Cohomology of group number 1483 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 4 minimal generators and exponent 4.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 3.
  • It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 3.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t3  +  t  +  1) · (t4  −  3·t3  −  t  −  1)

    (t  +  1)2 · (t  −  1)4 · (t2  +  1)3
  • The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 16 minimal generators of maximal degree 5:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_2, a nilpotent element of degree 1
  3. b_1_1, an element of degree 1
  4. b_1_3, an element of degree 1
  5. a_3_7, a nilpotent element of degree 3
  6. b_3_5, an element of degree 3
  7. b_3_6, an element of degree 3
  8. b_3_8, an element of degree 3
  9. b_3_9, an element of degree 3
  10. b_3_10, an element of degree 3
  11. b_3_11, an element of degree 3
  12. c_4_19, a Duflot regular element of degree 4
  13. c_4_20, a Duflot regular element of degree 4
  14. c_4_21, a Duflot regular element of degree 4
  15. b_5_31, an element of degree 5
  16. b_5_32, an element of degree 5

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 62 minimal relations of maximal degree 10:

  1. a_1_2·b_1_1 + a_1_02
  2. b_1_1·b_1_3 + b_1_12 + a_1_0·b_1_1 + a_1_0·a_1_2
  3. a_1_0·b_1_3 + a_1_22 + a_1_0·a_1_2
  4. a_1_03
  5. a_1_23
  6. a_1_22·b_1_3 + a_1_0·a_1_22
  7. b_1_1·b_3_6 + b_1_1·b_3_5 + a_1_0·b_3_5
  8. a_1_2·b_3_5 + a_1_0·b_3_6
  9. b_1_3·b_3_5 + b_1_1·b_3_5 + a_1_2·b_3_6 + a_1_2·b_3_5
  10. b_1_3·b_3_9 + b_1_3·b_3_8 + b_1_3·b_3_5 + b_1_1·b_3_9 + b_1_1·b_3_8 + b_1_1·b_3_5
       + b_1_3·a_3_7 + b_1_1·a_3_7 + a_1_2·b_3_8 + a_1_2·b_3_5 + a_1_0·b_3_8 + a_1_0·b_3_5
  11. b_1_3·b_3_9 + b_1_3·b_3_8 + b_1_3·b_3_5 + b_1_1·b_3_8 + b_1_1·b_3_5 + b_1_3·a_3_7
       + a_1_2·b_3_8 + a_1_2·b_3_5 + a_1_0·b_3_9 + a_1_0·a_3_7
  12. b_1_3·b_3_9 + b_1_3·b_3_8 + b_1_3·b_3_5 + b_1_1·b_3_8 + b_1_1·b_3_5 + b_1_3·a_3_7
       + a_1_2·b_3_9 + a_1_2·a_3_7
  13. b_1_3·b_3_10 + b_1_3·b_3_9 + b_1_3·b_3_8 + b_1_3·b_3_5 + b_1_1·b_3_10 + b_1_1·b_3_8
       + b_1_1·b_3_5 + a_1_0·b_3_8 + a_1_0·b_3_5 + a_1_2·a_3_7
  14. b_1_1·a_3_7 + a_1_0·b_3_10 + a_1_0·a_3_7
  15. a_1_2·b_3_10 + a_1_2·a_3_7 + a_1_0·a_3_7
  16. b_1_3·b_3_10 + b_1_3·b_3_9 + b_1_3·b_3_8 + b_1_3·b_3_5 + b_1_1·b_3_11 + b_1_1·b_3_8
       + b_1_1·b_3_5 + b_1_1·a_3_7 + a_1_0·b_3_5 + a_1_2·a_3_7 + a_1_0·a_3_7
  17. b_1_3·b_3_9 + b_1_3·b_3_8 + b_1_3·b_3_5 + b_1_1·b_3_8 + b_1_1·b_3_5 + b_1_3·a_3_7
       + b_1_1·a_3_7 + a_1_2·b_3_8 + a_1_0·b_3_11 + a_1_0·b_3_8 + a_1_2·a_3_7
  18. b_1_3·b_3_9 + b_1_3·b_3_8 + b_1_1·b_3_8 + a_1_2·b_3_11 + a_1_2·b_3_8 + a_1_2·b_3_5
       + a_1_2·a_3_7 + a_1_0·a_3_7
  19. a_1_22·b_3_6 + a_1_0·a_1_2·b_3_6 + a_1_02·b_3_8 + a_1_02·b_3_6 + a_1_02·a_3_7
  20. a_1_0·a_1_2·b_3_6 + a_1_02·b_3_9 + a_1_02·b_3_6 + a_1_02·a_3_7
  21. a_1_22·b_3_11 + a_1_02·b_3_10 + a_1_02·b_3_6
  22. b_3_6·b_3_9 + b_3_6·b_3_8 + b_3_5·b_3_8 + b_3_5·b_3_6 + b_3_52 + a_3_7·b_3_6
  23. b_3_6·b_3_10 + b_3_5·b_3_10 + b_3_5·b_3_9 + a_3_7·b_3_6 + a_3_7·b_3_5
  24. b_3_9·b_3_10 + a_3_7·b_3_10 + a_3_7·b_3_8 + a_3_7·b_3_5 + a_1_2·b_1_32·b_3_8
       + a_1_2·b_1_32·b_3_6
  25. b_3_5·b_3_11 + b_3_5·b_3_10 + b_3_5·b_3_6 + b_3_52 + a_3_7·b_3_6 + a_3_7·b_3_5
  26. b_3_9·b_3_11 + b_3_8·b_3_11 + b_3_8·b_3_10 + b_3_8·b_3_9 + b_3_5·b_3_6 + b_3_52
       + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_13·b_3_8 + b_1_13·b_3_5 + a_3_7·b_3_11
       + a_3_7·b_3_8 + a_3_7·b_3_6 + a_3_7·b_3_5 + a_1_2·b_1_32·b_3_8 + a_1_2·b_1_32·b_3_6
  27. b_3_92 + b_3_82 + b_3_52 + b_1_13·b_3_10 + b_1_13·b_3_5 + a_3_72 + c_4_19·b_1_12
  28. b_3_92 + b_3_8·b_3_9 + b_3_5·b_3_9 + a_3_7·b_3_8 + a_3_7·b_3_5 + a_1_2·b_1_32·b_3_8
       + a_1_2·b_1_32·b_3_6 + a_3_72 + c_4_19·a_1_0·b_1_1
  29. b_3_92 + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_13·b_3_8 + b_1_13·b_3_5
       + a_1_2·b_1_32·b_3_8 + a_1_2·b_1_32·b_3_6 + a_3_72 + c_4_19·a_1_02
  30. b_3_10·b_3_11 + b_3_102 + b_3_8·b_3_9 + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_13·b_3_8
       + b_1_13·b_3_5 + a_3_7·b_3_11 + c_4_19·a_1_0·a_1_2
  31. b_3_102 + b_3_82 + b_3_52 + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_13·b_3_10
       + a_1_2·b_1_32·b_3_8 + a_1_2·b_1_32·b_3_6 + a_3_72 + c_4_20·b_1_12
  32. b_3_10·b_3_11 + b_3_102 + b_3_92 + b_3_5·b_3_9 + b_1_33·b_3_8 + b_1_33·b_3_6
       + b_1_13·b_3_8 + b_1_13·b_3_5 + a_3_7·b_3_11 + a_3_7·b_3_10 + a_3_7·b_3_8 + a_3_7·b_3_5
       + a_1_2·b_1_32·b_3_8 + a_1_2·b_1_32·b_3_6 + c_4_20·a_1_0·b_1_1
  33. b_3_92 + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_13·b_3_8 + b_1_13·b_3_5
       + a_1_2·b_1_32·b_3_8 + a_1_2·b_1_32·b_3_6 + c_4_20·a_1_02 + c_4_19·a_1_22
  34. b_3_10·b_3_11 + b_3_102 + b_3_8·b_3_9 + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_13·b_3_8
       + b_1_13·b_3_5 + a_3_7·b_3_10 + a_3_7·b_3_9 + a_3_7·b_3_8 + a_3_7·b_3_6
       + a_1_2·b_1_32·b_3_11 + a_1_2·b_1_32·b_3_6 + c_4_19·a_1_2·b_1_3 + c_4_20·a_1_0·a_1_2
       + c_4_19·a_1_22
  35. b_3_112 + b_3_102 + b_3_92 + b_3_82 + b_3_62 + b_1_33·b_3_11 + b_1_33·b_3_6
       + a_1_2·b_1_32·b_3_11 + a_1_2·b_1_32·b_3_8 + c_4_19·b_1_32 + c_4_20·a_1_22
  36. b_3_92 + b_3_62 + b_1_33·b_3_8 + b_1_13·b_3_10 + a_1_2·b_1_32·b_3_11
       + a_1_2·b_1_32·b_3_8 + a_1_2·b_1_32·b_3_6 + c_4_21·b_1_32 + c_4_20·b_1_32
       + c_4_21·a_1_02 + c_4_19·a_1_22
  37. b_3_10·b_3_11 + b_3_102 + b_3_8·b_3_9 + b_3_5·b_3_6 + b_3_52 + b_1_33·b_3_8
       + b_1_33·b_3_6 + b_1_13·b_3_8 + b_1_13·b_3_5 + a_3_7·b_3_10 + a_3_7·b_3_9 + a_3_7·b_3_8
       + a_3_7·b_3_6 + a_1_2·b_1_32·b_3_11 + c_4_21·a_1_2·b_1_3 + c_4_20·a_1_2·b_1_3
       + c_4_19·a_1_2·b_1_3 + c_4_21·a_1_0·a_1_2 + c_4_19·a_1_22
  38. b_3_112 + b_3_92 + b_1_33·b_3_11 + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_13·b_3_10
       + b_1_13·b_3_5 + a_1_2·b_1_32·b_3_6 + a_3_72 + c_4_21·b_1_32 + c_4_21·b_1_12
       + c_4_20·b_1_32 + c_4_19·b_1_32 + c_4_21·a_1_22
  39. b_3_8·b_3_9 + b_3_82 + b_3_6·b_3_11 + b_3_62 + b_3_5·b_3_9 + b_3_5·b_3_8 + b_3_5·b_3_6
       + b_1_3·b_5_31 + b_1_33·b_3_11 + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_13·b_3_5
       + a_3_7·b_3_8 + a_3_7·b_3_6 + a_1_2·b_1_32·b_3_8 + c_4_21·b_1_32 + c_4_19·a_1_22
  40. b_3_10·b_3_11 + b_3_102 + b_3_82 + b_3_5·b_3_10 + b_3_5·b_3_8 + b_3_5·b_3_6 + b_3_52
       + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_1·b_5_31 + b_1_13·b_3_10 + b_1_13·b_3_5
       + a_3_7·b_3_10 + a_3_7·b_3_9 + a_3_7·b_3_6 + a_3_7·b_3_5 + a_1_2·b_1_32·b_3_11
       + a_1_2·b_1_32·b_3_8 + a_1_2·b_1_32·b_3_6 + c_4_21·b_1_12 + c_4_21·a_1_2·b_1_3
       + c_4_21·a_1_0·b_1_1 + c_4_20·a_1_2·b_1_3 + c_4_19·a_1_2·b_1_3 + c_4_19·a_1_22
  41. b_3_112 + b_3_10·b_3_11 + b_3_102 + b_3_92 + b_3_5·b_3_9 + b_3_5·b_3_6 + b_3_52
       + b_1_33·b_3_11 + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_13·b_3_10 + b_1_13·b_3_5
       + a_3_7·b_3_10 + a_3_7·b_3_9 + a_3_7·b_3_6 + a_1_2·b_1_32·b_3_11 + a_1_2·b_1_32·b_3_6
       + a_1_0·b_5_31 + a_3_72 + c_4_21·b_1_32 + c_4_21·b_1_12 + c_4_20·b_1_32
       + c_4_19·b_1_32 + c_4_21·a_1_2·b_1_3 + c_4_20·a_1_2·b_1_3 + c_4_19·a_1_2·b_1_3
       + c_4_19·a_1_22
  42. b_3_10·b_3_11 + b_3_102 + b_3_92 + b_3_8·b_3_9 + a_3_7·b_3_11 + a_3_7·b_3_6
       + a_1_2·b_5_31 + a_1_2·b_1_32·b_3_11 + a_3_72 + c_4_21·a_1_2·b_1_3
  43. b_3_10·b_3_11 + b_3_102 + b_3_8·b_3_11 + b_3_8·b_3_9 + b_3_6·b_3_8 + b_3_62
       + b_3_5·b_3_10 + b_3_5·b_3_8 + b_3_52 + b_1_3·b_5_32 + b_1_33·b_3_11 + b_1_33·b_3_8
       + a_3_7·b_3_11 + a_3_7·b_3_10 + a_3_7·b_3_9 + a_3_7·b_3_6 + a_3_7·b_3_5
       + a_1_2·b_1_32·b_3_11 + a_1_2·b_1_32·b_3_6 + c_4_21·b_1_32 + c_4_21·a_1_2·b_1_3
       + c_4_21·a_1_0·b_1_1 + c_4_20·a_1_2·b_1_3 + c_4_19·a_1_22
  44. b_3_10·b_3_11 + b_3_102 + b_3_92 + b_3_8·b_3_10 + b_3_62 + b_3_5·b_3_10 + b_3_5·b_3_9
       + b_1_33·b_3_8 + b_1_1·b_5_32 + b_1_13·b_3_8 + a_3_7·b_3_10 + a_3_7·b_3_6 + a_3_7·b_3_5
       + a_1_2·b_1_32·b_3_6 + c_4_21·b_1_32 + c_4_21·b_1_12 + c_4_20·b_1_32
       + c_4_21·a_1_0·b_1_1 + c_4_19·a_1_2·b_1_3 + c_4_19·a_1_22
  45. b_3_112 + b_3_102 + b_3_92 + b_3_8·b_3_9 + b_3_82 + b_3_5·b_3_9 + b_3_5·b_3_6
       + b_3_52 + b_1_33·b_3_11 + b_1_33·b_3_8 + b_1_33·b_3_6 + b_1_13·b_3_10 + a_3_7·b_3_11
       + a_3_7·b_3_8 + a_3_7·b_3_6 + a_1_2·b_1_32·b_3_11 + a_1_2·b_1_32·b_3_8 + a_1_0·b_5_32
       + c_4_21·b_1_32 + c_4_20·b_1_32 + c_4_19·b_1_32 + c_4_21·a_1_2·b_1_3
       + c_4_21·a_1_0·b_1_1 + c_4_20·a_1_2·b_1_3 + c_4_19·a_1_2·b_1_3 + c_4_19·a_1_22
  46. b_3_10·b_3_11 + b_3_8·b_3_9 + b_3_82 + b_3_5·b_3_6 + b_3_52 + b_1_13·b_3_5
       + a_3_7·b_3_11 + a_3_7·b_3_9 + a_1_2·b_5_32 + a_1_2·b_1_32·b_3_11 + a_1_2·b_1_32·b_3_8
       + c_4_21·b_1_12 + c_4_21·a_1_2·b_1_3
  47. a_1_22·b_5_31 + a_1_0·a_1_2·b_5_32 + a_1_0·a_1_2·b_5_31 + a_1_02·b_5_31
       + c_4_20·a_1_02·a_1_2 + c_4_19·a_1_0·a_1_22 + c_4_19·a_1_02·a_1_2
  48. b_3_6·b_5_31 + b_1_32·b_3_6·b_3_8 + b_1_13·b_5_31 + b_1_15·b_3_8
       + a_1_2·b_1_3·b_3_6·b_3_8 + a_1_2·b_1_34·b_3_11 + a_1_2·b_1_34·b_3_6
       + c_4_21·b_1_3·b_3_11 + c_4_21·b_1_1·b_3_8 + c_4_20·b_1_3·b_3_11 + c_4_20·b_1_3·b_3_6
       + c_4_20·b_1_1·b_3_8 + c_4_19·b_1_1·b_3_5 + c_4_19·b_1_14 + c_4_21·a_1_2·b_3_11
       + c_4_21·a_1_2·b_3_8 + c_4_21·a_1_0·b_3_10 + c_4_21·a_1_0·b_3_6 + c_4_20·a_1_2·b_3_11
       + c_4_20·a_1_2·b_3_8 + c_4_20·a_1_0·b_3_10 + c_4_20·a_1_0·b_3_6 + c_4_19·a_1_2·b_1_33
       + c_4_19·a_1_0·b_3_6 + c_4_19·a_1_0·b_3_5 + c_4_21·a_1_0·a_3_7 + c_4_20·a_1_0·a_3_7
  49. b_3_11·b_5_32 + b_3_10·b_5_31 + b_3_8·b_5_31 + b_1_35·b_3_11 + b_1_35·b_3_8
       + b_1_35·b_3_6 + b_1_12·b_3_5·b_3_8 + b_1_13·b_5_31 + b_1_15·b_3_10 + b_1_15·b_3_8
       + b_1_15·b_3_5 + a_1_2·b_1_3·b_3_6·b_3_8 + a_1_2·b_1_34·b_3_11 + c_4_21·b_1_3·b_3_8
       + c_4_21·b_1_34 + c_4_21·b_1_1·b_3_10 + c_4_21·b_1_1·b_3_8 + c_4_21·b_1_1·b_3_5
       + c_4_21·b_1_14 + c_4_20·b_1_3·b_3_11 + c_4_20·b_1_34 + c_4_20·b_1_1·b_3_5
       + c_4_19·b_1_3·b_3_8 + c_4_19·b_1_34 + c_4_19·b_1_1·b_3_10 + c_4_19·b_1_1·b_3_8
       + c_4_19·b_1_1·b_3_5 + c_4_19·b_1_14 + c_4_21·a_1_2·b_3_11 + c_4_21·a_1_2·b_3_8
       + c_4_21·a_1_0·b_3_10 + c_4_21·a_1_0·b_3_9 + c_4_21·a_1_0·b_3_8 + c_4_21·a_1_0·b_3_5
       + c_4_20·a_1_2·b_3_6 + c_4_20·a_1_0·b_3_10 + c_4_20·a_1_0·b_3_9 + c_4_20·a_1_0·b_3_8
       + c_4_19·a_1_2·b_3_8 + c_4_19·a_1_2·b_1_33 + c_4_19·a_1_0·b_3_10 + c_4_19·a_1_0·b_3_9
       + c_4_19·a_1_0·b_3_5 + c_4_21·a_1_2·a_3_7 + c_4_20·a_1_2·a_3_7 + c_4_20·a_1_0·a_3_7
       + c_4_19·a_1_2·a_3_7
  50. b_3_11·b_5_31 + b_3_9·b_5_31 + b_3_8·b_5_31 + b_1_32·b_3_6·b_3_8 + b_1_33·b_5_32
       + b_1_33·b_5_31 + b_1_35·b_3_11 + b_1_35·b_3_8 + b_1_13·b_5_31 + b_1_15·b_3_10
       + a_3_7·b_5_31 + a_1_2·b_1_3·b_3_6·b_3_8 + c_4_21·b_1_3·b_3_6 + c_4_21·b_1_34
       + c_4_21·b_1_14 + c_4_20·b_1_3·b_3_11 + c_4_20·b_1_3·b_3_6 + c_4_20·b_1_34
       + c_4_20·b_1_1·b_3_8 + c_4_20·b_1_1·b_3_5 + c_4_20·b_1_14 + c_4_19·b_1_3·b_3_6
       + c_4_19·b_1_34 + c_4_19·b_1_1·b_3_10 + c_4_19·b_1_1·b_3_8 + c_4_19·b_1_1·b_3_5
       + c_4_21·a_1_2·b_3_11 + c_4_21·a_1_2·b_3_6 + c_4_21·a_1_2·b_1_33
       + c_4_21·a_1_0·b_3_10 + c_4_21·a_1_0·b_3_9 + c_4_21·a_1_0·b_3_6 + c_4_20·a_1_2·b_3_11
       + c_4_20·a_1_2·b_3_8 + c_4_20·a_1_2·b_1_33 + c_4_20·a_1_0·b_3_10 + c_4_19·a_1_2·b_3_6
       + c_4_19·a_1_2·b_1_33 + c_4_19·a_1_0·b_3_9 + c_4_19·a_1_0·b_3_6 + c_4_19·a_1_0·b_3_5
       + c_4_20·a_1_0·a_3_7 + c_4_19·a_1_2·a_3_7
  51. a_3_7·b_5_31 + a_1_2·b_1_32·b_5_32 + a_1_2·b_1_32·b_5_31 + a_1_2·b_1_34·b_3_11
       + a_1_2·b_1_34·b_3_8 + c_4_21·a_1_2·b_3_11 + c_4_21·a_1_2·b_3_6
       + c_4_21·a_1_2·b_1_33 + c_4_21·a_1_0·b_3_9 + c_4_21·a_1_0·b_3_6
       + c_4_20·a_1_2·b_1_33 + c_4_20·a_1_0·b_3_5 + c_4_19·a_1_2·b_3_6
       + c_4_19·a_1_2·b_1_33 + c_4_19·a_1_0·b_3_10 + c_4_19·a_1_0·b_3_5 + c_4_21·a_1_2·a_3_7
  52. b_3_10·b_5_31 + b_3_9·b_5_31 + b_3_8·b_5_31 + b_3_5·b_5_31 + b_1_13·b_5_32
       + b_1_13·b_5_31 + c_4_21·b_1_1·b_3_10 + c_4_21·b_1_1·b_3_8 + c_4_21·b_1_1·b_3_5
       + c_4_20·b_1_1·b_3_5 + c_4_19·b_1_1·b_3_10 + c_4_19·b_1_1·b_3_8 + c_4_19·b_1_1·b_3_5
       + c_4_21·a_1_0·b_3_8 + c_4_21·a_1_0·b_3_5 + c_4_19·a_1_0·b_3_6 + c_4_19·a_1_0·b_3_5
       + c_4_21·a_1_2·a_3_7
  53. b_3_10·b_5_32 + b_3_10·b_5_31 + b_3_9·b_5_31 + b_3_8·b_5_31 + b_1_12·b_3_5·b_3_8
       + b_1_13·b_5_31 + a_3_7·b_5_31 + a_1_2·b_1_32·b_5_31 + a_1_2·b_1_34·b_3_11
       + a_1_2·b_1_34·b_3_8 + a_1_2·b_1_34·b_3_6 + c_4_21·b_1_1·b_3_10 + c_4_21·b_1_1·b_3_5
       + c_4_20·b_1_1·b_3_10 + c_4_20·b_1_1·b_3_5 + c_4_20·b_1_14 + c_4_19·b_1_1·b_3_10
       + c_4_19·b_1_1·b_3_5 + c_4_21·a_1_2·b_3_6 + c_4_21·a_1_2·b_1_33 + c_4_21·a_1_0·b_3_9
       + c_4_21·a_1_0·b_3_8 + c_4_21·a_1_0·b_3_6 + c_4_21·a_1_0·b_3_5 + c_4_20·a_1_2·b_3_8
       + c_4_20·a_1_0·b_3_8 + c_4_20·a_1_0·b_3_6 + c_4_19·a_1_2·b_3_8 + c_4_19·a_1_2·b_3_6
       + c_4_19·a_1_0·b_3_5 + c_4_21·a_1_2·a_3_7 + c_4_20·a_1_2·a_3_7 + c_4_20·a_1_0·a_3_7
  54. b_3_5·b_5_31 + b_1_12·b_3_5·b_3_8 + b_1_13·b_5_31 + b_1_15·b_3_8
       + a_1_2·b_1_3·b_3_6·b_3_8 + a_1_02·a_1_2·b_5_32 + c_4_21·b_1_1·b_3_10
       + c_4_21·b_1_1·b_3_8 + c_4_20·b_1_1·b_3_10 + c_4_20·b_1_1·b_3_8 + c_4_20·b_1_1·b_3_5
       + c_4_19·b_1_1·b_3_5 + c_4_19·b_1_14 + c_4_21·a_1_2·b_3_11 + c_4_21·a_1_0·b_3_10
       + c_4_20·a_1_2·b_3_11 + c_4_20·a_1_2·b_3_6 + c_4_20·a_1_0·b_3_10 + c_4_20·a_1_0·b_3_6
       + c_4_19·a_1_0·b_3_5 + c_4_21·a_1_0·a_3_7 + c_4_20·a_1_0·a_3_7
  55. b_3_5·b_5_31 + b_1_12·b_3_5·b_3_8 + b_1_13·b_5_31 + b_1_15·b_3_8 + a_3_7·b_5_32
       + a_3_7·b_5_31 + a_1_2·b_1_3·b_3_6·b_3_8 + c_4_21·b_1_1·b_3_10 + c_4_21·b_1_1·b_3_8
       + c_4_20·b_1_1·b_3_10 + c_4_20·b_1_1·b_3_8 + c_4_20·b_1_1·b_3_5 + c_4_19·b_1_1·b_3_5
       + c_4_19·b_1_14 + c_4_21·a_1_2·b_3_6 + c_4_21·a_1_0·b_3_9 + c_4_21·a_1_0·b_3_6
       + c_4_20·a_1_0·b_3_8 + c_4_19·a_1_2·b_3_8 + c_4_19·a_1_2·b_3_6 + c_4_19·a_1_0·b_3_10
       + c_4_19·a_1_0·b_3_8 + c_4_19·a_1_0·b_3_6 + c_4_19·a_1_0·b_3_5 + c_4_21·a_1_0·a_3_7
       + c_4_19·a_1_0·a_3_7
  56. b_3_9·b_5_31 + b_3_8·b_5_31 + b_3_5·b_5_32 + b_3_5·b_5_31 + b_1_12·b_3_5·b_3_8
       + b_1_15·b_3_8 + b_1_15·b_3_5 + a_1_2·b_1_34·b_3_11 + a_1_2·b_1_34·b_3_8
       + a_1_2·b_1_34·b_3_6 + c_4_21·b_1_1·b_3_8 + c_4_21·b_1_14 + c_4_20·b_1_14
       + c_4_19·b_1_1·b_3_8 + c_4_19·b_1_14 + c_4_21·a_1_2·b_3_11 + c_4_21·a_1_2·b_3_8
       + c_4_21·a_1_2·b_3_6 + c_4_21·a_1_2·b_1_33 + c_4_21·a_1_0·b_3_6 + c_4_21·a_1_0·b_3_5
       + c_4_20·a_1_2·b_3_6 + c_4_20·a_1_2·b_1_33 + c_4_19·a_1_2·b_3_6
       + c_4_19·a_1_2·b_1_33 + c_4_19·a_1_0·b_3_10 + c_4_21·a_1_2·a_3_7 + c_4_21·a_1_0·a_3_7
  57. b_3_11·b_5_31 + b_3_10·b_5_31 + b_3_8·b_5_31 + b_3_6·b_5_32 + b_3_5·b_5_31
       + b_1_32·b_3_6·b_3_8 + b_1_35·b_3_11 + b_1_35·b_3_8 + b_1_35·b_3_6 + b_1_15·b_3_10
       + a_1_2·b_1_3·b_3_6·b_3_8 + a_1_2·b_1_34·b_3_8 + a_1_2·b_1_34·b_3_6
       + c_4_21·b_1_3·b_3_8 + c_4_21·b_1_3·b_3_6 + c_4_21·b_1_34 + c_4_21·b_1_1·b_3_5
       + c_4_20·b_1_3·b_3_11 + c_4_20·b_1_34 + c_4_20·b_1_1·b_3_10 + c_4_19·b_1_3·b_3_6
       + c_4_19·b_1_34 + c_4_19·b_1_1·b_3_8 + c_4_19·b_1_1·b_3_5 + c_4_21·a_1_2·b_3_11
       + c_4_21·a_1_2·b_1_33 + c_4_21·a_1_0·b_3_8 + c_4_20·a_1_2·b_3_8
       + c_4_20·a_1_2·b_1_33 + c_4_19·a_1_0·b_3_10 + c_4_19·a_1_0·b_3_9 + c_4_19·a_1_0·b_3_8
       + c_4_19·a_1_0·b_3_6 + c_4_21·a_1_0·a_3_7 + c_4_19·a_1_2·a_3_7
  58. b_3_10·b_5_31 + b_3_8·b_5_32 + b_3_5·b_5_31 + b_1_32·b_3_6·b_3_8 + b_1_33·b_5_31
       + b_1_35·b_3_11 + b_1_35·b_3_8 + b_1_35·b_3_6 + b_1_12·b_3_5·b_3_8 + b_1_15·b_3_10
       + a_1_2·b_1_34·b_3_11 + a_1_2·b_1_34·b_3_8 + a_1_2·b_1_34·b_3_6 + c_4_21·b_1_34
       + c_4_20·b_1_3·b_3_8 + c_4_20·b_1_1·b_3_10 + c_4_19·b_1_14 + c_4_21·a_1_2·b_3_6
       + c_4_21·a_1_0·b_3_10 + c_4_21·a_1_0·b_3_5 + c_4_20·a_1_2·b_3_11 + c_4_20·a_1_2·b_3_8
       + c_4_20·a_1_2·b_3_6 + c_4_20·a_1_0·b_3_10 + c_4_20·a_1_0·b_3_8 + c_4_20·a_1_0·b_3_6
       + c_4_20·a_1_0·b_3_5 + c_4_19·a_1_2·b_3_6 + c_4_19·a_1_2·b_1_33 + c_4_19·a_1_0·b_3_10
       + c_4_19·a_1_0·b_3_8 + c_4_19·a_1_0·b_3_6 + c_4_19·a_1_0·b_3_5 + c_4_20·a_1_0·a_3_7
  59. b_3_9·b_5_32 + b_1_32·b_3_6·b_3_8 + b_1_33·b_5_31 + b_1_35·b_3_11 + b_1_35·b_3_8
       + b_1_35·b_3_6 + b_1_12·b_3_5·b_3_8 + b_1_13·b_5_31 + b_1_15·b_3_10 + b_1_15·b_3_8
       + b_1_15·b_3_5 + a_3_7·b_5_31 + a_1_2·b_1_32·b_5_31 + a_1_2·b_1_34·b_3_11
       + a_1_2·b_1_34·b_3_8 + a_1_2·b_1_34·b_3_6 + c_4_21·b_1_34 + c_4_21·b_1_14
       + c_4_20·b_1_3·b_3_8 + c_4_20·b_1_1·b_3_8 + c_4_21·a_1_2·b_3_11 + c_4_21·a_1_2·b_3_8
       + c_4_21·a_1_2·b_3_6 + c_4_21·a_1_0·b_3_10 + c_4_21·a_1_0·b_3_8 + c_4_21·a_1_0·b_3_5
       + c_4_20·a_1_2·b_3_11 + c_4_20·a_1_2·b_1_33 + c_4_20·a_1_0·b_3_10
       + c_4_20·a_1_0·b_3_5 + c_4_19·a_1_2·b_3_8 + c_4_19·a_1_2·b_3_6 + c_4_19·a_1_0·b_3_9
       + c_4_19·a_1_0·b_3_8 + c_4_19·a_1_0·b_3_6 + c_4_21·a_1_0·a_3_7 + c_4_20·a_1_0·a_3_7
       + c_4_19·a_1_0·a_3_7
  60. b_5_312 + b_1_35·b_5_31 + b_1_37·b_3_6 + a_1_2·b_1_34·b_5_31 + a_1_2·b_1_36·b_3_11
       + a_1_2·b_1_36·b_3_8 + c_4_21·b_1_33·b_3_11 + c_4_21·b_1_33·b_3_6 + c_4_21·b_1_36
       + c_4_21·b_1_13·b_3_8 + c_4_20·b_1_33·b_3_11 + c_4_20·b_1_33·b_3_6
       + c_4_20·b_1_13·b_3_10 + c_4_20·b_1_16 + c_4_19·b_1_33·b_3_6 + c_4_19·b_1_36
       + c_4_19·b_1_13·b_3_5 + c_4_19·b_1_16 + c_4_21·a_1_2·b_1_32·b_3_11
       + c_4_21·a_1_2·b_1_32·b_3_8 + c_4_21·a_1_2·b_1_35 + c_4_20·a_1_2·b_1_32·b_3_11
       + c_4_20·a_1_2·b_1_32·b_3_8 + c_4_19·a_1_2·b_1_32·b_3_11 + c_4_19·a_1_2·b_1_35
       + c_4_212·b_1_32 + c_4_20·c_4_21·b_1_12 + c_4_202·b_1_12
       + c_4_19·c_4_21·b_1_32 + c_4_19·c_4_21·b_1_12 + c_4_19·c_4_20·b_1_32
       + c_4_19·c_4_20·b_1_12 + c_4_192·b_1_12 + c_4_20·c_4_21·a_1_22
       + c_4_20·c_4_21·a_1_02 + c_4_202·a_1_22 + c_4_202·a_1_02
       + c_4_19·c_4_21·a_1_22 + c_4_19·c_4_20·a_1_22 + c_4_192·a_1_02
  61. b_5_322 + b_1_35·b_5_32 + b_1_35·b_5_31 + b_1_37·b_3_11 + b_1_37·b_3_8
       + b_1_37·b_3_6 + b_1_17·b_3_10 + b_1_17·b_3_5 + a_1_2·b_1_34·b_5_32
       + a_1_2·b_1_36·b_3_11 + a_1_2·b_1_36·b_3_6 + c_4_20·b_1_13·b_3_10
       + c_4_20·b_1_13·b_3_5 + c_4_20·b_1_16 + c_4_19·b_1_33·b_3_8 + c_4_19·b_1_33·b_3_6
       + c_4_19·b_1_36 + c_4_19·b_1_13·b_3_10 + c_4_21·a_1_2·b_1_35
       + c_4_19·a_1_2·b_1_32·b_3_8 + c_4_19·a_1_2·b_1_32·b_3_6 + c_4_212·b_1_12
       + c_4_202·b_1_32 + c_4_202·b_1_12 + c_4_19·c_4_20·b_1_12 + c_4_192·b_1_12
       + c_4_212·a_1_22 + c_4_212·a_1_02 + c_4_202·a_1_22 + c_4_202·a_1_02
  62. b_5_322 + b_5_31·b_5_32 + b_1_32·b_3_6·b_5_32 + b_1_34·b_3_6·b_3_8
       + b_1_12·b_3_5·b_5_32 + b_1_14·b_3_5·b_3_8 + a_1_2·b_1_3·b_3_6·b_5_32
       + a_1_2·b_1_34·b_5_31 + a_1_2·b_1_36·b_3_8 + c_4_21·b_1_3·b_5_32
       + c_4_21·b_1_33·b_3_11 + c_4_21·b_1_33·b_3_6 + c_4_21·b_1_1·b_5_31
       + c_4_21·b_1_13·b_3_10 + c_4_21·b_1_13·b_3_5 + c_4_20·b_3_5·b_3_9
       + c_4_20·b_3_5·b_3_8 + c_4_20·b_1_3·b_5_31 + c_4_20·b_1_33·b_3_11
       + c_4_20·b_1_1·b_5_31 + c_4_20·b_1_13·b_3_10 + c_4_20·b_1_13·b_3_8
       + c_4_20·b_1_13·b_3_5 + c_4_19·b_3_6·b_3_8 + c_4_19·b_3_5·b_3_9 + c_4_19·b_3_5·b_3_8
       + c_4_19·b_1_1·b_5_32 + c_4_19·b_1_1·b_5_31 + c_4_21·a_1_2·b_5_31
       + c_4_21·a_1_2·b_1_32·b_3_8 + c_4_21·a_1_2·b_1_35 + c_4_21·a_1_0·b_5_31
       + c_4_20·a_1_2·b_5_31 + c_4_20·a_1_2·b_1_32·b_3_8 + c_4_20·a_1_2·b_1_32·b_3_6
       + c_4_19·a_1_2·b_1_35 + c_4_19·a_1_0·b_5_32 + c_4_20·c_4_21·b_1_32
       + c_4_202·b_1_32 + c_4_19·c_4_20·b_1_12 + c_4_212·a_1_2·b_1_3
       + c_4_212·a_1_0·b_1_1 + c_4_20·c_4_21·a_1_2·b_1_3 + c_4_20·c_4_21·a_1_0·b_1_1
       + c_4_19·c_4_21·a_1_2·b_1_3 + c_4_19·c_4_21·a_1_0·b_1_1 + c_4_19·c_4_20·a_1_2·b_1_3
       + c_4_192·a_1_0·b_1_1 + c_4_212·a_1_02 + c_4_20·c_4_21·a_1_22
       + c_4_20·c_4_21·a_1_0·a_1_2 + c_4_20·c_4_21·a_1_02 + c_4_19·c_4_21·a_1_0·a_1_2
       + c_4_19·c_4_20·a_1_22 + c_4_19·c_4_20·a_1_02


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 10.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_4_19, a Duflot regular element of degree 4
    2. c_4_20, a Duflot regular element of degree 4
    3. c_4_21, a Duflot regular element of degree 4
    4. b_1_32, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 8, 10].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_20, an element of degree 1
  3. b_1_10, an element of degree 1
  4. b_1_30, an element of degree 1
  5. a_3_70, an element of degree 3
  6. b_3_50, an element of degree 3
  7. b_3_60, an element of degree 3
  8. b_3_80, an element of degree 3
  9. b_3_90, an element of degree 3
  10. b_3_100, an element of degree 3
  11. b_3_110, an element of degree 3
  12. c_4_19c_1_24 + c_1_14 + c_1_04, an element of degree 4
  13. c_4_20c_1_04, an element of degree 4
  14. c_4_21c_1_24 + c_1_04, an element of degree 4
  15. b_5_310, an element of degree 5
  16. b_5_320, an element of degree 5

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. a_1_20, an element of degree 1
  3. b_1_10, an element of degree 1
  4. b_1_3c_1_3, an element of degree 1
  5. a_3_70, an element of degree 3
  6. b_3_50, an element of degree 3
  7. b_3_6c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  8. b_3_8c_1_2·c_1_32, an element of degree 3
  9. b_3_9c_1_2·c_1_32, an element of degree 3
  10. b_3_100, an element of degree 3
  11. b_3_11c_1_2·c_1_32 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  12. c_4_19c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_33 + c_1_14 + c_1_0·c_1_33 + c_1_04, an element of degree 4
  13. c_4_20c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  14. c_4_21c_1_22·c_1_32 + c_1_24 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  15. b_5_31c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_34 + c_1_1·c_1_2·c_1_33
       + c_1_1·c_1_22·c_1_32 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32
       + c_1_12·c_1_22·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33
       + c_1_0·c_1_22·c_1_32 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3
       + c_1_04·c_1_3, an element of degree 5
  16. b_5_32c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_1·c_1_34 + c_1_1·c_1_2·c_1_33
       + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33
       + c_1_02·c_1_2·c_1_32 + c_1_04·c_1_3, an element of degree 5

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. a_1_20, an element of degree 1
  3. b_1_1c_1_3, an element of degree 1
  4. b_1_3c_1_3, an element of degree 1
  5. a_3_70, an element of degree 3
  6. b_3_5c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  7. b_3_6c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  8. b_3_8c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  9. b_3_90, an element of degree 3
  10. b_3_10c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  11. b_3_11c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  12. c_4_19c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_33 + c_1_14 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  13. c_4_20c_1_0·c_1_33 + c_1_04, an element of degree 4
  14. c_4_21c_1_2·c_1_33 + c_1_24 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  15. b_5_31c_1_12·c_1_33 + c_1_14·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33
       + c_1_0·c_1_22·c_1_32 + c_1_02·c_1_33 + c_1_02·c_1_2·c_1_32
       + c_1_02·c_1_22·c_1_3, an element of degree 5
  16. b_5_32c_1_12·c_1_33 + c_1_14·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33
       + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_33 + c_1_0·c_1_12·c_1_32
       + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_1·c_1_32
       + c_1_02·c_1_12·c_1_3 + c_1_04·c_1_3, an element of degree 5


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009