02·b_3_13 + c_4_23·a_1_02·b_3_10 + c_4_22·a_1_02·b_3_10
       + c_2_7·c_4_23·b_1_13 + c_2_7·c_4_22·b_1_13 + c_2_72·b_1_12·b_3_11
       + c_2_7·c_4_23·a_1_0·b_1_12 + c_2_7·c_4_22·a_1_0·b_1_12 + c_2_72·a_1_0·b_1_14
       + c_2_7·c_4_23·a_1_02·b_1_3 + c_2_72·a_1_02·b_3_12 + c_2_72·a_1_02·b_3_10
       + c_2_73·a_1_02·b_1_3
  28. b_1_23·b_3_10·b_3_12 + b_1_26·b_3_12 + b_1_13·b_3_11·b_3_13 + b_6_48·b_3_12
       + c_4_23·b_1_2·b_1_3·b_3_12 + c_4_23·b_1_2·b_1_3·b_3_10 + c_4_23·b_1_22·b_3_12
       + c_4_23·b_1_22·b_3_10 + c_4_23·b_1_24·b_1_3 + c_4_23·b_1_25 + c_4_23·b_1_15
       + c_4_22·b_1_2·b_1_3·b_3_10 + c_4_22·b_1_22·b_3_10 + c_4_22·b_1_24·b_1_3
       + c_4_22·b_1_25 + c_4_22·b_1_12·b_3_11 + c_4_22·b_1_15 + c_2_7·b_1_24·b_3_10
       + c_2_7·b_1_27 + c_2_7·b_1_1·b_3_11·b_3_13 + c_2_7·b_6_48·b_1_3 + c_2_7·b_6_48·b_1_2
       + c_4_23·a_1_0·b_1_1·b_3_13 + c_4_23·a_1_0·b_1_1·b_3_11 + c_4_23·a_1_0·b_1_14
       + c_4_22·a_1_0·b_1_1·b_3_13 + c_4_22·a_1_0·b_1_14 + c_2_7·a_1_0·b_3_11·b_3_13
       + c_2_7·a_1_0·b_1_16 + c_4_23·a_1_02·b_3_13 + c_4_23·a_1_02·b_3_12
       + c_4_22·a_1_02·b_3_13 + c_4_22·a_1_02·b_3_10 + c_2_7·c_4_23·b_1_23
       + c_2_7·c_4_23·b_1_13 + c_2_7·c_4_22·b_1_13 + c_2_72·b_1_2·b_1_3·b_3_10
       + c_2_72·b_1_22·b_3_10 + c_2_72·b_1_25 + c_2_72·b_1_12·b_3_11
       + c_2_7·c_4_23·a_1_0·b_1_12 + c_2_7·c_4_22·a_1_0·b_1_12 + c_2_72·a_1_0·b_1_14
       + c_2_7·c_4_22·a_1_02·b_1_3 + c_2_72·a_1_02·b_3_12 + c_2_73·b_1_22·b_1_3
       + c_2_73·a_1_02·b_1_3
  29. b_6_48·b_1_22·b_1_3·b_3_12 + b_6_48·b_1_23·b_3_12 + b_6_48·b_1_26 + b_6_482
       + a_1_0·b_1_18·b_3_11 + c_4_23·b_1_24·b_1_3·b_3_12 + c_4_23·b_1_25·b_3_12
       + c_4_23·b_1_27·b_1_3 + c_4_23·b_1_28 + c_4_22·b_1_28 + c_4_22·b_1_18
       + c_2_7·b_1_26·b_1_3·b_3_12 + c_2_7·b_1_210 + c_2_7·b_6_48·b_1_23·b_1_3
       + c_2_7·b_6_48·b_1_24 + c_4_232·b_1_23·b_1_3 + c_4_232·b_1_24
       + c_4_22·c_4_23·b_1_23·b_1_3 + c_4_22·c_4_23·b_1_24 + c_4_222·b_1_23·b_1_3
       + c_4_222·b_1_24 + c_4_222·b_1_14 + c_2_7·c_4_22·b_1_25·b_1_3
       + c_2_7·c_4_22·b_1_26 + c_2_72·b_1_24·b_1_3·b_3_12 + c_2_72·b_1_27·b_1_3
       + c_2_72·b_1_28 + c_2_72·b_1_18 + c_2_72·b_6_48·b_1_2·b_1_3
       + c_2_72·a_1_0·b_1_14·b_3_11 + c_2_72·c_4_23·b_1_24 + c_2_72·c_4_22·b_1_14
       + c_2_73·b_1_22·b_1_3·b_3_12 + c_2_73·b_1_25·b_1_3 + c_2_73·b_1_26
       + c_2_74·b_1_24


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 12.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_2_7, a Duflot regular element of degree 2
    2. c_4_22, a Duflot regular element of degree 4
    3. c_4_23, a Duflot regular element of degree 4
    4. b_1_22 + b_1_12, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 5, 8].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 3

  1. a_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_30, an element of degree 1
  5. c_2_7c_1_22, an element of degree 2
  6. b_3_100, an element of degree 3
  7. b_3_110, an element of degree 3
  8. b_3_120, an element of degree 3
  9. b_3_130, an element of degree 3
  10. c_4_22c_1_24 + c_1_14 + c_1_04, an element of degree 4
  11. c_4_23c_1_24 + c_1_04, an element of degree 4
  12. b_6_480, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. b_1_1c_1_3, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_30, an element of degree 1
  5. c_2_7c_1_2·c_1_3 + c_1_22, an element of degree 2
  6. b_3_100, an element of degree 3
  7. b_3_11c_1_12·c_1_3, an element of degree 3
  8. b_3_12c_1_12·c_1_3, an element of degree 3
  9. b_3_13c_1_1·c_1_32 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  10. c_4_22c_1_22·c_1_32 + c_1_24 + c_1_12·c_1_32 + c_1_14 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  11. c_4_23c_1_22·c_1_32 + c_1_24 + c_1_12·c_1_32 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  12. b_6_48c_1_1·c_1_35 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_22·c_1_33
       + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_14·c_1_32 + c_1_0·c_1_35
       + c_1_0·c_1_2·c_1_34 + c_1_0·c_1_22·c_1_33 + c_1_02·c_1_2·c_1_33
       + c_1_02·c_1_22·c_1_32 + c_1_04·c_1_32, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_2c_1_3, an element of degree 1
  4. b_1_30, an element of degree 1
  5. c_2_7c_1_2·c_1_3 + c_1_22, an element of degree 2
  6. b_3_10c_1_33 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  7. b_3_110, an element of degree 3
  8. b_3_12c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  9. b_3_13c_1_33 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  10. c_4_22c_1_2·c_1_33 + c_1_24 + c_1_1·c_1_33 + c_1_14 + c_1_0·c_1_33 + c_1_04, an element of degree 4
  11. c_4_23c_1_2·c_1_33 + c_1_24 + c_1_1·c_1_33 + c_1_12·c_1_32 + c_1_0·c_1_33 + c_1_04, an element of degree 4
  12. b_6_48c_1_2·c_1_35 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_22·c_1_33
       + c_1_12·c_1_34 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32
       + c_1_14·c_1_32 + c_1_0·c_1_2·c_1_34 + c_1_0·c_1_22·c_1_33
       + c_1_0·c_1_1·c_1_34 + c_1_0·c_1_12·c_1_33 + c_1_02·c_1_34
       + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_1·c_1_33
       + c_1_02·c_1_12·c_1_32 + c_1_04·c_1_32, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_2c_1_3, an element of degree 1
  4. b_1_3c_1_3, an element of degree 1
  5. c_2_7c_1_2·c_1_3 + c_1_22, an element of degree 2
  6. b_3_10c_1_33 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  7. b_3_110, an element of degree 3
  8. b_3_12c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  9. b_3_13c_1_33 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  10. c_4_22c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_33 + c_1_14 + c_1_0·c_1_33 + c_1_04, an element of degree 4
  11. c_4_23c_1_2·c_1_33 + c_1_24 + c_1_1·c_1_33 + c_1_12·c_1_32 + c_1_02·c_1_32
       + c_1_04, an element of degree 4
  12. b_6_48c_1_2·c_1_35 + c_1_22·c_1_34 + c_1_1·c_1_35 + c_1_12·c_1_34 + c_1_0·c_1_35
       + c_1_0·c_1_2·c_1_34 + c_1_0·c_1_22·c_1_33 + c_1_02·c_1_34
       + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_22·c_1_32, an element of degree 6


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009