Cohomology of group number 1538 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 4 minimal generators and exponent 4.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 3.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 3.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t8  +  3·t7  +  4·t6  +  5·t5  +  8·t4  +  5·t3  +  4·t2  +  3·t  +  1)

    (t  +  1)2 · (t  −  1)3 · (t2  +  1)3
  • The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 15 minimal generators of maximal degree 6:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_1_2, a nilpotent element of degree 1
  4. a_1_3, a nilpotent element of degree 1
  5. a_3_5, a nilpotent element of degree 3
  6. a_3_6, a nilpotent element of degree 3
  7. a_3_7, a nilpotent element of degree 3
  8. a_3_8, a nilpotent element of degree 3
  9. a_4_11, a nilpotent element of degree 4
  10. a_4_12, a nilpotent element of degree 4
  11. c_4_13, a Duflot regular element of degree 4
  12. c_4_14, a Duflot regular element of degree 4
  13. c_4_15, a Duflot regular element of degree 4
  14. a_6_25, a nilpotent element of degree 6
  15. a_6_29, a nilpotent element of degree 6

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 60 minimal relations of maximal degree 12:

  1. a_1_22 + a_1_1·a_1_2 + a_1_02
  2. a_1_1·a_1_3 + a_1_1·a_1_2 + a_1_12 + a_1_0·a_1_2 + a_1_0·a_1_1 + a_1_02
  3. a_1_32 + a_1_1·a_1_2 + a_1_0·a_1_3 + a_1_0·a_1_2
  4. a_1_03
  5. a_1_02·a_1_1
  6. a_1_0·a_1_2·a_1_3 + a_1_02·a_1_3 + a_1_02·a_1_2
  7. a_1_2·a_3_5 + a_1_1·a_3_6 + a_1_0·a_3_5
  8. a_1_3·a_3_5 + a_1_2·a_3_5 + a_1_1·a_3_5 + a_1_0·a_3_6 + a_1_0·a_3_5
  9. a_1_2·a_3_7 + a_1_1·a_3_8 + a_1_0·a_3_7
  10. a_1_3·a_3_7 + a_1_2·a_3_7 + a_1_1·a_3_7 + a_1_0·a_3_8 + a_1_0·a_3_7
  11. a_1_3·a_3_7 + a_1_2·a_3_8 + a_1_1·a_3_7 + a_1_0·a_3_7
  12. a_1_02·a_3_5
  13. a_1_0·a_1_2·a_3_6 + a_1_0·a_1_1·a_3_6 + a_1_02·a_3_7 + a_1_02·a_3_6
  14. a_4_11·a_1_1 + a_1_12·a_3_8 + a_1_0·a_1_3·a_3_8 + a_1_0·a_1_1·a_3_8 + a_1_0·a_1_1·a_3_7
       + a_1_0·a_1_1·a_3_6 + a_1_0·a_1_1·a_3_5 + a_1_02·a_3_8
  15. a_4_11·a_1_0 + a_1_0·a_1_3·a_3_8 + a_1_0·a_1_1·a_3_8 + a_1_0·a_1_1·a_3_7 + a_1_02·a_3_6
  16. a_4_11·a_1_2 + a_1_0·a_1_3·a_3_8 + a_1_02·a_3_6
  17. a_4_12·a_1_1 + a_1_2·a_1_3·a_3_6 + a_1_0·a_1_1·a_3_8 + a_1_0·a_1_1·a_3_6 + a_1_02·a_3_8
       + a_1_02·a_3_6
  18. a_4_12·a_1_0 + a_4_11·a_1_3 + a_1_2·a_1_3·a_3_6 + a_1_12·a_3_6 + a_1_0·a_1_3·a_3_8
       + a_1_0·a_1_1·a_3_8
  19. a_4_12·a_1_3 + a_1_2·a_1_3·a_3_6 + a_1_12·a_3_8 + a_1_0·a_1_3·a_3_6 + a_1_0·a_1_1·a_3_8
       + a_1_0·a_1_1·a_3_7 + a_1_0·a_1_1·a_3_6 + a_1_0·a_1_1·a_3_5
  20. a_4_12·a_1_2 + a_4_11·a_1_3 + a_1_02·a_3_6
  21. a_3_6·a_3_7 + a_3_5·a_3_8 + a_1_0·a_1_12·a_3_8 + a_1_02·a_1_3·a_3_8
  22. a_3_82 + a_3_7·a_3_8 + a_3_72 + a_3_62 + a_3_5·a_3_6 + a_3_52 + a_1_0·a_1_12·a_3_8
       + a_1_02·a_1_3·a_3_6 + c_4_13·a_1_12 + c_4_13·a_1_0·a_1_1
  23. a_3_72 + a_3_52 + a_1_0·a_1_12·a_3_8 + a_1_0·a_1_12·a_3_6 + a_1_02·a_1_3·a_3_8
       + a_1_02·a_1_3·a_3_6 + c_4_14·a_1_12 + c_4_14·a_1_02 + c_4_13·a_1_02
  24. a_3_82 + a_3_62 + a_1_02·a_1_3·a_3_8 + a_1_02·a_1_3·a_3_6 + c_4_14·a_1_1·a_1_2
       + c_4_14·a_1_12 + c_4_14·a_1_0·a_1_3 + c_4_14·a_1_0·a_1_2 + c_4_13·a_1_12
       + c_4_13·a_1_0·a_1_3 + c_4_13·a_1_0·a_1_2
  25. a_3_72 + a_1_0·a_1_12·a_3_6 + a_1_02·a_1_3·a_3_8 + c_4_15·a_1_12
  26. a_3_82 + a_3_7·a_3_8 + a_1_0·a_1_12·a_3_8 + a_1_02·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1
  27. a_3_82 + a_1_0·a_1_12·a_3_6 + a_1_02·a_1_3·a_3_8 + a_1_02·a_1_3·a_3_6
       + c_4_15·a_1_1·a_1_2
  28. a_4_11·a_3_8 + a_1_0·a_3_6·a_3_8 + a_1_0·a_3_5·a_3_8 + c_4_15·a_1_0·a_1_1·a_1_2
       + c_4_15·a_1_0·a_1_12
  29. a_4_11·a_3_7 + a_1_0·a_3_5·a_3_8 + a_1_0·a_3_5·a_3_7 + c_4_15·a_1_12·a_1_2
       + c_4_15·a_1_0·a_1_1·a_1_2
  30. a_4_11·a_3_5 + a_1_1·a_3_5·a_3_8 + a_1_1·a_3_5·a_3_7 + a_1_0·a_3_6·a_3_8
       + c_4_15·a_1_0·a_1_1·a_1_2 + c_4_15·a_1_0·a_1_12 + c_4_14·a_1_0·a_1_1·a_1_2
       + c_4_14·a_1_0·a_1_12 + c_4_14·a_1_02·a_1_3 + c_4_14·a_1_02·a_1_2
       + c_4_13·a_1_02·a_1_3 + c_4_13·a_1_02·a_1_2
  31. a_4_12·a_3_8 + a_1_3·a_3_6·a_3_8 + a_1_1·a_3_5·a_3_8 + a_1_1·a_3_5·a_3_7
       + a_1_0·a_3_6·a_3_8 + a_1_0·a_3_5·a_3_8 + a_1_0·a_3_5·a_3_7 + c_4_15·a_1_0·a_1_1·a_1_2
       + c_4_15·a_1_02·a_1_2
  32. a_4_12·a_3_7 + a_1_3·a_3_6·a_3_8 + a_1_1·a_3_5·a_3_7 + a_1_0·a_3_6·a_3_8
       + a_1_0·a_3_5·a_3_7 + c_4_15·a_1_0·a_1_1·a_1_2 + c_4_15·a_1_02·a_1_2
  33. a_4_12·a_3_6 + a_1_3·a_3_6·a_3_8 + a_1_1·a_3_5·a_3_7 + a_1_0·a_3_5·a_3_8
       + a_1_0·a_3_5·a_3_7 + c_4_15·a_1_12·a_1_2 + c_4_15·a_1_0·a_1_12
       + c_4_15·a_1_02·a_1_2 + c_4_13·a_1_12·a_1_2 + c_4_13·a_1_0·a_1_12
       + c_4_13·a_1_02·a_1_2
  34. a_4_12·a_3_5 + a_4_11·a_3_6 + a_1_3·a_3_6·a_3_8 + a_1_0·a_3_6·a_3_8 + a_1_0·a_3_5·a_3_8
       + a_1_0·a_3_5·a_3_7 + c_4_15·a_1_0·a_1_1·a_1_2 + c_4_15·a_1_02·a_1_2
       + c_4_14·a_1_12·a_1_2 + c_4_14·a_1_0·a_1_1·a_1_2 + c_4_14·a_1_02·a_1_3
       + c_4_13·a_1_12·a_1_2 + c_4_13·a_1_02·a_1_3 + c_4_13·a_1_02·a_1_2
  35. a_6_25·a_1_1 + a_1_0·a_3_5·a_3_7 + c_4_15·a_1_0·a_1_1·a_1_2 + c_4_15·a_1_0·a_1_12
       + c_4_15·a_1_02·a_1_2 + c_4_14·a_1_12·a_1_2 + c_4_14·a_1_02·a_1_2
       + c_4_13·a_1_0·a_1_12
  36. a_6_25·a_1_0 + c_4_15·a_1_02·a_1_3 + c_4_14·a_1_0·a_1_1·a_1_2 + c_4_14·a_1_0·a_1_12
       + c_4_14·a_1_02·a_1_3 + c_4_14·a_1_02·a_1_2
  37. a_6_25·a_1_3 + a_4_11·a_3_6 + a_1_3·a_3_6·a_3_8 + c_4_15·a_1_12·a_1_2
       + c_4_15·a_1_0·a_1_12 + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_2
       + c_4_14·a_1_0·a_1_1·a_1_2 + c_4_14·a_1_02·a_1_3 + c_4_14·a_1_02·a_1_2
       + c_4_13·a_1_12·a_1_2 + c_4_13·a_1_0·a_1_12 + c_4_13·a_1_02·a_1_2
  38. a_6_25·a_1_2 + a_1_0·a_3_5·a_3_8 + c_4_15·a_1_02·a_1_3 + c_4_14·a_1_0·a_1_1·a_1_2
       + c_4_14·a_1_02·a_1_3 + c_4_14·a_1_02·a_1_2 + c_4_13·a_1_0·a_1_1·a_1_2
       + c_4_13·a_1_02·a_1_2
  39. a_6_29·a_1_1 + a_1_1·a_3_5·a_3_8 + a_1_1·a_3_5·a_3_7 + a_1_0·a_3_6·a_3_8
       + a_1_0·a_3_5·a_3_8 + c_4_15·a_1_02·a_1_2 + c_4_14·a_1_0·a_1_12
       + c_4_13·a_1_0·a_1_1·a_1_2 + c_4_13·a_1_02·a_1_2
  40. a_6_29·a_1_0 + a_1_1·a_3_5·a_3_7 + a_1_0·a_3_5·a_3_8 + c_4_15·a_1_0·a_1_12
       + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_2 + c_4_13·a_1_0·a_1_12
       + c_4_13·a_1_02·a_1_3
  41. a_6_29·a_1_3 + a_4_11·a_3_6 + a_1_1·a_3_5·a_3_7 + a_1_0·a_3_6·a_3_8 + a_1_0·a_3_5·a_3_8
       + c_4_15·a_1_12·a_1_2 + c_4_14·a_1_12·a_1_2 + c_4_14·a_1_0·a_1_12
       + c_4_14·a_1_02·a_1_3 + c_4_14·a_1_02·a_1_2 + c_4_13·a_1_0·a_1_1·a_1_2
       + c_4_13·a_1_02·a_1_3 + c_4_13·a_1_02·a_1_2
  42. a_6_29·a_1_2 + a_1_3·a_3_6·a_3_8 + a_1_1·a_3_5·a_3_7 + a_1_0·a_3_6·a_3_8
       + a_1_0·a_3_5·a_3_7 + c_4_15·a_1_12·a_1_2 + c_4_15·a_1_0·a_1_1·a_1_2
       + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_2 + c_4_14·a_1_0·a_1_1·a_1_2
       + c_4_13·a_1_12·a_1_2 + c_4_13·a_1_02·a_1_3
  43. a_4_112
  44. a_4_122
  45. a_4_11·a_4_12 + a_1_0·a_1_1·a_3_5·a_3_8 + a_1_02·a_3_6·a_3_8
  46. a_6_25·a_3_8 + a_1_02·a_1_3·a_3_6·a_3_8 + c_4_15·a_1_0·a_1_3·a_3_8
       + c_4_15·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_02·a_3_8 + c_4_14·a_1_0·a_1_3·a_3_8
       + c_4_14·a_1_0·a_1_1·a_3_7 + c_4_14·a_1_02·a_3_8 + c_4_14·a_1_02·a_3_7
       + c_4_13·a_1_0·a_1_1·a_3_8 + c_4_13·a_1_02·a_3_8
  47. a_6_25·a_3_7 + c_4_15·a_1_0·a_1_1·a_3_8 + c_4_15·a_1_0·a_1_1·a_3_7
       + c_4_15·a_1_0·a_1_1·a_3_5 + c_4_15·a_1_02·a_3_8 + c_4_15·a_1_02·a_3_7
       + c_4_14·a_1_12·a_3_8 + c_4_14·a_1_0·a_1_3·a_3_8 + c_4_14·a_1_0·a_1_1·a_3_7
       + c_4_14·a_1_02·a_3_7 + c_4_13·a_1_0·a_1_1·a_3_7 + c_4_13·a_1_02·a_3_7
  48. a_6_25·a_3_6 + a_1_02·a_1_3·a_3_6·a_3_8 + a_4_11·c_4_14·a_1_3 + a_4_11·c_4_13·a_1_3
       + c_4_15·a_1_2·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_8 + c_4_15·a_1_02·a_3_7
       + c_4_14·a_1_2·a_1_3·a_3_6 + c_4_14·a_1_0·a_1_3·a_3_6 + c_4_14·a_1_0·a_1_1·a_3_6
       + c_4_14·a_1_02·a_3_7 + c_4_14·a_1_02·a_3_6 + c_4_13·a_1_2·a_1_3·a_3_6
       + c_4_13·a_1_0·a_1_1·a_3_8 + c_4_13·a_1_0·a_1_1·a_3_5 + c_4_13·a_1_02·a_3_6
  49. a_6_25·a_3_5 + a_1_02·a_1_3·a_3_6·a_3_8 + c_4_15·a_1_0·a_1_1·a_3_7
       + c_4_15·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_5 + c_4_15·a_1_02·a_3_7
       + c_4_15·a_1_02·a_3_6 + c_4_14·a_1_12·a_3_6 + c_4_14·a_1_0·a_1_3·a_3_6
       + c_4_14·a_1_0·a_1_1·a_3_7 + c_4_14·a_1_0·a_1_1·a_3_5 + c_4_14·a_1_02·a_3_7
       + c_4_13·a_1_0·a_1_1·a_3_5
  50. a_6_29·a_3_8 + c_4_15·a_1_2·a_1_3·a_3_6 + c_4_15·a_1_12·a_3_8
       + c_4_15·a_1_0·a_1_3·a_3_8 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_8
       + c_4_15·a_1_0·a_1_1·a_3_5 + c_4_15·a_1_02·a_3_8 + c_4_14·a_1_0·a_1_1·a_3_8
       + c_4_13·a_1_12·a_3_8 + c_4_13·a_1_0·a_1_3·a_3_8 + c_4_13·a_1_02·a_3_8
  51. a_6_29·a_3_7 + a_1_02·a_1_3·a_3_6·a_3_8 + c_4_15·a_1_12·a_3_6
       + c_4_15·a_1_0·a_1_3·a_3_8 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_5
       + c_4_15·a_1_02·a_3_7 + c_4_15·a_1_02·a_3_6 + c_4_14·a_1_0·a_1_1·a_3_7
       + c_4_13·a_1_0·a_1_3·a_3_8 + c_4_13·a_1_0·a_1_1·a_3_8 + c_4_13·a_1_02·a_3_7
  52. a_6_29·a_3_6 + a_4_11·c_4_14·a_1_3 + a_4_11·c_4_13·a_1_3 + c_4_15·a_1_12·a_3_6
       + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_7 + c_4_15·a_1_0·a_1_1·a_3_6
       + c_4_15·a_1_02·a_3_8 + c_4_15·a_1_02·a_3_7 + c_4_15·a_1_02·a_3_6
       + c_4_14·a_1_2·a_1_3·a_3_6 + c_4_14·a_1_0·a_1_3·a_3_8 + c_4_14·a_1_0·a_1_1·a_3_7
       + c_4_14·a_1_0·a_1_1·a_3_5 + c_4_14·a_1_02·a_3_8 + c_4_14·a_1_02·a_3_7
       + c_4_13·a_1_2·a_1_3·a_3_6 + c_4_13·a_1_12·a_3_6 + c_4_13·a_1_0·a_1_3·a_3_8
       + c_4_13·a_1_0·a_1_3·a_3_6 + c_4_13·a_1_0·a_1_1·a_3_6 + c_4_13·a_1_0·a_1_1·a_3_5
       + c_4_13·a_1_02·a_3_7 + c_4_13·a_1_02·a_3_6
  53. a_6_29·a_3_5 + a_1_02·a_1_3·a_3_6·a_3_8 + c_4_15·a_1_12·a_3_8
       + c_4_15·a_1_0·a_1_3·a_3_8 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_7
       + c_4_15·a_1_02·a_3_8 + c_4_14·a_1_12·a_3_8 + c_4_14·a_1_0·a_1_3·a_3_8
       + c_4_14·a_1_0·a_1_1·a_3_5 + c_4_14·a_1_02·a_3_7 + c_4_13·a_1_0·a_1_3·a_3_6
       + c_4_13·a_1_0·a_1_1·a_3_7 + c_4_13·a_1_0·a_1_1·a_3_6 + c_4_13·a_1_02·a_3_8
       + c_4_13·a_1_02·a_3_7
  54. a_4_12·a_6_25 + c_4_15·a_1_0·a_1_12·a_3_6 + c_4_15·a_1_02·a_1_3·a_3_8
       + c_4_14·a_1_0·a_1_12·a_3_8 + c_4_13·a_1_0·a_1_12·a_3_6
       + c_4_13·a_1_02·a_1_3·a_3_6
  55. a_4_11·a_6_25 + c_4_15·a_1_0·a_1_12·a_3_6 + c_4_14·a_1_0·a_1_12·a_3_6
       + c_4_14·a_1_02·a_1_3·a_3_8 + c_4_13·a_1_0·a_1_12·a_3_8
       + c_4_13·a_1_02·a_1_3·a_3_8
  56. a_4_12·a_6_29 + c_4_15·a_1_0·a_1_12·a_3_8 + c_4_15·a_1_02·a_1_3·a_3_6
       + c_4_14·a_1_02·a_1_3·a_3_6 + c_4_13·a_1_0·a_1_12·a_3_8
       + c_4_13·a_1_02·a_1_3·a_3_8
  57. a_4_11·a_6_29 + c_4_15·a_1_0·a_1_12·a_3_8 + c_4_15·a_1_02·a_1_3·a_3_8
       + c_4_13·a_1_0·a_1_12·a_3_6
  58. a_6_252
  59. a_6_292
  60. a_6_25·a_6_29 + c_4_15·a_1_0·a_1_3·a_3_6·a_3_8 + c_4_15·a_1_0·a_1_1·a_3_5·a_3_7
       + c_4_14·a_1_0·a_1_3·a_3_6·a_3_8 + c_4_14·a_1_0·a_1_1·a_3_5·a_3_7
       + c_4_14·a_1_02·a_3_6·a_3_8 + c_4_13·a_1_0·a_1_1·a_3_5·a_3_8
       + c_4_13·a_1_0·a_1_1·a_3_5·a_3_7 + c_4_13·a_1_02·a_3_6·a_3_8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 12.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_4_13, a Duflot regular element of degree 4
    2. c_4_14, a Duflot regular element of degree 4
    3. c_4_15, a Duflot regular element of degree 4
  • The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 9].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_20, an element of degree 1
  4. a_1_30, an element of degree 1
  5. a_3_50, an element of degree 3
  6. a_3_60, an element of degree 3
  7. a_3_70, an element of degree 3
  8. a_3_80, an element of degree 3
  9. a_4_110, an element of degree 4
  10. a_4_120, an element of degree 4
  11. c_4_13c_1_24 + c_1_14 + c_1_04, an element of degree 4
  12. c_4_14c_1_14 + c_1_04, an element of degree 4
  13. c_4_15c_1_04, an element of degree 4
  14. a_6_250, an element of degree 6
  15. a_6_290, an element of degree 6


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009