Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1504 of order 128
General information on the group
- The group has 4 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 3.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 2) · (t8 + 1/2·t7 + t5 − 3/2·t4 − t3 − 1/2·t2 − t − 1/2) |
| (t + 1)2 · (t − 1)4 · (t2 + 1)3 |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_3, a nilpotent element of degree 1
- b_1_2, an element of degree 1
- a_3_6, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- a_3_0, a nilpotent element of degree 3
- b_3_7, an element of degree 3
- b_3_8, an element of degree 3
- b_4_14, an element of degree 4
- c_4_15, a Duflot regular element of degree 4
- c_4_16, a Duflot regular element of degree 4
- c_4_17, a Duflot regular element of degree 4
- b_5_27, an element of degree 5
- b_6_32, an element of degree 6
- b_6_34, an element of degree 6
Ring relations
There are 69 minimal relations of maximal degree 12:
- a_1_1·b_1_2 + a_1_12 + a_1_02
- a_1_0·b_1_2 + a_1_32 + a_1_0·a_1_3 + a_1_0·a_1_1 + a_1_02
- a_1_3·b_1_2 + a_1_32 + a_1_1·a_1_3 + a_1_12 + a_1_0·a_1_1 + a_1_02
- a_1_0·a_1_12 + a_1_02·a_1_1 + a_1_03
- a_1_12·a_1_3 + a_1_0·a_1_1·a_1_3 + a_1_02·a_1_3
- a_1_12·a_1_3 + a_1_0·a_1_32 + a_1_0·a_1_1·a_1_3 + a_1_0·a_1_12
- b_1_2·a_3_6 + a_1_3·a_3_5 + a_1_1·a_3_0 + a_1_0·a_3_0
- a_1_1·b_3_7 + a_1_3·a_3_6 + a_1_0·a_3_5 + a_1_0·a_3_6
- b_1_2·a_3_6 + a_1_0·b_3_7 + a_1_3·a_3_0 + a_1_3·a_3_5 + a_1_3·a_3_6 + a_1_1·a_3_0
+ a_1_0·a_3_6
- b_1_2·a_3_0 + a_1_3·b_3_7 + a_1_3·a_3_5 + a_1_1·a_3_6 + a_1_0·a_3_6
- a_1_1·b_3_8 + a_1_3·a_3_6 + a_1_1·a_3_5 + a_1_1·a_3_6 + a_1_0·a_3_5
- a_1_0·b_3_8 + a_1_3·a_3_0 + a_1_3·a_3_5 + a_1_3·a_3_6 + a_1_1·a_3_0 + a_1_1·a_3_6
+ a_1_0·a_3_5
- b_1_2·a_3_0 + b_1_2·a_3_5 + a_1_3·b_3_8 + a_1_3·a_3_0 + a_1_3·a_3_5 + a_1_1·a_3_0
+ a_1_1·a_3_5
- a_1_12·a_3_0 + a_1_12·a_3_6 + a_1_0·a_1_1·a_3_0 + a_1_0·a_1_1·a_3_6 + a_1_02·a_3_0
+ a_1_02·a_3_6
- a_1_12·a_3_0 + a_1_0·a_1_3·a_3_0 + a_1_0·a_1_1·a_3_0 + a_1_02·a_3_5
- a_1_32·a_3_0 + a_1_12·a_3_0 + a_1_12·a_3_5 + a_1_0·a_1_3·a_3_5 + a_1_0·a_1_1·a_3_0
+ a_1_0·a_1_1·a_3_5
- b_4_14·a_1_1 + a_1_1·a_1_3·a_3_6 + a_1_12·a_3_5 + a_1_0·a_1_1·a_3_0 + a_1_0·a_1_1·a_3_5
- b_4_14·a_1_0 + a_1_1·a_1_3·a_3_6 + a_1_12·a_3_6 + a_1_0·a_1_3·a_3_5 + a_1_0·a_1_3·a_3_6
+ a_1_0·a_1_1·a_3_0 + a_1_0·a_1_1·a_3_5 + a_1_02·a_3_5
- b_4_14·a_1_3 + a_1_1·a_1_3·a_3_6 + a_1_0·a_1_3·a_3_5 + a_1_0·a_1_3·a_3_6 + a_1_02·a_3_5
+ a_1_02·a_3_6
- a_3_62 + a_1_02·a_1_3·a_3_6 + a_1_02·a_1_1·a_3_0 + a_1_02·a_1_1·a_3_6
+ c_4_16·a_1_12 + c_4_15·a_1_02
- a_3_6·b_3_8 + a_3_6·b_3_7 + a_3_6·a_3_5 + a_3_62 + a_1_02·a_1_1·a_3_6
+ c_4_16·a_1_0·a_1_1 + c_4_15·a_1_32 + c_4_15·a_1_0·a_1_3 + c_4_15·a_1_02
- a_3_5·b_3_8 + a_3_5·b_3_7 + a_3_6·b_3_8 + a_3_52 + a_3_62 + a_1_02·a_1_3·a_3_6
+ c_4_16·a_1_1·a_1_3 + c_4_15·a_1_32 + c_4_15·a_1_12 + c_4_15·a_1_0·a_1_1 + c_4_15·a_1_02
- b_3_72 + b_1_26 + a_3_52 + a_1_02·a_1_1·a_3_6 + c_4_17·b_1_22 + c_4_16·a_1_32
+ c_4_16·a_1_02 + c_4_15·a_1_32 + c_4_15·a_1_02
- a_3_0·b_3_8 + a_3_5·b_3_8 + a_3_6·b_3_7 + a_3_5·a_3_0 + a_3_52 + a_3_6·a_3_5 + a_3_62
+ c_4_17·a_1_12 + c_4_16·a_1_0·a_1_3 + c_4_15·a_1_32 + c_4_15·a_1_12 + c_4_15·a_1_0·a_1_1 + c_4_15·a_1_02
- a_3_0·b_3_8 + a_3_5·b_3_8 + a_3_6·b_3_7 + a_3_5·a_3_0 + a_3_6·a_3_5 + a_3_62
+ a_1_02·a_1_1·a_3_6 + c_4_17·a_1_02 + c_4_16·a_1_0·a_1_3 + c_4_15·a_1_12 + c_4_15·a_1_0·a_1_1
- a_3_0·b_3_7 + a_3_5·b_3_8 + a_3_5·b_3_7 + a_3_6·b_3_7 + a_3_02 + a_3_5·a_3_0 + a_3_62
+ a_1_02·a_1_3·a_3_6 + a_1_02·a_1_1·a_3_6 + c_4_17·a_1_1·a_1_3 + c_4_17·a_1_0·a_1_1 + c_4_16·a_1_0·a_1_3 + c_4_15·a_1_32 + c_4_15·a_1_12 + c_4_15·a_1_0·a_1_3 + c_4_15·a_1_0·a_1_1 + c_4_15·a_1_02
- a_3_0·b_3_7 + a_3_6·b_3_7 + a_3_02 + a_3_52 + a_3_62 + a_1_02·a_1_3·a_3_6
+ a_1_02·a_1_1·a_3_6 + c_4_17·a_1_0·a_1_3 + c_4_17·a_1_0·a_1_1 + c_4_16·a_1_0·a_1_3 + c_4_15·a_1_32 + c_4_15·a_1_02
- a_3_02 + a_3_62 + a_1_02·a_1_1·a_3_0 + a_1_02·a_1_1·a_3_6 + c_4_17·a_1_32
+ c_4_16·a_1_02
- b_3_82 + b_3_72 + b_1_23·b_3_8 + b_1_23·b_3_7 + b_4_14·b_1_22 + a_3_52 + a_3_62
+ c_4_15·b_1_22 + c_4_16·a_1_02 + c_4_15·a_1_12
- b_3_82 + b_3_7·b_3_8 + b_1_2·b_5_27 + b_1_23·b_3_8 + a_3_0·b_3_7 + a_3_5·b_3_8
+ a_3_6·b_3_8 + a_3_6·b_3_7 + a_3_5·a_3_0 + a_3_52 + a_3_62 + a_1_02·a_1_1·a_3_6 + c_4_15·b_1_22 + c_4_16·a_1_32 + c_4_16·a_1_0·a_1_3 + c_4_16·a_1_02 + c_4_15·a_1_12 + c_4_15·a_1_0·a_1_3 + c_4_15·a_1_0·a_1_1 + c_4_15·a_1_02
- a_3_0·b_3_8 + a_3_0·b_3_7 + a_3_5·b_3_7 + a_3_6·b_3_8 + a_3_6·b_3_7 + a_1_1·b_5_27
+ a_3_02 + a_3_52 + a_3_6·a_3_5 + a_1_02·a_1_3·a_3_6 + a_1_02·a_1_1·a_3_6 + c_4_17·a_1_0·a_1_1 + c_4_15·a_1_32 + c_4_15·a_1_12 + c_4_15·a_1_0·a_1_3 + c_4_15·a_1_02
- a_3_0·b_3_7 + a_3_5·b_3_8 + a_3_5·b_3_7 + a_3_6·b_3_8 + a_1_0·b_5_27 + a_3_02
+ a_1_02·a_1_3·a_3_6 + a_1_02·a_1_1·a_3_0 + c_4_16·a_1_0·a_1_3 + c_4_16·a_1_02 + c_4_15·a_1_12
- a_3_0·b_3_8 + a_3_6·b_3_8 + a_3_6·b_3_7 + a_1_3·b_5_27 + a_3_52 + a_1_02·a_1_3·a_3_6
+ a_1_02·a_1_1·a_3_0 + c_4_17·a_1_0·a_1_1 + c_4_15·a_1_32 + c_4_15·a_1_1·a_1_3 + c_4_15·a_1_02
- b_4_14·a_3_0 + a_1_3·a_3_5·a_3_0 + a_1_1·a_3_6·a_3_5 + a_1_0·a_3_6·a_3_5
+ c_4_17·a_1_02·a_1_1 + c_4_17·a_1_03 + c_4_16·a_1_02·a_1_3 + c_4_16·a_1_02·a_1_1 + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_03
- b_4_14·a_3_6 + a_1_1·a_3_6·a_3_5 + a_1_0·a_3_6·a_3_0 + a_1_0·a_3_6·a_3_5
+ c_4_16·a_1_0·a_1_1·a_1_3 + c_4_16·a_1_02·a_1_3 + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_1 + c_4_15·a_1_03
- b_4_14·a_3_5 + a_1_3·a_3_5·a_3_0 + a_1_1·a_3_6·a_3_0 + a_1_0·a_3_5·a_3_0
+ c_4_17·a_1_02·a_1_1 + c_4_16·a_1_0·a_1_1·a_1_3 + c_4_16·a_1_02·a_1_3 + c_4_16·a_1_03 + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_1
- a_1_32·b_5_27 + a_1_3·a_3_5·a_3_0 + a_1_1·a_3_6·a_3_0 + a_1_0·a_3_6·a_3_0
+ c_4_17·a_1_02·a_1_1 + c_4_17·a_1_03 + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_1 + c_4_15·a_1_03
- b_1_22·b_5_27 + b_1_24·b_3_7 + b_6_32·b_1_2 + b_4_14·b_3_8 + b_4_14·b_3_7
+ b_4_14·b_1_23 + a_1_0·a_3_5·a_3_0 + a_1_0·a_3_6·a_3_0 + c_4_17·b_1_23 + c_4_16·b_1_23 + c_4_15·b_1_23 + c_4_17·a_1_0·a_1_1·a_1_3 + c_4_17·a_1_02·a_1_3 + c_4_16·a_1_03 + c_4_15·a_1_02·a_1_1
- b_6_32·a_1_1 + a_1_3·a_3_5·a_3_0 + a_1_1·a_3_6·a_3_0 + a_1_1·a_3_6·a_3_5
+ a_1_0·a_3_6·a_3_0 + c_4_17·a_1_02·a_1_3 + c_4_17·a_1_03 + c_4_16·a_1_0·a_1_1·a_1_3 + c_4_16·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_1
- b_6_32·a_1_0 + a_1_3·a_3_5·a_3_0 + a_1_1·a_3_6·a_3_0 + a_1_1·a_3_6·a_3_5
+ a_1_0·a_3_5·a_3_0 + a_1_0·a_3_6·a_3_0 + a_1_0·a_3_6·a_3_5 + c_4_17·a_1_0·a_1_1·a_1_3 + c_4_17·a_1_02·a_1_3 + c_4_16·a_1_02·a_1_3 + c_4_16·a_1_02·a_1_1 + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_03
- b_6_32·a_1_3 + a_1_1·a_3_6·a_3_5 + a_1_0·a_3_5·a_3_0 + a_1_0·a_3_6·a_3_0
+ c_4_17·a_1_0·a_1_1·a_1_3 + c_4_17·a_1_02·a_1_3 + c_4_17·a_1_02·a_1_1 + c_4_16·a_1_02·a_1_1 + c_4_16·a_1_03 + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_3
- b_1_24·b_3_8 + b_1_24·b_3_7 + b_6_34·b_1_2 + b_4_14·b_3_7 + a_1_1·a_3_6·a_3_0
+ a_1_1·a_3_6·a_3_5 + c_4_16·b_1_23 + c_4_15·b_1_23 + c_4_16·a_1_02·a_1_1 + c_4_16·a_1_03 + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_03
- b_6_34·a_1_1 + a_1_1·a_3_6·a_3_0 + a_1_1·a_3_6·a_3_5 + a_1_0·a_3_6·a_3_5
+ c_4_17·a_1_02·a_1_3 + c_4_17·a_1_02·a_1_1 + c_4_17·a_1_03 + c_4_16·a_1_02·a_1_3 + c_4_16·a_1_02·a_1_1 + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_1
- b_6_34·a_1_0 + a_1_3·a_3_5·a_3_0 + a_1_0·a_3_5·a_3_0 + c_4_17·a_1_02·a_1_3
+ c_4_16·a_1_02·a_1_3 + c_4_16·a_1_02·a_1_1 + c_4_16·a_1_03 + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_1
- b_6_34·a_1_3 + a_1_0·a_3_5·a_3_0 + c_4_17·a_1_0·a_1_1·a_1_3 + c_4_17·a_1_02·a_1_1
+ c_4_17·a_1_03 + c_4_16·a_1_02·a_1_3 + c_4_16·a_1_03 + c_4_15·a_1_0·a_1_1·a_1_3
- a_3_0·b_5_27 + a_1_02·a_3_6·a_3_0 + c_4_17·a_1_3·b_3_8 + c_4_17·a_1_3·b_3_7
+ c_4_17·a_1_3·a_3_0 + c_4_17·a_1_3·a_3_5 + c_4_17·a_1_1·a_3_0 + c_4_16·a_1_1·a_3_0 + c_4_16·a_1_1·a_3_5 + c_4_16·a_1_0·a_3_0 + c_4_16·a_1_0·a_3_5 + c_4_15·a_1_3·a_3_0 + c_4_15·a_1_3·a_3_6 + c_4_15·a_1_1·a_3_0 + c_4_15·a_1_0·a_3_0 + c_4_15·a_1_0·a_3_6
- a_3_6·b_5_27 + a_1_0·a_1_1·a_3_6·a_3_0 + a_1_02·a_3_6·a_3_0 + c_4_17·a_1_3·a_3_6
+ c_4_17·a_1_1·a_3_6 + c_4_16·a_1_1·a_3_5 + c_4_16·a_1_1·a_3_6 + c_4_16·a_1_0·a_3_6 + c_4_15·a_1_3·a_3_0 + c_4_15·a_1_3·a_3_6 + c_4_15·a_1_1·a_3_6 + c_4_15·a_1_0·a_3_0 + c_4_15·a_1_0·a_3_6
- a_3_5·b_5_27 + a_1_0·a_1_1·a_3_6·a_3_0 + c_4_15·a_1_3·b_3_7 + c_4_17·a_1_1·a_3_0
+ c_4_17·a_1_1·a_3_5 + c_4_17·a_1_0·a_3_0 + c_4_16·a_1_1·a_3_5 + c_4_16·a_1_0·a_3_5 + c_4_15·a_1_3·a_3_0 + c_4_15·a_1_3·a_3_6 + c_4_15·a_1_1·a_3_5 + c_4_15·a_1_0·a_3_0 + c_4_15·a_1_0·a_3_6
- b_3_7·b_5_27 + b_1_25·b_3_7 + b_1_28 + b_4_14·b_1_2·b_3_7 + b_4_14·b_1_24 + b_4_142
+ c_4_17·b_1_2·b_3_8 + c_4_17·b_1_2·b_3_7 + c_4_17·b_1_24 + c_4_16·b_1_24 + c_4_17·a_1_3·b_3_8 + c_4_17·a_1_3·a_3_0 + c_4_17·a_1_3·a_3_5 + c_4_17·a_1_3·a_3_6 + c_4_17·a_1_1·a_3_5 + c_4_17·a_1_1·a_3_6 + c_4_17·a_1_0·a_3_0 + c_4_17·a_1_0·a_3_5 + c_4_16·a_1_3·a_3_0 + c_4_16·a_1_3·a_3_5 + c_4_16·a_1_0·a_3_0 + c_4_15·a_1_3·a_3_6 + c_4_15·a_1_0·a_3_5 + c_4_15·a_1_0·a_3_6
- b_3_8·b_5_27 + b_1_25·b_3_7 + b_1_28 + b_4_14·b_1_2·b_3_8 + b_4_14·b_1_2·b_3_7
+ b_4_14·b_1_24 + b_4_142 + a_1_02·a_3_6·a_3_0 + c_4_17·b_1_2·b_3_8 + c_4_17·b_1_2·b_3_7 + c_4_17·b_1_24 + c_4_16·b_1_24 + c_4_15·b_1_2·b_3_7 + c_4_17·a_1_3·b_3_7 + c_4_15·a_1_3·b_3_7 + c_4_17·a_1_3·a_3_0 + c_4_17·a_1_3·a_3_6 + c_4_17·a_1_1·a_3_0 + c_4_17·a_1_0·a_3_5 + c_4_17·a_1_0·a_3_6 + c_4_16·a_1_3·a_3_0 + c_4_16·a_1_1·a_3_0 + c_4_15·a_1_1·a_3_5 + c_4_15·a_1_1·a_3_6 + c_4_15·a_1_0·a_3_6
- b_1_25·b_3_7 + b_6_34·b_1_22 + b_4_14·b_1_2·b_3_7 + b_4_14·b_1_24 + b_4_142
+ a_1_0·a_1_1·a_3_6·a_3_0 + a_1_02·a_3_6·a_3_0 + c_4_15·b_1_24
- b_6_32·a_3_0 + c_4_17·a_1_12·a_3_5 + c_4_17·a_1_0·a_1_1·a_3_0 + c_4_17·a_1_02·a_3_0
+ c_4_17·a_1_02·a_3_5 + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_5 + c_4_16·a_1_02·a_3_6 + c_4_15·a_1_0·a_1_3·a_3_0 + c_4_15·a_1_0·a_1_3·a_3_5 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_0 + c_4_15·a_1_0·a_1_1·a_3_6
- b_6_32·a_3_6 + c_4_17·a_1_1·a_1_3·a_3_6 + c_4_17·a_1_0·a_1_3·a_3_0
+ c_4_17·a_1_0·a_1_3·a_3_5 + c_4_17·a_1_0·a_1_3·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_0 + c_4_17·a_1_02·a_3_5 + c_4_16·a_1_1·a_1_3·a_3_6 + c_4_16·a_1_12·a_3_5 + c_4_16·a_1_0·a_1_3·a_3_0 + c_4_16·a_1_0·a_1_3·a_3_5 + c_4_16·a_1_0·a_1_1·a_3_6 + c_4_16·a_1_02·a_3_0 + c_4_16·a_1_02·a_3_5 + c_4_15·a_1_1·a_1_3·a_3_6 + c_4_15·a_1_12·a_3_5 + c_4_15·a_1_0·a_1_3·a_3_5 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_02·a_3_6
- b_6_32·a_3_5 + c_4_17·a_1_12·a_3_5 + c_4_17·a_1_0·a_1_3·a_3_5 + c_4_17·a_1_02·a_3_0
+ c_4_16·a_1_12·a_3_5 + c_4_16·a_1_0·a_1_3·a_3_5 + c_4_16·a_1_0·a_1_1·a_3_0 + c_4_16·a_1_0·a_1_1·a_3_6 + c_4_16·a_1_02·a_3_5 + c_4_16·a_1_02·a_3_6 + c_4_15·a_1_0·a_1_3·a_3_5 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_02·a_3_0 + c_4_15·a_1_02·a_3_5
- b_6_32·b_3_8 + b_6_32·b_3_7 + b_6_32·b_1_23 + b_4_14·b_1_22·b_3_7 + b_4_142·b_1_2
+ c_4_17·b_1_22·b_3_8 + c_4_17·b_1_22·b_3_7 + c_4_17·b_1_25 + c_4_16·b_1_22·b_3_8 + c_4_16·b_1_22·b_3_7 + c_4_16·b_1_25 + c_4_15·b_1_22·b_3_8 + c_4_15·b_1_25 + b_4_14·c_4_15·b_1_2 + c_4_17·a_1_1·a_1_3·a_3_6 + c_4_17·a_1_0·a_1_3·a_3_0 + c_4_17·a_1_0·a_1_3·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_0 + c_4_17·a_1_02·a_3_0 + c_4_17·a_1_02·a_3_6 + c_4_16·a_1_1·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_6 + c_4_16·a_1_02·a_3_0 + c_4_16·a_1_02·a_3_5 + c_4_15·a_1_12·a_3_5 + c_4_15·a_1_0·a_1_3·a_3_0 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_0 + c_4_15·a_1_0·a_1_1·a_3_5 + c_4_15·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_02·a_3_0 + c_4_15·a_1_02·a_3_6
- b_6_34·b_1_23 + b_6_32·b_3_7 + b_4_14·b_5_27 + b_4_142·b_1_2 + c_4_17·b_1_22·b_3_8
+ c_4_16·b_1_22·b_3_7 + c_4_16·b_1_25 + c_4_15·b_1_22·b_3_7 + c_4_15·b_1_25 + c_4_17·a_1_12·a_3_5 + c_4_17·a_1_02·a_3_0 + c_4_17·a_1_02·a_3_6 + c_4_16·a_1_12·a_3_5 + c_4_16·a_1_0·a_1_3·a_3_0 + c_4_16·a_1_0·a_1_3·a_3_5 + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_0 + c_4_16·a_1_02·a_3_5 + c_4_15·a_1_12·a_3_5 + c_4_15·a_1_0·a_1_3·a_3_0 + c_4_15·a_1_0·a_1_1·a_3_0 + c_4_15·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_02·a_3_0 + c_4_15·a_1_02·a_3_5
- b_6_34·a_3_0 + c_4_17·a_1_0·a_1_3·a_3_5 + c_4_17·a_1_0·a_1_1·a_3_0
+ c_4_17·a_1_02·a_3_5 + c_4_16·a_1_1·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_0 + c_4_16·a_1_02·a_3_0 + c_4_16·a_1_02·a_3_5 + c_4_16·a_1_02·a_3_6 + c_4_15·a_1_12·a_3_5 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_0 + c_4_15·a_1_02·a_3_0 + c_4_15·a_1_02·a_3_5 + c_4_15·a_1_02·a_3_6
- b_6_34·a_3_6 + c_4_17·a_1_0·a_1_3·a_3_0 + c_4_17·a_1_0·a_1_3·a_3_6
+ c_4_17·a_1_02·a_3_0 + c_4_17·a_1_02·a_3_5 + c_4_16·a_1_12·a_3_5 + c_4_16·a_1_0·a_1_3·a_3_5 + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_5 + c_4_16·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_1·a_1_3·a_3_6 + c_4_15·a_1_12·a_3_5 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_5 + c_4_15·a_1_02·a_3_5
- b_6_34·a_3_5 + c_4_17·a_1_12·a_3_5 + c_4_17·a_1_0·a_1_3·a_3_5
+ c_4_17·a_1_0·a_1_3·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_5 + c_4_17·a_1_02·a_3_5 + c_4_17·a_1_02·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_0 + c_4_16·a_1_02·a_3_0 + c_4_16·a_1_02·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_0 + c_4_15·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_02·a_3_6
- b_6_34·b_3_7 + b_6_32·b_1_23 + b_4_14·b_1_22·b_3_8 + b_4_14·b_1_22·b_3_7
+ b_4_14·b_1_25 + c_4_17·b_1_25 + c_4_16·b_1_22·b_3_7 + c_4_16·b_1_25 + c_4_15·b_1_22·b_3_7 + c_4_15·b_1_25 + b_4_14·c_4_17·b_1_2 + c_4_17·a_1_1·a_1_3·a_3_6 + c_4_17·a_1_12·a_3_5 + c_4_17·a_1_0·a_1_3·a_3_5 + c_4_17·a_1_0·a_1_3·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_6 + c_4_16·a_1_1·a_1_3·a_3_6 + c_4_16·a_1_12·a_3_5 + c_4_16·a_1_0·a_1_3·a_3_0 + c_4_16·a_1_0·a_1_3·a_3_5 + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_0 + c_4_16·a_1_0·a_1_1·a_3_6 + c_4_16·a_1_02·a_3_0 + c_4_16·a_1_02·a_3_5 + c_4_15·a_1_12·a_3_5 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_5 + c_4_15·a_1_02·a_3_6
- b_6_34·b_3_8 + b_6_32·b_3_7 + b_6_32·b_1_23 + b_4_14·b_1_22·b_3_8
+ b_4_14·b_1_22·b_3_7 + c_4_17·b_1_22·b_3_8 + c_4_17·b_1_25 + c_4_16·b_1_22·b_3_8 + c_4_16·b_1_22·b_3_7 + c_4_16·b_1_25 + c_4_15·b_1_22·b_3_8 + c_4_15·b_1_22·b_3_7 + b_4_14·c_4_17·b_1_2 + c_4_17·a_1_1·a_1_3·a_3_6 + c_4_17·a_1_0·a_1_3·a_3_5 + c_4_17·a_1_0·a_1_3·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_0 + c_4_17·a_1_02·a_3_0 + c_4_16·a_1_1·a_1_3·a_3_6 + c_4_16·a_1_12·a_3_5 + c_4_16·a_1_0·a_1_3·a_3_0 + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_5 + c_4_16·a_1_02·a_3_5 + c_4_15·a_1_12·a_3_5 + c_4_15·a_1_0·a_1_3·a_3_0 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_0 + c_4_15·a_1_0·a_1_1·a_3_5 + c_4_15·a_1_02·a_3_0
- b_5_272 + b_1_210 + b_6_32·b_1_24 + b_4_14·b_1_2·b_5_27 + b_4_14·b_1_23·b_3_7
+ b_4_14·b_6_32 + c_4_17·b_1_23·b_3_8 + c_4_17·b_1_23·b_3_7 + c_4_16·b_1_23·b_3_8 + c_4_16·b_1_23·b_3_7 + c_4_16·b_1_26 + c_4_15·b_1_26 + b_4_14·c_4_16·b_1_22 + b_4_14·c_4_15·b_1_22 + c_4_17·a_1_02·a_1_3·a_3_6 + c_4_16·a_1_02·a_1_3·a_3_6 + c_4_16·a_1_02·a_1_1·a_3_0 + c_4_16·a_1_02·a_1_1·a_3_6 + c_4_15·a_1_02·a_1_1·a_3_6 + c_4_15·c_4_17·b_1_22 + c_4_172·a_1_32 + c_4_172·a_1_12 + c_4_16·c_4_17·a_1_12 + c_4_16·c_4_17·a_1_02 + c_4_162·a_1_12 + c_4_162·a_1_02 + c_4_15·c_4_17·a_1_12 + c_4_15·c_4_17·a_1_02 + c_4_15·c_4_16·a_1_32 + c_4_15·c_4_16·a_1_02 + c_4_152·a_1_12
- b_5_272 + b_1_210 + b_6_32·b_1_2·b_3_7 + b_4_14·b_1_2·b_5_27 + b_4_14·b_1_23·b_3_7
+ b_4_14·b_1_26 + c_4_17·b_1_23·b_3_7 + c_4_17·b_1_26 + c_4_16·b_1_23·b_3_7 + c_4_15·b_1_23·b_3_7 + c_4_15·b_1_26 + b_4_14·c_4_17·b_1_22 + c_4_17·a_1_02·a_1_3·a_3_6 + c_4_16·a_1_02·a_1_1·a_3_0 + c_4_16·a_1_02·a_1_1·a_3_6 + c_4_15·a_1_02·a_1_3·a_3_6 + c_4_15·c_4_17·b_1_22 + c_4_172·a_1_32 + c_4_172·a_1_12 + c_4_16·c_4_17·a_1_12 + c_4_16·c_4_17·a_1_02 + c_4_162·a_1_12 + c_4_162·a_1_02 + c_4_15·c_4_17·a_1_12 + c_4_15·c_4_17·a_1_02 + c_4_15·c_4_16·a_1_32 + c_4_15·c_4_16·a_1_02 + c_4_152·a_1_12
- b_5_272 + b_4_14·b_1_2·b_5_27 + b_4_14·b_6_34 + b_4_14·b_6_32 + c_4_17·b_1_23·b_3_8
+ c_4_17·b_1_23·b_3_7 + c_4_16·b_1_23·b_3_8 + c_4_17·a_1_02·a_1_3·a_3_6 + c_4_16·a_1_02·a_1_3·a_3_6 + c_4_16·a_1_02·a_1_1·a_3_0 + c_4_16·a_1_02·a_1_1·a_3_6 + c_4_15·a_1_02·a_1_3·a_3_6 + c_4_15·a_1_02·a_1_1·a_3_0 + c_4_15·c_4_17·b_1_22 + c_4_172·a_1_32 + c_4_172·a_1_12 + c_4_16·c_4_17·a_1_12 + c_4_16·c_4_17·a_1_02 + c_4_162·a_1_12 + c_4_162·a_1_02 + c_4_15·c_4_17·a_1_12 + c_4_15·c_4_17·a_1_02 + c_4_15·c_4_16·a_1_32 + c_4_15·c_4_16·a_1_02 + c_4_152·a_1_12
- b_6_32·b_5_27 + b_4_14·b_1_27 + b_4_14·b_6_32·b_1_2 + b_4_142·b_3_7
+ c_4_17·b_1_24·b_3_7 + c_4_17·b_6_32·b_1_2 + c_4_16·b_1_24·b_3_7 + c_4_16·b_6_32·b_1_2 + c_4_15·b_1_24·b_3_7 + c_4_15·b_1_27 + c_4_15·b_6_32·b_1_2 + b_4_14·c_4_17·b_3_8 + b_4_14·c_4_17·b_3_7 + b_4_14·c_4_17·b_1_23 + b_4_14·c_4_16·b_3_8 + b_4_14·c_4_16·b_3_7 + b_4_14·c_4_15·b_3_8 + c_4_17·a_1_1·a_3_6·a_3_0 + c_4_17·a_1_0·a_3_5·a_3_0 + c_4_17·a_1_0·a_3_6·a_3_0 + c_4_17·a_1_0·a_3_6·a_3_5 + c_4_16·a_1_1·a_3_6·a_3_0 + c_4_16·a_1_0·a_3_6·a_3_5 + c_4_15·a_1_3·a_3_5·a_3_0 + c_4_15·a_1_1·a_3_6·a_3_0 + c_4_172·b_1_23 + c_4_162·b_1_23 + c_4_15·c_4_17·b_1_23 + c_4_152·b_1_23 + c_4_172·a_1_02·a_1_1 + c_4_16·c_4_17·a_1_02·a_1_1 + c_4_16·c_4_17·a_1_03 + c_4_162·a_1_0·a_1_1·a_1_3 + c_4_162·a_1_03 + c_4_15·c_4_17·a_1_0·a_1_1·a_1_3 + c_4_15·c_4_17·a_1_03 + c_4_15·c_4_16·a_1_02·a_1_3 + c_4_152·a_1_02·a_1_3 + c_4_152·a_1_02·a_1_1 + c_4_152·a_1_03
- b_6_34·b_5_27 + b_4_14·b_1_24·b_3_7 + b_4_14·b_1_27 + b_4_142·b_3_7
+ c_4_16·b_1_24·b_3_7 + c_4_16·b_6_32·b_1_2 + c_4_15·b_6_32·b_1_2 + b_4_14·c_4_17·b_3_8 + b_4_14·c_4_17·b_3_7 + b_4_14·c_4_17·b_1_23 + b_4_14·c_4_16·b_3_8 + b_4_14·c_4_16·b_3_7 + b_4_14·c_4_16·b_1_23 + b_4_14·c_4_15·b_3_8 + b_4_14·c_4_15·b_3_7 + b_4_14·c_4_15·b_1_23 + c_4_17·a_1_3·a_3_5·a_3_0 + c_4_17·a_1_1·a_3_6·a_3_5 + c_4_16·a_1_0·a_3_5·a_3_0 + c_4_15·a_1_3·a_3_5·a_3_0 + c_4_15·a_1_1·a_3_6·a_3_0 + c_4_15·a_1_1·a_3_6·a_3_5 + c_4_15·a_1_0·a_3_5·a_3_0 + c_4_15·a_1_0·a_3_6·a_3_0 + c_4_16·c_4_17·b_1_23 + c_4_162·b_1_23 + c_4_15·c_4_17·b_1_23 + c_4_152·b_1_23 + c_4_172·a_1_0·a_1_1·a_1_3 + c_4_172·a_1_02·a_1_3 + c_4_172·a_1_02·a_1_1 + c_4_16·c_4_17·a_1_0·a_1_1·a_1_3 + c_4_162·a_1_02·a_1_1 + c_4_15·c_4_17·a_1_0·a_1_1·a_1_3 + c_4_15·c_4_17·a_1_02·a_1_1 + c_4_15·c_4_17·a_1_03 + c_4_15·c_4_16·a_1_03 + c_4_152·a_1_0·a_1_1·a_1_3 + c_4_152·a_1_02·a_1_3 + c_4_152·a_1_02·a_1_1
- b_6_32·b_1_26 + b_6_322 + b_4_143 + c_4_17·b_1_28 + c_4_17·b_6_34·b_1_22
+ c_4_16·b_1_28 + c_4_16·b_6_34·b_1_22 + c_4_15·b_1_28 + b_4_14·c_4_17·b_1_2·b_3_7 + b_4_14·c_4_17·b_1_24 + b_4_14·c_4_16·b_1_2·b_3_7 + b_4_142·c_4_15 + c_4_17·a_1_0·a_1_1·a_3_6·a_3_0 + c_4_17·a_1_02·a_3_6·a_3_0 + c_4_16·a_1_0·a_1_1·a_3_6·a_3_0 + c_4_16·a_1_02·a_3_6·a_3_0 + c_4_172·b_1_24 + c_4_16·c_4_17·b_1_24 + c_4_15·c_4_16·b_1_24 + c_4_152·b_1_24
- b_6_342 + b_6_32·b_1_26 + b_4_142·b_1_2·b_3_8 + b_4_142·b_1_2·b_3_7
+ b_4_142·b_1_24 + c_4_17·b_1_28 + c_4_16·b_1_28 + c_4_16·b_6_34·b_1_22 + c_4_15·b_1_28 + b_4_14·c_4_16·b_1_2·b_3_7 + b_4_142·c_4_17 + c_4_16·a_1_0·a_1_1·a_3_6·a_3_0 + c_4_16·a_1_02·a_3_6·a_3_0 + c_4_15·c_4_16·b_1_24 + c_4_152·b_1_24
- b_6_32·b_1_26 + b_6_32·b_6_34 + b_4_14·b_1_28 + b_4_14·b_6_32·b_1_22
+ b_4_142·b_1_24 + c_4_17·b_1_28 + c_4_16·b_1_28 + c_4_15·b_6_34·b_1_22 + c_4_15·b_6_32·b_1_22 + b_4_14·c_4_17·b_1_2·b_3_8 + b_4_14·c_4_17·b_1_24 + b_4_14·c_4_16·b_1_2·b_3_8 + b_4_14·c_4_16·b_1_24 + c_4_16·a_1_02·a_3_6·a_3_0 + c_4_16·a_1_02·a_3_6·a_3_5 + c_4_15·a_1_0·a_1_1·a_3_6·a_3_0 + c_4_15·a_1_02·a_3_6·a_3_0 + c_4_15·a_1_02·a_3_6·a_3_5 + c_4_16·c_4_17·b_1_24 + c_4_162·b_1_24 + c_4_152·b_1_24
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_15, a Duflot regular element of degree 4
- c_4_16, a Duflot regular element of degree 4
- c_4_17, a Duflot regular element of degree 4
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 8, 10].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_3 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_3_6 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_0 → 0, an element of degree 3
- b_3_7 → 0, an element of degree 3
- b_3_8 → 0, an element of degree 3
- b_4_14 → 0, an element of degree 4
- c_4_15 → c_1_24, an element of degree 4
- c_4_16 → c_1_04, an element of degree 4
- c_4_17 → c_1_14 + c_1_04, an element of degree 4
- b_5_27 → 0, an element of degree 5
- b_6_32 → 0, an element of degree 6
- b_6_34 → 0, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_3 → 0, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- a_3_6 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_0 → 0, an element of degree 3
- b_3_7 → c_1_33 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
- b_3_8 → c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32
+ c_1_02·c_1_3, an element of degree 3
- b_4_14 → c_1_0·c_1_33 + c_1_02·c_1_32, an element of degree 4
- c_4_15 → c_1_2·c_1_33 + c_1_24 + c_1_0·c_1_33 + c_1_02·c_1_32, an element of degree 4
- c_4_16 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_12·c_1_32 + c_1_02·c_1_32
+ c_1_04, an element of degree 4
- c_4_17 → c_1_12·c_1_32 + c_1_14 + c_1_02·c_1_32 + c_1_04, an element of degree 4
- b_5_27 → c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32
+ c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33 + c_1_0·c_1_22·c_1_32 + c_1_02·c_1_33 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3, an element of degree 5
- b_6_32 → c_1_36 + c_1_2·c_1_35 + c_1_24·c_1_32 + c_1_1·c_1_2·c_1_34
+ c_1_1·c_1_22·c_1_33 + c_1_12·c_1_34 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_14·c_1_32 + c_1_0·c_1_35 + c_1_02·c_1_34, an element of degree 6
- b_6_34 → c_1_36 + c_1_2·c_1_35 + c_1_24·c_1_32 + c_1_1·c_1_35 + c_1_12·c_1_34
+ c_1_0·c_1_1·c_1_34 + c_1_0·c_1_12·c_1_33 + c_1_02·c_1_1·c_1_33 + c_1_02·c_1_12·c_1_32, an element of degree 6
|