Cohomology of group number 1540 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 4 minimal generators and exponent 4.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 3.
  • It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 3.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t8  +  t7  −  3·t6  +  3·t5  −  3·t4  −  3·t3  −  t2  −  2·t  −  1)

    (t  +  1)2 · (t  −  1)4 · (t2  +  1)3
  • The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 14 minimal generators of maximal degree 8:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. b_1_2, an element of degree 1
  4. b_1_3, an element of degree 1
  5. b_3_5, an element of degree 3
  6. b_3_6, an element of degree 3
  7. b_3_7, an element of degree 3
  8. b_3_8, an element of degree 3
  9. b_3_9, an element of degree 3
  10. b_3_10, an element of degree 3
  11. c_4_17, a Duflot regular element of degree 4
  12. c_4_18, a Duflot regular element of degree 4
  13. c_4_19, a Duflot regular element of degree 4
  14. b_8_67, an element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 44 minimal relations of maximal degree 16:

  1. b_1_2·b_1_3 + a_1_1·b_1_2 + a_1_02
  2. a_1_1·b_1_3 + a_1_1·b_1_2 + a_1_0·b_1_2 + a_1_0·a_1_1
  3. a_1_0·b_1_3 + a_1_0·b_1_2 + a_1_12
  4. a_1_03
  5. a_1_0·a_1_12 + a_1_02·a_1_1
  6. a_1_0·a_1_1·b_1_2
  7. a_1_1·b_3_5 + a_1_0·b_3_6
  8. b_1_3·b_3_6 + b_1_3·b_3_5 + b_1_2·b_3_6 + a_1_1·b_3_6 + a_1_1·b_3_5
  9. a_1_1·b_3_7 + a_1_1·b_3_6 + a_1_1·b_3_5 + a_1_0·b_3_8 + a_1_0·b_3_5
  10. b_1_3·b_3_8 + b_1_3·b_3_7 + b_1_3·b_3_5 + b_1_34 + b_1_2·b_3_8 + b_1_2·b_3_6 + b_1_2·b_3_5
       + b_1_24 + a_1_1·b_3_8 + a_1_1·b_3_7 + a_1_1·b_3_5
  11. b_1_2·b_3_6 + a_1_1·b_3_8 + a_1_1·b_3_7 + a_1_1·b_3_6 + a_1_1·b_3_5 + a_1_0·b_3_9
       + a_1_0·b_3_5
  12. b_1_2·b_3_10 + b_1_2·b_3_9 + b_1_2·b_3_7 + b_1_2·b_3_6 + b_1_24 + a_1_1·b_3_6
       + a_1_0·b_3_7 + a_1_0·b_3_5
  13. b_1_2·b_3_8 + b_1_2·b_3_5 + b_1_24 + a_1_1·b_3_10 + a_1_1·b_3_7 + a_1_1·b_3_5
       + a_1_0·b_3_5
  14. b_1_2·b_3_6 + a_1_1·b_3_9 + a_1_1·b_3_8 + a_1_1·b_3_7 + a_1_1·b_3_5 + a_1_0·b_3_10
       + a_1_0·b_3_7 + a_1_0·b_3_5
  15. b_1_3·b_3_10 + b_1_3·b_3_7 + b_1_3·b_3_5 + b_1_34 + b_1_2·b_3_8 + b_1_2·b_3_5 + b_1_24
       + a_1_1·b_3_6 + a_1_0·b_3_7
  16. a_1_02·b_3_5
  17. a_1_0·a_1_1·b_3_6 + a_1_02·b_3_7
  18. a_1_0·a_1_1·b_3_8 + a_1_02·b_3_8 + a_1_02·b_3_6
  19. b_3_6·b_3_7 + b_3_62 + b_3_5·b_3_8 + b_3_5·b_3_6 + b_3_52 + b_1_33·b_3_5
       + b_1_23·b_3_5
  20. b_3_6·b_3_9 + b_3_62 + b_3_5·b_3_10 + b_3_5·b_3_9 + b_3_5·b_3_7 + b_1_33·b_3_5
       + b_1_23·b_3_5
  21. b_3_8·b_3_9 + b_3_7·b_3_10 + b_3_7·b_3_9 + b_3_72 + b_3_6·b_3_10 + b_3_6·b_3_8
       + b_3_6·b_3_7 + b_3_62 + b_3_5·b_3_9 + b_3_5·b_3_6 + b_1_33·b_3_9 + b_1_33·b_3_7
       + b_1_23·b_3_9 + b_1_23·b_3_7
  22. b_3_102 + b_3_9·b_3_10 + b_3_92 + b_3_82 + b_3_7·b_3_9 + b_3_7·b_3_8 + b_3_72
       + b_3_6·b_3_10 + b_3_6·b_3_9 + b_3_6·b_3_8 + b_3_62 + b_3_5·b_3_7 + b_3_5·b_3_6 + b_3_52
       + b_1_33·b_3_7 + b_1_23·b_3_5 + c_4_17·b_1_32 + c_4_17·b_1_22 + c_4_17·a_1_0·a_1_1
       + c_4_17·a_1_02
  23. b_3_102 + b_3_82 + b_3_62 + b_3_52 + b_1_23·b_3_7 + b_1_23·b_3_5 + c_4_18·b_1_22
       + c_4_17·a_1_12 + c_4_17·a_1_02
  24. b_3_9·b_3_10 + b_3_82 + b_3_7·b_3_9 + b_3_7·b_3_8 + b_3_6·b_3_10 + b_3_6·b_3_9
       + b_3_6·b_3_8 + b_3_62 + b_3_5·b_3_7 + b_3_5·b_3_6 + b_3_52 + b_1_33·b_3_9
       + b_1_33·b_3_7 + b_1_36 + b_1_23·b_3_5 + b_1_26 + c_4_17·b_1_22 + c_4_18·a_1_12
       + c_4_17·a_1_0·a_1_1 + c_4_17·a_1_02
  25. b_3_102 + b_3_82 + b_3_7·b_3_8 + b_3_72 + b_3_6·b_3_8 + b_3_6·b_3_7 + b_3_62
       + b_3_5·b_3_7 + b_3_5·b_3_6 + b_3_52 + b_1_33·b_3_7 + b_1_33·b_3_5 + b_1_23·b_3_9
       + b_1_23·b_3_5 + c_4_17·b_1_22 + c_4_18·a_1_0·a_1_1 + c_4_17·a_1_12
  26. b_3_102 + b_3_9·b_3_10 + b_3_82 + b_3_7·b_3_9 + b_3_7·b_3_8 + b_3_72 + b_3_6·b_3_10
       + b_3_6·b_3_9 + b_3_6·b_3_8 + b_3_5·b_3_7 + b_3_5·b_3_6 + b_3_52 + b_1_33·b_3_9
       + b_1_33·b_3_7 + b_1_23·b_3_9 + b_1_23·b_3_7 + c_4_18·a_1_02 + c_4_17·a_1_12
       + c_4_17·a_1_0·a_1_1
  27. b_3_102 + b_3_9·b_3_10 + b_3_92 + b_3_7·b_3_9 + b_3_7·b_3_8 + b_3_72 + b_3_6·b_3_10
       + b_3_6·b_3_9 + b_3_6·b_3_8 + b_3_5·b_3_7 + b_3_5·b_3_6 + b_1_33·b_3_7 + b_1_33·b_3_5
       + b_1_23·b_3_5 + b_1_26 + c_4_18·b_1_32 + c_4_17·b_1_22 + c_4_17·a_1_12
       + c_4_17·a_1_0·a_1_1 + c_4_17·a_1_02
  28. b_3_9·b_3_10 + b_3_7·b_3_9 + b_3_6·b_3_10 + b_3_6·b_3_9 + b_3_6·b_3_7 + b_3_62
       + b_3_5·b_3_6 + b_3_52 + b_1_33·b_3_9 + b_1_33·b_3_5 + b_1_23·b_3_7 + c_4_19·b_1_22
       + c_4_19·a_1_0·a_1_1 + c_4_17·a_1_0·a_1_1 + c_4_17·a_1_02
  29. b_3_102 + b_3_72 + b_3_52 + b_1_36 + b_1_23·b_3_9 + b_1_23·b_3_7 + b_1_26
       + c_4_19·b_1_22 + c_4_19·a_1_12 + c_4_19·a_1_02 + c_4_17·a_1_12 + c_4_17·a_1_02
  30. b_3_102 + b_3_92 + b_3_72 + b_3_62 + b_1_33·b_3_9 + b_1_36 + b_1_26
       + c_4_19·b_1_32 + c_4_17·a_1_12
  31. a_1_0·b_3_5·b_3_7 + c_4_19·a_1_12·b_1_2 + c_4_17·a_1_12·b_1_2 + c_4_19·a_1_02·a_1_1
       + c_4_18·a_1_02·a_1_1
  32. b_3_6·b_3_8·b_3_10 + b_3_5·b_3_8·b_3_10 + c_4_19·b_1_22·b_3_9 + c_4_19·b_1_22·b_3_7
       + c_4_19·b_1_25 + c_4_17·b_1_22·b_3_9 + c_4_17·b_1_22·b_3_7 + c_4_17·b_1_25
       + c_4_19·a_1_12·b_3_10 + c_4_19·a_1_02·b_3_7 + c_4_19·a_1_02·b_3_6
       + c_4_18·a_1_12·b_3_8 + c_4_18·a_1_12·b_3_6 + c_4_18·a_1_0·a_1_1·b_3_10
       + c_4_18·a_1_02·b_3_10 + c_4_17·a_1_12·b_3_10 + c_4_17·a_1_12·b_3_6
       + c_4_17·a_1_0·a_1_1·b_3_10 + c_4_17·a_1_02·b_3_8
  33. b_3_6·b_3_8·b_3_10 + c_4_19·b_1_35 + c_4_18·b_1_32·b_3_5 + c_4_17·b_1_32·b_3_5
       + c_4_17·b_1_35 + c_4_19·a_1_12·b_3_10 + c_4_19·a_1_0·a_1_1·b_3_10
       + c_4_19·a_1_02·b_3_10 + c_4_18·a_1_12·b_3_8 + c_4_18·a_1_12·b_3_6
       + c_4_18·a_1_0·a_1_1·b_3_10 + c_4_18·a_1_02·b_3_8 + c_4_18·a_1_02·b_3_7
       + c_4_17·a_1_12·b_3_10 + c_4_17·a_1_12·b_3_6 + c_4_17·a_1_02·b_3_9
       + c_4_17·a_1_02·b_3_6
  34. b_3_6·b_3_8·b_3_10 + b_3_5·b_3_7·b_3_10 + b_1_33·b_3_5·b_3_7 + b_1_36·b_3_5
       + b_1_23·b_3_5·b_3_9 + b_8_67·b_1_2 + c_4_19·b_1_32·b_3_7 + c_4_19·b_1_32·b_3_5
       + c_4_18·b_1_22·b_3_9 + c_4_18·b_1_22·b_3_7 + c_4_18·b_1_22·b_3_5
       + c_4_17·b_1_32·b_3_7 + c_4_17·b_1_32·b_3_5 + c_4_17·b_1_22·b_3_9
       + c_4_17·b_1_22·b_3_5 + c_4_19·a_1_12·b_3_6 + c_4_19·a_1_02·b_3_10
       + c_4_19·a_1_02·b_3_9 + c_4_19·a_1_02·b_3_6 + c_4_18·a_1_12·b_3_8
       + c_4_18·a_1_02·b_3_9 + c_4_18·a_1_02·b_3_7 + c_4_17·a_1_0·a_1_1·b_3_10
       + c_4_17·a_1_02·b_3_9 + c_4_17·a_1_02·b_3_7 + c_4_17·a_1_02·b_3_6
  35. b_8_67·a_1_1 + c_4_19·a_1_12·b_3_10 + c_4_19·a_1_12·b_3_8 + c_4_19·a_1_12·b_3_6
       + c_4_19·a_1_02·b_3_8 + c_4_19·a_1_02·b_3_6 + c_4_18·a_1_12·b_3_6
       + c_4_18·a_1_02·b_3_8 + c_4_18·a_1_02·b_3_6 + c_4_17·a_1_0·a_1_1·b_3_10
       + c_4_17·a_1_02·b_3_10 + c_4_17·a_1_02·b_3_9 + c_4_17·a_1_02·b_3_7
       + c_4_17·a_1_02·b_3_6
  36. b_8_67·a_1_0 + c_4_19·a_1_12·b_3_10 + c_4_19·a_1_12·b_3_8 + c_4_19·a_1_12·b_3_6
       + c_4_19·a_1_02·b_3_10 + c_4_19·a_1_02·b_3_8 + c_4_19·a_1_02·b_3_6
       + c_4_18·a_1_12·b_3_10 + c_4_18·a_1_12·b_3_8 + c_4_18·a_1_12·b_3_6
       + c_4_18·a_1_0·a_1_1·b_3_10 + c_4_18·a_1_02·b_3_10 + c_4_18·a_1_02·b_3_8
       + c_4_18·a_1_02·b_3_7 + c_4_18·a_1_02·b_3_6 + c_4_17·a_1_12·b_3_10
       + c_4_17·a_1_12·b_3_8 + c_4_17·a_1_12·b_3_6 + c_4_17·a_1_0·a_1_1·b_3_10
       + c_4_17·a_1_02·b_3_9 + c_4_17·a_1_02·b_3_8 + c_4_17·a_1_02·b_3_7
       + c_4_17·a_1_02·b_3_6
  37. b_3_6·b_3_8·b_3_10 + b_3_5·b_3_8·b_3_10 + b_3_5·b_3_7·b_3_10 + b_3_5·b_3_7·b_3_9
       + b_1_33·b_3_7·b_3_9 + b_1_36·b_3_7 + b_1_39 + b_1_23·b_3_5·b_3_9
       + b_1_23·b_3_5·b_3_7 + b_8_67·b_1_3 + c_4_19·b_1_32·b_3_7 + c_4_19·b_1_22·b_3_9
       + c_4_19·b_1_22·b_3_7 + c_4_19·b_1_25 + c_4_18·b_1_32·b_3_5 + c_4_18·b_1_35
       + c_4_18·b_1_22·b_3_5 + c_4_17·b_1_32·b_3_9 + c_4_17·b_1_32·b_3_7
       + c_4_17·b_1_22·b_3_9 + c_4_17·b_1_22·b_3_7 + c_4_17·b_1_22·b_3_5 + c_4_17·b_1_25
       + c_4_19·a_1_02·b_3_10 + c_4_19·a_1_02·b_3_8 + c_4_19·a_1_02·b_3_6
       + c_4_18·a_1_12·b_3_10 + c_4_18·a_1_12·b_3_8 + c_4_18·a_1_12·b_3_6
       + c_4_18·a_1_02·b_3_9 + c_4_17·a_1_0·a_1_1·b_3_10 + c_4_17·a_1_02·b_3_8
       + c_4_17·a_1_02·b_3_7
  38. b_1_35·b_3_7·b_3_9 + b_1_35·b_3_5·b_3_7 + b_1_38·b_3_9 + b_1_25·b_3_5·b_3_9
       + b_1_28·b_3_5 + b_8_67·b_3_10 + b_8_67·b_1_23 + c_4_19·b_1_3·b_3_7·b_3_9
       + c_4_19·b_1_3·b_3_5·b_3_9 + c_4_19·b_1_3·b_3_5·b_3_7 + c_4_19·b_1_34·b_3_5
       + c_4_19·b_1_24·b_3_7 + c_4_19·b_1_27 + c_4_18·b_1_3·b_3_5·b_3_9
       + c_4_18·b_1_34·b_3_9 + c_4_18·b_1_34·b_3_7 + c_4_18·b_1_2·b_3_5·b_3_9
       + c_4_18·b_1_24·b_3_7 + c_4_18·b_1_24·b_3_5 + c_4_17·b_1_3·b_3_5·b_3_9
       + c_4_17·b_1_34·b_3_5 + c_4_17·b_1_37 + c_4_17·b_1_2·b_3_7·b_3_9
       + c_4_17·b_1_2·b_3_5·b_3_9 + c_4_17·b_1_2·b_3_5·b_3_7 + c_4_17·b_1_24·b_3_9
       + c_4_17·b_1_27 + c_4_19·a_1_0·b_3_5·b_3_8 + c_4_18·a_1_0·b_3_7·b_3_10
       + c_4_18·a_1_0·b_3_6·b_3_10 + c_4_18·a_1_0·b_3_5·b_3_10 + c_4_18·a_1_0·b_3_5·b_3_9
       + c_4_18·a_1_0·b_3_5·b_3_8 + c_4_17·a_1_0·b_3_6·b_3_10 + c_4_17·a_1_0·b_3_5·b_3_9
       + c_4_192·b_1_33 + c_4_182·b_1_23 + c_4_17·c_4_19·b_1_33 + c_4_172·b_1_23
       + c_4_192·a_1_12·b_1_2 + c_4_18·c_4_19·a_1_12·b_1_2 + c_4_17·c_4_19·a_1_12·b_1_2
       + c_4_17·c_4_18·a_1_12·b_1_2 + c_4_192·a_1_02·a_1_1 + c_4_18·c_4_19·a_1_02·a_1_1
       + c_4_182·a_1_13 + c_4_17·c_4_18·a_1_13 + c_4_172·a_1_13
  39. b_1_35·b_3_5·b_3_9 + b_1_38·b_3_9 + b_1_25·b_3_5·b_3_9 + b_1_25·b_3_5·b_3_7
       + b_8_67·b_3_9 + c_4_19·b_1_3·b_3_5·b_3_9 + c_4_19·b_1_3·b_3_5·b_3_7
       + c_4_19·b_1_34·b_3_9 + c_4_19·b_1_34·b_3_7 + c_4_19·b_1_24·b_3_7
       + c_4_18·b_1_34·b_3_9 + c_4_18·b_1_2·b_3_7·b_3_9 + c_4_18·b_1_24·b_3_9
       + c_4_18·b_1_24·b_3_7 + c_4_17·b_1_2·b_3_5·b_3_7 + c_4_17·b_1_24·b_3_9
       + c_4_19·a_1_0·b_3_5·b_3_9 + c_4_18·a_1_0·b_3_6·b_3_10 + c_4_17·a_1_0·b_3_7·b_3_10
       + c_4_17·a_1_0·b_3_6·b_3_10 + c_4_17·a_1_0·b_3_5·b_3_10 + c_4_17·a_1_0·b_3_5·b_3_9
       + c_4_17·a_1_0·b_3_5·b_3_8 + c_4_17·c_4_19·b_1_33 + c_4_17·c_4_18·b_1_23
       + c_4_172·b_1_23 + c_4_18·c_4_19·a_1_12·b_1_2 + c_4_182·a_1_12·b_1_2
       + c_4_18·c_4_19·a_1_13 + c_4_18·c_4_19·a_1_02·a_1_1 + c_4_17·c_4_19·a_1_13
       + c_4_17·c_4_18·a_1_13
  40. b_8_67·b_3_6 + b_8_67·b_3_5 + b_8_67·b_1_23 + c_4_19·b_1_2·b_3_7·b_3_9
       + c_4_19·b_1_24·b_3_7 + c_4_18·b_1_2·b_3_5·b_3_9 + c_4_18·b_1_2·b_3_5·b_3_7
       + c_4_18·b_1_24·b_3_9 + c_4_18·b_1_24·b_3_7 + c_4_17·b_1_2·b_3_7·b_3_9
       + c_4_17·b_1_2·b_3_5·b_3_9 + c_4_17·b_1_24·b_3_9 + c_4_17·b_1_24·b_3_7
       + c_4_19·a_1_0·b_3_7·b_3_10 + c_4_19·a_1_0·b_3_5·b_3_10 + c_4_19·a_1_0·b_3_5·b_3_9
       + c_4_19·a_1_0·b_3_5·b_3_8 + c_4_18·a_1_0·b_3_5·b_3_10 + c_4_18·a_1_0·b_3_5·b_3_8
       + c_4_17·a_1_0·b_3_7·b_3_10 + c_4_17·a_1_0·b_3_6·b_3_10 + c_4_17·a_1_0·b_3_5·b_3_8
       + c_4_192·a_1_12·b_1_2 + c_4_17·c_4_18·a_1_12·b_1_2 + c_4_192·a_1_13
       + c_4_192·a_1_02·a_1_1 + c_4_18·c_4_19·a_1_13 + c_4_18·c_4_19·a_1_02·a_1_1
       + c_4_182·a_1_13 + c_4_182·a_1_02·a_1_1 + c_4_17·c_4_19·a_1_13
       + c_4_17·c_4_19·a_1_02·a_1_1 + c_4_17·c_4_18·a_1_13 + c_4_17·c_4_18·a_1_02·a_1_1
       + c_4_172·a_1_13 + c_4_172·a_1_02·a_1_1
  41. b_1_35·b_3_5·b_3_7 + b_1_38·b_3_9 + b_1_38·b_3_7 + b_1_311 + b_1_25·b_3_5·b_3_7
       + b_1_28·b_3_5 + b_8_67·b_3_7 + c_4_19·b_1_3·b_3_5·b_3_9 + c_4_19·b_1_3·b_3_5·b_3_7
       + c_4_19·b_1_34·b_3_7 + c_4_19·b_1_34·b_3_5 + c_4_19·b_1_27
       + c_4_18·b_1_3·b_3_5·b_3_9 + c_4_18·b_1_34·b_3_9 + c_4_18·b_1_34·b_3_7
       + c_4_18·b_1_34·b_3_5 + c_4_18·b_1_37 + c_4_18·b_1_2·b_3_7·b_3_9
       + c_4_18·b_1_2·b_3_5·b_3_9 + c_4_18·b_1_24·b_3_9 + c_4_18·b_1_24·b_3_5
       + c_4_17·b_1_3·b_3_7·b_3_9 + c_4_17·b_1_34·b_3_9 + c_4_17·b_1_34·b_3_7
       + c_4_17·b_1_37 + c_4_17·b_1_2·b_3_7·b_3_9 + c_4_17·b_1_2·b_3_5·b_3_9
       + c_4_17·b_1_27 + c_4_19·a_1_0·b_3_6·b_3_10 + c_4_19·a_1_0·b_3_5·b_3_10
       + c_4_19·a_1_0·b_3_5·b_3_9 + c_4_18·a_1_0·b_3_7·b_3_10 + c_4_18·a_1_0·b_3_6·b_3_10
       + c_4_18·a_1_0·b_3_5·b_3_10 + c_4_18·a_1_0·b_3_5·b_3_8 + c_4_17·a_1_0·b_3_5·b_3_10
       + c_4_17·a_1_0·b_3_5·b_3_9 + c_4_17·a_1_0·b_3_5·b_3_8 + c_4_182·b_1_23
       + c_4_17·c_4_18·b_1_23 + c_4_182·a_1_12·b_1_2 + c_4_17·c_4_19·a_1_12·b_1_2
       + c_4_17·c_4_18·a_1_12·b_1_2 + c_4_172·a_1_12·b_1_2 + c_4_182·a_1_02·a_1_1
       + c_4_17·c_4_19·a_1_13 + c_4_17·c_4_19·a_1_02·a_1_1 + c_4_17·c_4_18·a_1_02·a_1_1
       + c_4_172·a_1_02·a_1_1
  42. b_1_35·b_3_7·b_3_9 + b_1_35·b_3_5·b_3_7 + b_1_38·b_3_9 + b_8_67·b_3_8
       + c_4_19·b_1_3·b_3_7·b_3_9 + c_4_19·b_1_3·b_3_5·b_3_9 + c_4_19·b_1_3·b_3_5·b_3_7
       + c_4_19·b_1_34·b_3_5 + c_4_19·b_1_2·b_3_7·b_3_9 + c_4_19·b_1_24·b_3_7
       + c_4_18·b_1_3·b_3_5·b_3_9 + c_4_18·b_1_34·b_3_9 + c_4_18·b_1_34·b_3_7
       + c_4_18·b_1_2·b_3_5·b_3_9 + c_4_18·b_1_2·b_3_5·b_3_7 + c_4_18·b_1_24·b_3_9
       + c_4_18·b_1_24·b_3_7 + c_4_17·b_1_3·b_3_5·b_3_9 + c_4_17·b_1_34·b_3_5
       + c_4_17·b_1_37 + c_4_17·b_1_2·b_3_7·b_3_9 + c_4_17·b_1_2·b_3_5·b_3_9
       + c_4_17·b_1_24·b_3_9 + c_4_17·b_1_24·b_3_7 + c_4_19·a_1_0·b_3_5·b_3_10
       + c_4_19·a_1_0·b_3_5·b_3_8 + c_4_18·a_1_0·b_3_7·b_3_10 + c_4_17·a_1_0·b_3_7·b_3_10
       + c_4_192·b_1_33 + c_4_17·c_4_19·b_1_33 + c_4_17·c_4_19·a_1_12·b_1_2
       + c_4_172·a_1_12·b_1_2 + c_4_192·a_1_13 + c_4_18·c_4_19·a_1_13
       + c_4_182·a_1_02·a_1_1 + c_4_17·c_4_19·a_1_02·a_1_1 + c_4_17·c_4_18·a_1_02·a_1_1
       + c_4_172·a_1_13 + c_4_172·a_1_02·a_1_1
  43. b_1_35·b_3_7·b_3_9 + b_1_38·b_3_7 + b_1_311 + b_8_67·b_3_5 + b_8_67·b_1_33
       + b_8_67·b_1_23 + c_4_19·b_1_3·b_3_7·b_3_9 + c_4_19·b_1_34·b_3_7
       + c_4_19·b_1_2·b_3_7·b_3_9 + c_4_19·b_1_24·b_3_7 + c_4_18·b_1_34·b_3_5
       + c_4_18·b_1_37 + c_4_18·b_1_2·b_3_5·b_3_9 + c_4_18·b_1_2·b_3_5·b_3_7
       + c_4_18·b_1_24·b_3_9 + c_4_18·b_1_24·b_3_7 + c_4_17·b_1_3·b_3_7·b_3_9
       + c_4_17·b_1_3·b_3_5·b_3_9 + c_4_17·b_1_34·b_3_9 + c_4_17·b_1_34·b_3_7
       + c_4_17·b_1_34·b_3_5 + c_4_17·b_1_2·b_3_7·b_3_9 + c_4_17·b_1_2·b_3_5·b_3_9
       + c_4_17·b_1_24·b_3_9 + c_4_17·b_1_24·b_3_7 + c_4_19·a_1_0·b_3_7·b_3_10
       + c_4_19·a_1_0·b_3_5·b_3_8 + c_4_18·a_1_0·b_3_5·b_3_10 + c_4_17·a_1_0·b_3_7·b_3_10
       + c_4_17·a_1_0·b_3_5·b_3_9 + c_4_192·b_1_33 + c_4_17·c_4_19·b_1_33
       + c_4_192·a_1_12·b_1_2 + c_4_17·c_4_19·a_1_12·b_1_2 + c_4_192·a_1_13
       + c_4_192·a_1_02·a_1_1 + c_4_18·c_4_19·a_1_02·a_1_1 + c_4_17·c_4_18·a_1_13
       + c_4_17·c_4_18·a_1_02·a_1_1 + c_4_172·a_1_02·a_1_1
  44. b_8_67·b_1_32·b_3_7·b_3_9 + b_8_67·b_1_32·b_3_5·b_3_9 + b_8_67·b_1_35·b_3_7
       + b_8_67·b_1_38 + b_8_67·b_1_25·b_3_9 + b_8_67·b_1_25·b_3_7 + b_8_67·b_1_28
       + b_8_672 + c_4_19·b_1_39·b_3_9 + c_4_19·b_1_39·b_3_7 + c_4_19·b_1_39·b_3_5
       + c_4_19·b_1_26·b_3_7·b_3_9 + c_4_19·b_1_29·b_3_9 + c_4_19·b_8_67·b_1_3·b_3_9
       + c_4_19·b_8_67·b_1_3·b_3_7 + c_4_19·b_8_67·b_1_34 + c_4_19·b_8_67·b_1_2·b_3_9
       + c_4_19·b_8_67·b_1_2·b_3_7 + c_4_18·b_1_39·b_3_5 + c_4_18·b_1_29·b_3_9
       + c_4_18·b_8_67·b_1_3·b_3_5 + c_4_18·b_8_67·b_1_34 + c_4_18·b_8_67·b_1_2·b_3_7
       + c_4_17·b_1_39·b_3_9 + c_4_17·b_1_39·b_3_5 + c_4_17·b_1_312 + c_4_17·b_1_29·b_3_9
       + c_4_17·b_1_29·b_3_7 + c_4_17·b_8_67·b_1_3·b_3_9 + c_4_17·b_8_67·b_1_3·b_3_5
       + c_4_17·b_8_67·b_1_34 + c_4_192·b_1_35·b_3_9 + c_4_192·b_1_35·b_3_7
       + c_4_192·b_1_38 + c_4_192·b_1_25·b_3_7 + c_4_192·b_1_28
       + c_4_18·c_4_19·b_1_32·b_3_7·b_3_9 + c_4_18·c_4_19·b_1_32·b_3_5·b_3_9
       + c_4_18·c_4_19·b_1_35·b_3_9 + c_4_18·c_4_19·b_1_38
       + c_4_18·c_4_19·b_1_22·b_3_5·b_3_9 + c_4_18·c_4_19·b_1_25·b_3_9
       + c_4_18·c_4_19·b_1_28 + c_4_182·b_1_35·b_3_5 + c_4_182·b_1_22·b_3_7·b_3_9
       + c_4_182·b_1_22·b_3_5·b_3_9 + c_4_182·b_1_25·b_3_9 + c_4_182·b_1_25·b_3_7
       + c_4_182·b_1_28 + c_4_17·c_4_19·b_1_32·b_3_5·b_3_9
       + c_4_17·c_4_19·b_1_32·b_3_5·b_3_7 + c_4_17·c_4_19·b_1_35·b_3_9
       + c_4_17·c_4_19·b_1_35·b_3_7 + c_4_17·c_4_19·b_1_38
       + c_4_17·c_4_19·b_1_22·b_3_7·b_3_9 + c_4_17·c_4_19·b_1_22·b_3_5·b_3_9
       + c_4_17·c_4_19·b_1_22·b_3_5·b_3_7 + c_4_17·c_4_19·b_1_25·b_3_9
       + c_4_17·c_4_19·b_1_25·b_3_7 + c_4_17·c_4_19·b_1_25·b_3_5
       + c_4_17·c_4_18·b_1_32·b_3_7·b_3_9 + c_4_17·c_4_18·b_1_32·b_3_5·b_3_9
       + c_4_17·c_4_18·b_1_35·b_3_9 + c_4_17·c_4_18·b_1_35·b_3_7
       + c_4_17·c_4_18·b_1_22·b_3_7·b_3_9 + c_4_17·c_4_18·b_1_22·b_3_5·b_3_9
       + c_4_17·c_4_18·b_1_25·b_3_9 + c_4_17·c_4_18·b_1_25·b_3_7 + c_4_17·c_4_18·b_1_28
       + c_4_172·b_1_32·b_3_7·b_3_9 + c_4_172·b_1_32·b_3_5·b_3_9
       + c_4_172·b_1_35·b_3_7 + c_4_172·b_1_35·b_3_5 + c_4_172·b_1_38
       + c_4_172·b_1_25·b_3_9 + c_4_172·b_1_25·b_3_5
       + c_4_18·c_4_19·a_1_02·b_3_7·b_3_10 + c_4_17·c_4_19·a_1_02·b_3_6·b_3_10
       + c_4_17·c_4_18·a_1_02·b_3_6·b_3_10 + c_4_182·c_4_19·b_1_24
       + c_4_17·c_4_18·c_4_19·b_1_24 + c_4_17·c_4_182·b_1_24 + c_4_172·c_4_19·b_1_34
       + c_4_172·c_4_18·b_1_24


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 16.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_4_17, a Duflot regular element of degree 4
    2. c_4_18, a Duflot regular element of degree 4
    3. c_4_19, a Duflot regular element of degree 4
    4. b_1_32 + b_1_22, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 8, 10].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_30, an element of degree 1
  5. b_3_50, an element of degree 3
  6. b_3_60, an element of degree 3
  7. b_3_70, an element of degree 3
  8. b_3_80, an element of degree 3
  9. b_3_90, an element of degree 3
  10. b_3_100, an element of degree 3
  11. c_4_17c_1_24 + c_1_14 + c_1_04, an element of degree 4
  12. c_4_18c_1_24 + c_1_14, an element of degree 4
  13. c_4_19c_1_14, an element of degree 4
  14. b_8_670, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. b_1_2c_1_3, an element of degree 1
  4. b_1_30, an element of degree 1
  5. b_3_5c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  6. b_3_60, an element of degree 3
  7. b_3_7c_1_33 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  8. b_3_8c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  9. b_3_9c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3
       + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  10. b_3_10c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  11. c_4_17c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_33 + c_1_14 + c_1_0·c_1_33 + c_1_04, an element of degree 4
  12. c_4_18c_1_2·c_1_33 + c_1_24 + c_1_12·c_1_32 + c_1_14, an element of degree 4
  13. c_4_19c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_14, an element of degree 4
  14. b_8_67c_1_2·c_1_37 + c_1_24·c_1_34 + c_1_1·c_1_2·c_1_36 + c_1_1·c_1_22·c_1_35
       + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_2·c_1_35
       + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_12·c_1_35
       + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_22·c_1_33
       + c_1_0·c_1_14·c_1_33 + c_1_02·c_1_2·c_1_35 + c_1_02·c_1_22·c_1_34
       + c_1_02·c_1_1·c_1_2·c_1_34 + c_1_02·c_1_1·c_1_22·c_1_33
       + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_2·c_1_33
       + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_14·c_1_32
       + c_1_04·c_1_2·c_1_33 + c_1_04·c_1_22·c_1_32, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_3c_1_3, an element of degree 1
  5. b_3_5c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  6. b_3_6c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  7. b_3_7c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  8. b_3_8c_1_33 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  9. b_3_9c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  10. b_3_10c_1_33 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  11. c_4_17c_1_22·c_1_32 + c_1_24 + c_1_1·c_1_33 + c_1_14 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  12. c_4_18c_1_34 + c_1_2·c_1_33 + c_1_24 + c_1_1·c_1_33 + c_1_14 + c_1_0·c_1_33
       + c_1_02·c_1_32, an element of degree 4
  13. c_4_19c_1_1·c_1_33 + c_1_14, an element of degree 4
  14. b_8_67c_1_2·c_1_37 + c_1_24·c_1_34 + c_1_1·c_1_37 + c_1_12·c_1_36
       + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_13·c_1_35
       + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32
       + c_1_15·c_1_33 + c_1_16·c_1_32 + c_1_0·c_1_2·c_1_36 + c_1_0·c_1_22·c_1_35
       + c_1_0·c_1_1·c_1_36 + c_1_0·c_1_1·c_1_2·c_1_35 + c_1_0·c_1_1·c_1_22·c_1_34
       + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_12·c_1_22·c_1_33
       + c_1_0·c_1_14·c_1_33 + c_1_02·c_1_36 + c_1_02·c_1_2·c_1_35
       + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_1·c_1_2·c_1_34
       + c_1_02·c_1_1·c_1_22·c_1_33 + c_1_02·c_1_12·c_1_34
       + c_1_02·c_1_12·c_1_2·c_1_33 + c_1_02·c_1_12·c_1_22·c_1_32
       + c_1_02·c_1_14·c_1_32 + c_1_04·c_1_34 + c_1_04·c_1_1·c_1_33
       + c_1_04·c_1_12·c_1_32, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009