Cohomology of group number 1570 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 4 minimal generators and exponent 4.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 3.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 3.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 2) · (t8  +  1/2·t7  +  t5  −  3/2·t4  −  t3  −  1/2·t2  −  t  −  1/2)

    (t  +  1)2 · (t  −  1)4 · (t2  +  1)3
  • The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 16 minimal generators of maximal degree 6:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_1_3, a nilpotent element of degree 1
  4. b_1_2, an element of degree 1
  5. a_3_3, a nilpotent element of degree 3
  6. a_3_6, a nilpotent element of degree 3
  7. a_3_8, a nilpotent element of degree 3
  8. b_3_7, an element of degree 3
  9. b_3_9, an element of degree 3
  10. b_4_14, an element of degree 4
  11. c_4_15, a Duflot regular element of degree 4
  12. c_4_16, a Duflot regular element of degree 4
  13. c_4_17, a Duflot regular element of degree 4
  14. b_5_27, an element of degree 5
  15. b_6_32, an element of degree 6
  16. b_6_34, an element of degree 6

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 69 minimal relations of maximal degree 12:

  1. a_1_1·b_1_2 + a_1_12 + a_1_02
  2. a_1_0·b_1_2 + a_1_32 + a_1_1·a_1_3 + a_1_0·a_1_1
  3. a_1_3·b_1_2 + a_1_32 + a_1_12 + a_1_0·a_1_1 + a_1_02
  4. a_1_12·a_1_3 + a_1_0·a_1_1·a_1_3 + a_1_0·a_1_12 + a_1_02·a_1_1
  5. a_1_0·a_1_12 + a_1_02·a_1_3 + a_1_02·a_1_1
  6. a_1_12·a_1_3 + a_1_0·a_1_32 + a_1_0·a_1_12
  7. b_1_2·a_3_8 + b_1_2·a_3_6 + a_1_3·a_3_6 + a_1_0·a_3_8
  8. b_1_2·a_3_8 + b_1_2·a_3_6 + b_1_2·a_3_3 + a_1_1·b_3_7 + a_1_1·a_3_8 + a_1_1·a_3_6
       + a_1_1·a_3_3
  9. b_1_2·a_3_8 + b_1_2·a_3_6 + a_1_0·b_3_7 + a_1_3·a_3_3 + a_1_1·a_3_8 + a_1_1·a_3_3
       + a_1_0·a_3_6 + a_1_0·a_3_3
  10. b_1_2·a_3_8 + b_1_2·a_3_6 + b_1_2·a_3_3 + a_1_3·b_3_7 + a_1_3·a_3_6 + a_1_3·a_3_3
       + a_1_1·a_3_8 + a_1_1·a_3_3
  11. b_1_2·a_3_6 + b_1_2·a_3_3 + a_1_1·b_3_9 + a_1_3·a_3_8
  12. b_1_2·a_3_8 + b_1_2·a_3_6 + a_1_0·b_3_9 + a_1_3·a_3_8 + a_1_3·a_3_6 + a_1_3·a_3_3
       + a_1_1·a_3_8 + a_1_1·a_3_3 + a_1_0·a_3_6
  13. b_1_2·a_3_8 + b_1_2·a_3_3 + a_1_3·b_3_9 + a_1_3·a_3_8 + a_1_3·a_3_6 + a_1_1·a_3_8
       + a_1_1·a_3_3
  14. a_1_12·a_3_6 + a_1_0·a_1_1·a_3_6 + a_1_02·a_3_6
  15. a_1_1·a_1_3·a_3_3 + a_1_12·a_3_3 + a_1_0·a_1_3·a_3_6 + a_1_0·a_1_1·a_3_8
       + a_1_0·a_1_1·a_3_6 + a_1_0·a_1_1·a_3_3 + a_1_02·a_3_3
  16. a_1_1·a_1_3·a_3_8 + a_1_12·a_3_8 + a_1_12·a_3_6 + a_1_12·a_3_3 + a_1_0·a_1_3·a_3_8
       + a_1_0·a_1_3·a_3_6 + a_1_0·a_1_1·a_3_3
  17. b_4_14·a_1_1 + a_1_1·a_1_3·a_3_8 + a_1_1·a_1_3·a_3_3 + a_1_0·a_1_3·a_3_6
       + a_1_0·a_1_1·a_3_3 + a_1_02·a_3_8
  18. b_4_14·a_1_0 + a_1_12·a_3_8 + a_1_0·a_1_3·a_3_3 + a_1_0·a_1_1·a_3_6 + a_1_0·a_1_1·a_3_3
       + a_1_02·a_3_8
  19. b_4_14·a_1_3 + a_1_1·a_1_3·a_3_8 + a_1_1·a_1_3·a_3_3 + a_1_12·a_3_8 + a_1_12·a_3_6
       + a_1_12·a_3_3 + a_1_0·a_1_1·a_3_6 + a_1_0·a_1_1·a_3_3 + a_1_02·a_3_8
  20. a_3_6·b_3_7 + a_3_3·b_3_9 + a_3_3·b_3_7 + a_3_62 + a_3_3·a_3_6 + a_3_32
       + a_1_02·a_1_3·a_3_8 + a_1_02·a_1_1·a_3_8 + a_1_02·a_1_1·a_3_6 + c_4_15·a_1_32
       + c_4_15·a_1_12 + c_4_15·a_1_0·a_1_1
  21. a_3_8·b_3_9 + a_3_6·b_3_9 + a_3_6·b_3_7 + a_3_3·b_3_9 + a_3_3·b_3_7 + a_3_82 + a_3_3·a_3_8
       + a_3_3·a_3_6 + a_3_32 + a_1_02·a_1_3·a_3_8 + a_1_02·a_1_1·a_3_8
       + a_1_02·a_1_1·a_3_6 + c_4_16·a_1_12 + c_4_16·a_1_0·a_1_1 + c_4_15·a_1_0·a_1_1
  22. a_3_6·b_3_7 + a_3_3·b_3_9 + a_3_3·b_3_7 + a_3_3·a_3_6 + a_3_32 + a_1_02·a_1_3·a_3_8
       + a_1_02·a_1_1·a_3_8 + c_4_16·a_1_12 + c_4_16·a_1_02 + c_4_15·a_1_0·a_1_1
       + c_4_15·a_1_02
  23. a_3_6·b_3_9 + a_3_6·b_3_7 + a_3_82 + a_3_6·a_3_8 + a_3_62 + a_3_3·a_3_6
       + a_1_02·a_1_3·a_3_8 + a_1_02·a_1_1·a_3_6 + c_4_16·a_1_1·a_1_3 + c_4_16·a_1_12
       + c_4_15·a_1_1·a_1_3 + c_4_15·a_1_12 + c_4_15·a_1_0·a_1_1 + c_4_15·a_1_02
  24. a_3_8·b_3_7 + a_3_6·b_3_9 + a_3_82 + a_3_6·a_3_8 + a_1_02·a_1_1·a_3_8
       + a_1_02·a_1_1·a_3_6 + c_4_16·a_1_12 + c_4_16·a_1_0·a_1_3 + c_4_15·a_1_1·a_1_3
       + c_4_15·a_1_12 + c_4_15·a_1_0·a_1_3 + c_4_15·a_1_0·a_1_1 + c_4_15·a_1_02
  25. a_3_6·b_3_7 + a_3_3·b_3_9 + a_3_3·b_3_7 + a_3_82 + a_3_62 + a_3_3·a_3_6 + a_3_32
       + a_1_02·a_1_3·a_3_8 + a_1_02·a_1_1·a_3_8 + a_1_02·a_1_1·a_3_6 + c_4_16·a_1_32
       + c_4_15·a_1_0·a_1_1
  26. b_3_72 + b_1_23·b_3_9 + b_1_23·b_3_7 + a_3_6·b_3_7 + a_3_3·b_3_9 + a_3_3·b_3_7
       + a_3_3·a_3_6 + a_3_32 + a_1_02·a_1_3·a_3_8 + a_1_02·a_1_1·a_3_8 + c_4_17·b_1_22
       + c_4_15·b_1_22 + c_4_17·a_1_02 + c_4_15·a_1_12 + c_4_15·a_1_0·a_1_1
       + c_4_15·a_1_02
  27. a_3_6·b_3_7 + a_3_3·b_3_9 + a_3_62 + a_3_32 + a_1_02·a_1_3·a_3_8 + c_4_17·a_1_1·a_1_3
       + c_4_17·a_1_12 + c_4_17·a_1_0·a_1_3 + c_4_15·a_1_0·a_1_3 + c_4_15·a_1_0·a_1_1
  28. b_3_72 + b_1_23·b_3_9 + b_1_23·b_3_7 + a_3_6·b_3_7 + a_3_3·b_3_9 + a_3_3·b_3_7
       + a_3_3·a_3_6 + a_1_02·a_1_1·a_3_8 + a_1_02·a_1_1·a_3_6 + c_4_17·b_1_22
       + c_4_15·b_1_22 + c_4_17·a_1_32 + c_4_15·a_1_0·a_1_1
  29. b_3_92 + b_3_72 + b_1_23·b_3_9 + b_1_26 + b_4_14·b_1_22 + a_3_82 + a_3_32
       + a_1_02·a_1_1·a_3_8 + a_1_02·a_1_1·a_3_6 + c_4_16·b_1_22 + c_4_16·a_1_12
       + c_4_15·a_1_12
  30. b_3_92 + b_3_7·b_3_9 + b_1_2·b_5_27 + b_1_23·b_3_9 + b_1_23·b_3_7 + b_1_26
       + a_3_8·b_3_9 + a_3_3·b_3_9 + a_3_82 + a_1_02·a_1_1·a_3_6 + c_4_16·b_1_22
       + c_4_15·b_1_22 + c_4_17·a_1_1·a_1_3 + c_4_15·a_1_12
  31. a_3_8·b_3_7 + a_3_6·b_3_9 + a_3_6·b_3_7 + a_1_1·b_5_27 + a_3_82 + a_3_62 + a_3_3·a_3_8
       + a_3_3·a_3_6 + a_1_02·a_1_1·a_3_8 + c_4_17·a_1_1·a_1_3 + c_4_17·a_1_12
       + c_4_17·a_1_0·a_1_1 + c_4_15·a_1_1·a_1_3 + c_4_15·a_1_0·a_1_1
  32. b_3_72 + b_1_23·b_3_9 + b_1_23·b_3_7 + a_3_8·b_3_9 + a_3_3·b_3_9 + a_1_0·b_5_27
       + a_3_32 + a_1_02·a_1_1·a_3_8 + a_1_02·a_1_1·a_3_6 + c_4_17·b_1_22
       + c_4_15·b_1_22 + c_4_17·a_1_1·a_1_3 + c_4_17·a_1_12 + c_4_17·a_1_0·a_1_1
       + c_4_15·a_1_12
  33. b_3_72 + b_1_23·b_3_9 + b_1_23·b_3_7 + a_3_8·b_3_7 + a_3_6·b_3_9 + a_3_6·b_3_7
       + a_3_3·b_3_7 + a_1_3·b_5_27 + a_3_32 + c_4_17·b_1_22 + c_4_15·b_1_22
       + c_4_17·a_1_12 + c_4_16·a_1_12 + c_4_15·a_1_1·a_1_3 + c_4_15·a_1_12
       + c_4_15·a_1_0·a_1_3
  34. b_4_14·a_3_8 + a_1_1·a_3_3·a_3_8 + a_1_1·a_3_3·a_3_6 + a_1_0·a_3_6·a_3_8
       + c_4_16·a_1_0·a_1_1·a_1_3 + c_4_16·a_1_02·a_1_1 + c_4_15·a_1_02·a_1_3
       + c_4_15·a_1_03
  35. b_4_14·a_3_3 + a_1_1·a_3_6·a_3_8 + a_1_1·a_3_3·a_3_8 + a_1_0·a_3_3·a_3_6
       + c_4_17·a_1_03 + c_4_16·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_3
  36. b_4_14·a_3_6 + a_1_1·a_3_6·a_3_8 + a_1_1·a_3_3·a_3_8 + a_1_1·a_3_3·a_3_6
       + a_1_0·a_3_3·a_3_8 + c_4_16·a_1_0·a_1_1·a_1_3 + c_4_16·a_1_02·a_1_3 + c_4_16·a_1_03
       + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_1
  37. a_1_12·b_5_27 + a_1_1·a_3_3·a_3_8 + a_1_1·a_3_3·a_3_6 + a_1_0·a_3_6·a_3_8
       + c_4_17·a_1_0·a_1_1·a_1_3 + c_4_17·a_1_02·a_1_1 + c_4_17·a_1_03 + c_4_16·a_1_03
       + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_1
  38. b_1_22·b_5_27 + b_1_24·b_3_9 + b_1_27 + b_6_32·b_1_2 + b_4_14·b_3_7 + b_4_14·b_1_23
       + a_1_1·a_3_6·a_3_8 + a_1_1·a_3_3·a_3_8 + a_1_1·a_3_3·a_3_6 + a_1_0·a_3_3·a_3_6
       + c_4_17·b_1_23 + c_4_16·b_1_23 + c_4_17·a_1_0·a_1_1·a_1_3 + c_4_17·a_1_03
       + c_4_16·a_1_03 + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_03
  39. b_6_32·a_1_1 + a_1_1·a_3_6·a_3_8 + a_1_1·a_3_3·a_3_8 + a_1_0·a_3_3·a_3_6
       + c_4_17·a_1_0·a_1_1·a_1_3 + c_4_17·a_1_02·a_1_1 + c_4_17·a_1_03
       + c_4_16·a_1_02·a_1_3 + c_4_16·a_1_02·a_1_1 + c_4_16·a_1_03
       + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_1 + c_4_15·a_1_03
  40. b_6_32·a_1_0 + a_1_0·a_3_6·a_3_8 + a_1_0·a_3_3·a_3_8 + c_4_17·a_1_03
       + c_4_16·a_1_0·a_1_1·a_1_3 + c_4_16·a_1_02·a_1_3 + c_4_16·a_1_03
  41. b_6_32·a_1_3 + a_1_1·a_3_6·a_3_8 + a_1_0·a_3_3·a_3_8 + c_4_17·a_1_02·a_1_3
       + c_4_16·a_1_03 + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_03
  42. b_1_22·b_5_27 + b_1_24·b_3_9 + b_1_27 + b_6_34·b_1_2 + b_4_14·b_3_9 + b_4_14·b_1_23
       + a_1_1·a_3_6·a_3_8 + a_1_1·a_3_3·a_3_8 + a_1_1·a_3_3·a_3_6 + a_1_0·a_3_6·a_3_8
       + c_4_16·b_1_23 + c_4_17·a_1_02·a_1_1 + c_4_16·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_1
  43. b_6_34·a_1_1 + a_1_1·a_3_6·a_3_8 + a_1_0·a_3_6·a_3_8 + a_1_0·a_3_3·a_3_6
       + c_4_17·a_1_02·a_1_3 + c_4_17·a_1_02·a_1_1 + c_4_17·a_1_03 + c_4_16·a_1_03
       + c_4_15·a_1_0·a_1_1·a_1_3 + c_4_15·a_1_02·a_1_1
  44. b_6_34·a_1_0 + a_1_1·a_3_6·a_3_8 + c_4_17·a_1_0·a_1_1·a_1_3 + c_4_17·a_1_02·a_1_3
       + c_4_17·a_1_02·a_1_1 + c_4_17·a_1_03 + c_4_16·a_1_0·a_1_1·a_1_3
       + c_4_16·a_1_02·a_1_3 + c_4_16·a_1_03 + c_4_15·a_1_0·a_1_1·a_1_3
       + c_4_15·a_1_02·a_1_3 + c_4_15·a_1_02·a_1_1 + c_4_15·a_1_03
  45. b_6_34·a_1_3 + a_1_1·a_3_6·a_3_8 + a_1_1·a_3_3·a_3_6 + a_1_0·a_3_3·a_3_8
       + c_4_17·a_1_02·a_1_3 + c_4_16·a_1_02·a_1_1
  46. b_1_25·b_3_9 + b_1_25·b_3_7 + b_4_14·b_1_24 + b_4_142 + c_4_16·b_1_24
       + c_4_15·b_1_24
  47. a_3_8·b_5_27 + a_1_02·a_3_6·a_3_8 + c_4_16·a_1_1·b_3_7 + c_4_15·a_1_1·b_3_9
       + c_4_15·a_1_1·b_3_7 + c_4_17·a_1_3·a_3_8 + c_4_17·a_1_1·a_3_8 + c_4_17·a_1_0·a_3_8
       + c_4_16·a_1_3·a_3_8 + c_4_16·a_1_3·a_3_3 + c_4_16·a_1_1·a_3_8 + c_4_16·a_1_1·a_3_6
       + c_4_15·a_1_3·a_3_8 + c_4_15·a_1_3·a_3_3 + c_4_15·a_1_1·a_3_8 + c_4_15·a_1_1·a_3_6
  48. a_3_3·b_5_27 + a_1_02·a_3_6·a_3_8 + a_1_02·a_3_3·a_3_8 + c_4_17·a_1_1·b_3_9
       + c_4_17·a_1_1·b_3_7 + c_4_15·a_1_1·b_3_9 + c_4_17·a_1_3·a_3_6 + c_4_17·a_1_3·a_3_3
       + c_4_17·a_1_1·a_3_8 + c_4_17·a_1_1·a_3_6 + c_4_17·a_1_0·a_3_6 + c_4_17·a_1_0·a_3_3
       + c_4_16·a_1_3·a_3_3 + c_4_16·a_1_1·a_3_3 + c_4_15·a_1_3·a_3_8 + c_4_15·a_1_1·a_3_8
       + c_4_15·a_1_0·a_3_8 + c_4_15·a_1_0·a_3_6
  49. a_3_6·b_5_27 + a_1_0·a_1_1·a_3_6·a_3_8 + a_1_02·a_3_3·a_3_8 + c_4_16·a_1_1·b_3_7
       + c_4_15·a_1_1·b_3_9 + c_4_15·a_1_1·b_3_7 + c_4_17·a_1_3·a_3_6 + c_4_17·a_1_1·a_3_6
       + c_4_17·a_1_0·a_3_6 + c_4_16·a_1_3·a_3_3 + c_4_16·a_1_1·a_3_8 + c_4_16·a_1_1·a_3_3
       + c_4_16·a_1_0·a_3_8 + c_4_16·a_1_0·a_3_3 + c_4_15·a_1_3·a_3_3 + c_4_15·a_1_0·a_3_3
  50. b_3_7·b_5_27 + b_1_25·b_3_7 + b_1_28 + b_4_14·b_1_2·b_3_7 + b_4_14·b_1_24
       + a_1_0·a_1_1·a_3_6·a_3_8 + a_1_02·a_3_6·a_3_8 + a_1_02·a_3_3·a_3_8
       + c_4_17·b_1_2·b_3_9 + c_4_17·b_1_2·b_3_7 + c_4_17·b_1_24 + c_4_16·b_1_24
       + c_4_15·b_1_2·b_3_9 + c_4_15·b_1_24 + c_4_17·a_1_1·b_3_7 + c_4_16·a_1_1·b_3_7
       + c_4_15·a_1_1·b_3_7 + c_4_17·a_1_3·a_3_8 + c_4_17·a_1_3·a_3_6 + c_4_17·a_1_0·a_3_3
       + c_4_16·a_1_1·a_3_8 + c_4_16·a_1_1·a_3_3 + c_4_16·a_1_0·a_3_8 + c_4_16·a_1_0·a_3_3
       + c_4_15·a_1_3·a_3_8 + c_4_15·a_1_3·a_3_3 + c_4_15·a_1_0·a_3_6 + c_4_15·a_1_0·a_3_3
  51. b_3_9·b_5_27 + b_1_25·b_3_9 + b_1_25·b_3_7 + b_1_28 + b_4_14·b_1_2·b_3_9
       + b_4_14·b_1_2·b_3_7 + b_4_14·b_1_24 + a_1_02·a_3_6·a_3_8 + a_1_02·a_3_3·a_3_8
       + c_4_17·b_1_2·b_3_9 + c_4_17·b_1_2·b_3_7 + c_4_16·b_1_2·b_3_7 + c_4_16·b_1_24
       + c_4_15·b_1_2·b_3_7 + c_4_17·a_1_1·b_3_9 + c_4_16·a_1_1·b_3_9 + c_4_15·a_1_1·b_3_9
       + c_4_17·a_1_3·a_3_3 + c_4_17·a_1_0·a_3_8 + c_4_17·a_1_0·a_3_6 + c_4_16·a_1_3·a_3_8
       + c_4_16·a_1_1·a_3_8 + c_4_16·a_1_1·a_3_3 + c_4_16·a_1_0·a_3_8 + c_4_16·a_1_0·a_3_3
       + c_4_15·a_1_3·a_3_8 + c_4_15·a_1_1·a_3_8 + c_4_15·a_1_1·a_3_3 + c_4_15·a_1_0·a_3_8
       + c_4_15·a_1_0·a_3_3
  52. b_6_32·a_3_8 + c_4_17·a_1_12·a_3_3 + c_4_17·a_1_0·a_1_1·a_3_6
       + c_4_17·a_1_0·a_1_1·a_3_3 + c_4_16·a_1_12·a_3_8 + c_4_16·a_1_0·a_1_3·a_3_8
       + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_3·a_3_3 + c_4_16·a_1_0·a_1_1·a_3_8
       + c_4_16·a_1_0·a_1_1·a_3_6 + c_4_16·a_1_02·a_3_6 + c_4_15·a_1_12·a_3_8
       + c_4_15·a_1_12·a_3_3 + c_4_15·a_1_0·a_1_1·a_3_6
  53. b_6_32·a_3_3 + c_4_17·a_1_12·a_3_3 + c_4_17·a_1_0·a_1_1·a_3_6
       + c_4_17·a_1_0·a_1_1·a_3_3 + c_4_17·a_1_02·a_3_8 + c_4_17·a_1_02·a_3_3
       + c_4_16·a_1_0·a_1_3·a_3_3 + c_4_16·a_1_0·a_1_1·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_3
       + c_4_16·a_1_02·a_3_8 + c_4_15·a_1_12·a_3_3 + c_4_15·a_1_0·a_1_3·a_3_6
       + c_4_15·a_1_02·a_3_8 + c_4_15·a_1_02·a_3_6 + c_4_15·a_1_02·a_3_3
  54. b_6_32·a_3_6 + c_4_17·a_1_12·a_3_8 + c_4_17·a_1_12·a_3_3 + c_4_17·a_1_0·a_1_3·a_3_8
       + c_4_17·a_1_0·a_1_1·a_3_8 + c_4_17·a_1_0·a_1_1·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_3
       + c_4_16·a_1_12·a_3_8 + c_4_16·a_1_12·a_3_3 + c_4_16·a_1_0·a_1_3·a_3_8
       + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_3·a_3_3 + c_4_16·a_1_0·a_1_1·a_3_8
       + c_4_15·a_1_12·a_3_8 + c_4_15·a_1_12·a_3_3 + c_4_15·a_1_0·a_1_3·a_3_8
       + c_4_15·a_1_0·a_1_3·a_3_3 + c_4_15·a_1_0·a_1_1·a_3_8 + c_4_15·a_1_0·a_1_1·a_3_6
       + c_4_15·a_1_0·a_1_1·a_3_3 + c_4_15·a_1_02·a_3_8
  55. b_6_32·b_3_7 + b_6_32·b_1_23 + b_4_14·b_1_22·b_3_9 + b_4_14·b_1_25
       + c_4_17·b_1_22·b_3_9 + c_4_17·b_1_25 + c_4_16·b_1_22·b_3_7 + c_4_15·b_1_22·b_3_9
       + c_4_15·b_1_25 + b_4_14·c_4_17·b_1_2 + b_4_14·c_4_15·b_1_2
       + c_4_17·a_1_0·a_1_3·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_8 + c_4_17·a_1_0·a_1_1·a_3_6
       + c_4_17·a_1_0·a_1_1·a_3_3 + c_4_17·a_1_02·a_3_8 + c_4_17·a_1_02·a_3_6
       + c_4_16·a_1_12·a_3_3 + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_3·a_3_3
       + c_4_16·a_1_0·a_1_1·a_3_8 + c_4_16·a_1_0·a_1_1·a_3_6 + c_4_16·a_1_02·a_3_8
       + c_4_16·a_1_02·a_3_3 + c_4_15·a_1_12·a_3_8 + c_4_15·a_1_0·a_1_3·a_3_6
       + c_4_15·a_1_0·a_1_3·a_3_3 + c_4_15·a_1_0·a_1_1·a_3_8 + c_4_15·a_1_0·a_1_1·a_3_3
       + c_4_15·a_1_02·a_3_6 + c_4_15·a_1_02·a_3_3
  56. b_6_32·b_3_9 + b_4_14·b_5_27 + b_4_14·b_1_22·b_3_9 + b_4_14·b_1_22·b_3_7
       + b_4_142·b_1_2 + c_4_17·b_1_22·b_3_7 + c_4_17·b_1_25 + c_4_16·b_1_22·b_3_9
       + c_4_16·b_1_22·b_3_7 + c_4_15·b_1_22·b_3_7 + c_4_15·b_1_25 + b_4_14·c_4_17·b_1_2
       + c_4_17·a_1_12·a_3_8 + c_4_17·a_1_0·a_1_1·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_3
       + c_4_17·a_1_02·a_3_6 + c_4_16·a_1_0·a_1_3·a_3_3 + c_4_16·a_1_0·a_1_1·a_3_8
       + c_4_16·a_1_0·a_1_1·a_3_3 + c_4_16·a_1_02·a_3_6 + c_4_16·a_1_02·a_3_3
       + c_4_15·a_1_0·a_1_3·a_3_8 + c_4_15·a_1_0·a_1_1·a_3_8 + c_4_15·a_1_0·a_1_1·a_3_3
       + c_4_15·a_1_02·a_3_3
  57. b_6_34·a_3_8 + c_4_17·a_1_12·a_3_8 + c_4_17·a_1_0·a_1_1·a_3_8 + c_4_16·a_1_12·a_3_8
       + c_4_16·a_1_12·a_3_3 + c_4_16·a_1_0·a_1_3·a_3_8 + c_4_16·a_1_0·a_1_3·a_3_3
       + c_4_16·a_1_0·a_1_1·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_3 + c_4_16·a_1_02·a_3_8
       + c_4_15·a_1_12·a_3_3 + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_3
       + c_4_15·a_1_02·a_3_8 + c_4_15·a_1_02·a_3_6
  58. b_6_34·a_3_3 + c_4_17·a_1_12·a_3_8 + c_4_17·a_1_12·a_3_3 + c_4_17·a_1_0·a_1_3·a_3_8
       + c_4_17·a_1_0·a_1_3·a_3_6 + c_4_17·a_1_0·a_1_3·a_3_3 + c_4_17·a_1_0·a_1_1·a_3_6
       + c_4_17·a_1_0·a_1_1·a_3_3 + c_4_17·a_1_02·a_3_3 + c_4_16·a_1_12·a_3_3
       + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_1·a_3_8 + c_4_16·a_1_0·a_1_1·a_3_6
       + c_4_16·a_1_02·a_3_3 + c_4_15·a_1_0·a_1_3·a_3_8 + c_4_15·a_1_0·a_1_3·a_3_3
       + c_4_15·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_3 + c_4_15·a_1_02·a_3_8
       + c_4_15·a_1_02·a_3_6 + c_4_15·a_1_02·a_3_3
  59. b_6_34·a_3_6 + c_4_17·a_1_12·a_3_8 + c_4_17·a_1_12·a_3_3 + c_4_17·a_1_0·a_1_3·a_3_6
       + c_4_17·a_1_0·a_1_1·a_3_8 + c_4_17·a_1_0·a_1_1·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_3
       + c_4_17·a_1_02·a_3_8 + c_4_16·a_1_12·a_3_8 + c_4_16·a_1_12·a_3_3
       + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_02·a_3_3 + c_4_15·a_1_12·a_3_3
       + c_4_15·a_1_0·a_1_3·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_0·a_1_1·a_3_3
  60. b_6_34·b_3_7 + b_6_32·b_1_23 + b_4_14·b_5_27 + b_4_14·b_1_22·b_3_9
       + b_4_14·b_1_22·b_3_7 + b_4_14·b_1_25 + b_4_142·b_1_2 + c_4_17·b_1_22·b_3_9
       + c_4_17·b_1_22·b_3_7 + c_4_17·b_1_25 + c_4_16·b_1_22·b_3_7 + c_4_15·b_1_22·b_3_9
       + c_4_15·b_1_25 + b_4_14·c_4_17·b_1_2 + c_4_17·a_1_12·a_3_3
       + c_4_17·a_1_0·a_1_3·a_3_8 + c_4_17·a_1_0·a_1_1·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_3
       + c_4_17·a_1_02·a_3_8 + c_4_17·a_1_02·a_3_6 + c_4_17·a_1_02·a_3_3
       + c_4_16·a_1_12·a_3_8 + c_4_16·a_1_12·a_3_3 + c_4_16·a_1_0·a_1_3·a_3_8
       + c_4_16·a_1_0·a_1_3·a_3_6 + c_4_16·a_1_0·a_1_3·a_3_3 + c_4_16·a_1_0·a_1_1·a_3_8
       + c_4_16·a_1_0·a_1_1·a_3_3 + c_4_16·a_1_02·a_3_8 + c_4_16·a_1_02·a_3_6
       + c_4_15·a_1_12·a_3_8 + c_4_15·a_1_0·a_1_3·a_3_3 + c_4_15·a_1_0·a_1_1·a_3_8
       + c_4_15·a_1_0·a_1_1·a_3_6 + c_4_15·a_1_02·a_3_8 + c_4_15·a_1_02·a_3_6
       + c_4_15·a_1_02·a_3_3
  61. b_6_34·b_3_9 + b_4_14·b_1_25 + b_4_142·b_1_2 + c_4_17·b_1_22·b_3_9
       + c_4_17·b_1_22·b_3_7 + c_4_17·b_1_25 + c_4_16·b_1_22·b_3_9 + c_4_16·b_1_22·b_3_7
       + c_4_15·b_1_22·b_3_7 + c_4_15·b_1_25 + b_4_14·c_4_17·b_1_2 + b_4_14·c_4_16·b_1_2
       + b_4_14·c_4_15·b_1_2 + c_4_17·a_1_12·a_3_3 + c_4_17·a_1_0·a_1_3·a_3_6
       + c_4_17·a_1_0·a_1_1·a_3_8 + c_4_17·a_1_0·a_1_1·a_3_6 + c_4_17·a_1_0·a_1_1·a_3_3
       + c_4_16·a_1_12·a_3_8 + c_4_16·a_1_12·a_3_3 + c_4_16·a_1_0·a_1_3·a_3_8
       + c_4_16·a_1_0·a_1_1·a_3_8 + c_4_16·a_1_02·a_3_8 + c_4_16·a_1_02·a_3_6
       + c_4_16·a_1_02·a_3_3 + c_4_15·a_1_12·a_3_8 + c_4_15·a_1_0·a_1_3·a_3_3
       + c_4_15·a_1_0·a_1_1·a_3_8 + c_4_15·a_1_02·a_3_8 + c_4_15·a_1_02·a_3_6
  62. b_5_272 + b_1_27·b_3_7 + b_6_32·b_1_24 + b_4_14·b_1_23·b_3_9 + b_4_14·b_1_26
       + b_4_142·b_1_22 + c_4_17·b_1_23·b_3_9 + c_4_17·b_1_26 + c_4_16·b_1_23·b_3_9
       + c_4_16·b_1_23·b_3_7 + c_4_15·b_1_23·b_3_9 + c_4_15·b_1_26
       + b_4_14·c_4_17·b_1_22 + b_4_14·c_4_15·b_1_22 + c_4_17·a_1_02·a_1_1·a_3_8
       + c_4_16·a_1_02·a_1_1·a_3_6 + c_4_15·a_1_02·a_1_3·a_3_8
       + c_4_15·a_1_02·a_1_1·a_3_8 + c_4_15·a_1_02·a_1_1·a_3_6 + c_4_16·c_4_17·b_1_22
       + c_4_15·c_4_16·b_1_22 + c_4_152·b_1_22 + c_4_172·a_1_32 + c_4_172·a_1_12
       + c_4_172·a_1_02 + c_4_16·c_4_17·a_1_02 + c_4_162·a_1_32 + c_4_162·a_1_12
       + c_4_15·c_4_17·a_1_32 + c_4_15·c_4_17·a_1_02 + c_4_15·c_4_16·a_1_32
       + c_4_15·c_4_16·a_1_02 + c_4_152·a_1_12 + c_4_152·a_1_02
  63. b_5_272 + b_1_27·b_3_7 + b_1_210 + b_4_14·b_1_2·b_5_27 + b_4_14·b_1_26
       + b_4_14·b_6_32 + b_4_142·b_1_22 + c_4_17·b_1_23·b_3_9 + c_4_16·b_1_23·b_3_9
       + c_4_15·b_1_23·b_3_9 + c_4_15·b_1_23·b_3_7 + c_4_15·b_1_26
       + b_4_14·c_4_16·b_1_22 + b_4_14·c_4_15·b_1_22 + c_4_17·a_1_02·a_1_1·a_3_8
       + c_4_16·a_1_02·a_1_1·a_3_8 + c_4_15·a_1_02·a_1_3·a_3_8
       + c_4_15·a_1_02·a_1_1·a_3_8 + c_4_15·a_1_02·a_1_1·a_3_6 + c_4_16·c_4_17·b_1_22
       + c_4_15·c_4_16·b_1_22 + c_4_152·b_1_22 + c_4_172·a_1_32 + c_4_172·a_1_12
       + c_4_172·a_1_02 + c_4_16·c_4_17·a_1_02 + c_4_162·a_1_32 + c_4_162·a_1_12
       + c_4_15·c_4_17·a_1_32 + c_4_15·c_4_17·a_1_02 + c_4_15·c_4_16·a_1_32
       + c_4_15·c_4_16·a_1_02 + c_4_152·a_1_12 + c_4_152·a_1_02
  64. b_5_272 + b_4_14·b_1_2·b_5_27 + b_4_14·b_1_23·b_3_9 + b_4_14·b_1_23·b_3_7
       + b_4_14·b_1_26 + b_4_14·b_6_34 + c_4_17·b_1_23·b_3_9 + c_4_16·b_1_23·b_3_7
       + b_4_14·c_4_17·b_1_22 + b_4_14·c_4_16·b_1_22 + b_4_14·c_4_15·b_1_22
       + c_4_17·a_1_02·a_1_1·a_3_8 + c_4_16·a_1_02·a_1_3·a_3_8
       + c_4_16·a_1_02·a_1_1·a_3_8 + c_4_16·a_1_02·a_1_1·a_3_6
       + c_4_15·a_1_02·a_1_3·a_3_8 + c_4_15·a_1_02·a_1_1·a_3_6 + c_4_16·c_4_17·b_1_22
       + c_4_15·c_4_16·b_1_22 + c_4_152·b_1_22 + c_4_172·a_1_32 + c_4_172·a_1_12
       + c_4_172·a_1_02 + c_4_16·c_4_17·a_1_02 + c_4_162·a_1_32 + c_4_162·a_1_12
       + c_4_15·c_4_17·a_1_32 + c_4_15·c_4_17·a_1_02 + c_4_15·c_4_16·a_1_32
       + c_4_15·c_4_16·a_1_02 + c_4_152·a_1_12 + c_4_152·a_1_02
  65. b_6_32·b_5_27 + b_4_14·b_1_24·b_3_9 + b_4_14·b_1_24·b_3_7 + b_4_14·b_1_27
       + b_4_14·b_6_32·b_1_2 + b_4_142·b_1_23 + c_4_17·b_1_24·b_3_9 + c_4_17·b_1_24·b_3_7
       + c_4_17·b_1_27 + c_4_17·b_6_32·b_1_2 + c_4_16·b_1_27 + c_4_16·b_6_32·b_1_2
       + c_4_15·b_1_24·b_3_9 + c_4_15·b_1_24·b_3_7 + c_4_15·b_1_27 + b_4_14·c_4_17·b_3_9
       + b_4_14·c_4_16·b_3_7 + b_4_14·c_4_16·b_1_23 + b_4_14·c_4_15·b_3_9
       + c_4_17·a_1_1·a_3_6·a_3_8 + c_4_17·a_1_1·a_3_3·a_3_6 + c_4_17·a_1_0·a_3_6·a_3_8
       + c_4_17·a_1_0·a_3_3·a_3_8 + c_4_17·a_1_0·a_3_3·a_3_6 + c_4_16·a_1_1·a_3_3·a_3_8
       + c_4_16·a_1_1·a_3_3·a_3_6 + c_4_16·a_1_0·a_3_3·a_3_8 + c_4_15·a_1_1·a_3_6·a_3_8
       + c_4_15·a_1_0·a_3_6·a_3_8 + c_4_15·a_1_0·a_3_3·a_3_8 + c_4_172·b_1_23
       + c_4_16·c_4_17·b_1_23 + c_4_162·b_1_23 + c_4_15·c_4_16·b_1_23
       + c_4_152·b_1_23 + c_4_172·a_1_0·a_1_1·a_1_3 + c_4_172·a_1_02·a_1_3
       + c_4_172·a_1_02·a_1_1 + c_4_16·c_4_17·a_1_0·a_1_1·a_1_3
       + c_4_16·c_4_17·a_1_02·a_1_3 + c_4_162·a_1_0·a_1_1·a_1_3 + c_4_162·a_1_02·a_1_3
       + c_4_162·a_1_02·a_1_1 + c_4_15·c_4_17·a_1_02·a_1_3 + c_4_15·c_4_16·a_1_02·a_1_3
       + c_4_15·c_4_16·a_1_02·a_1_1 + c_4_15·c_4_16·a_1_03 + c_4_152·a_1_02·a_1_3
       + c_4_152·a_1_03
  66. b_6_34·b_5_27 + b_4_14·b_1_24·b_3_7 + b_4_14·b_1_27 + b_4_14·b_6_32·b_1_2
       + b_4_142·b_3_9 + b_4_142·b_1_23 + c_4_17·b_1_24·b_3_7 + c_4_16·b_1_27
       + c_4_16·b_6_32·b_1_2 + c_4_15·b_1_24·b_3_9 + c_4_15·b_1_24·b_3_7 + c_4_15·b_1_27
       + b_4_14·c_4_17·b_3_9 + b_4_14·c_4_17·b_3_7 + b_4_14·c_4_16·b_1_23
       + b_4_14·c_4_15·b_3_7 + b_4_14·c_4_15·b_1_23 + c_4_17·a_1_1·a_3_3·a_3_6
       + c_4_17·a_1_0·a_3_3·a_3_8 + c_4_17·a_1_0·a_3_3·a_3_6 + c_4_16·a_1_1·a_3_3·a_3_8
       + c_4_16·a_1_0·a_3_3·a_3_8 + c_4_15·a_1_1·a_3_3·a_3_8 + c_4_15·a_1_0·a_3_3·a_3_8
       + c_4_162·b_1_23 + c_4_15·c_4_16·b_1_23 + c_4_152·b_1_23
       + c_4_172·a_1_0·a_1_1·a_1_3 + c_4_172·a_1_02·a_1_3 + c_4_172·a_1_03
       + c_4_16·c_4_17·a_1_02·a_1_3 + c_4_162·a_1_0·a_1_1·a_1_3 + c_4_162·a_1_02·a_1_3
       + c_4_162·a_1_02·a_1_1 + c_4_15·c_4_17·a_1_0·a_1_1·a_1_3
       + c_4_15·c_4_17·a_1_02·a_1_1 + c_4_15·c_4_17·a_1_03 + c_4_15·c_4_16·a_1_02·a_1_3
       + c_4_15·c_4_16·a_1_02·a_1_1 + c_4_152·a_1_02·a_1_1 + c_4_152·a_1_03
  67. b_6_32·b_1_26 + b_6_322 + b_4_14·b_1_25·b_3_7 + b_4_142·b_1_2·b_3_9
       + b_4_142·b_1_2·b_3_7 + b_4_142·b_1_24 + b_4_143 + c_4_17·b_1_25·b_3_7
       + c_4_16·b_1_28 + c_4_15·b_1_25·b_3_7 + b_4_14·c_4_15·b_1_24 + b_4_142·c_4_16
       + c_4_172·b_1_24 + c_4_15·c_4_17·b_1_24 + c_4_15·c_4_16·b_1_24
  68. b_6_342 + b_6_32·b_1_26 + b_4_14·b_1_25·b_3_7 + b_4_142·b_1_2·b_3_7
       + c_4_17·b_1_25·b_3_7 + c_4_16·b_1_28 + c_4_15·b_1_25·b_3_7
       + b_4_14·c_4_15·b_1_24 + c_4_15·c_4_17·b_1_24 + c_4_15·c_4_16·b_1_24
  69. b_6_32·b_6_34 + b_4_14·b_1_25·b_3_7 + b_4_14·b_1_28 + b_4_142·b_1_2·b_3_7
       + b_4_142·b_1_24 + b_4_143 + c_4_17·b_1_25·b_3_7 + c_4_17·b_6_32·b_1_22
       + c_4_16·b_1_25·b_3_7 + c_4_16·b_1_28 + c_4_16·b_6_32·b_1_22
       + c_4_15·b_1_25·b_3_7 + c_4_15·b_6_32·b_1_22 + b_4_14·c_4_17·b_1_2·b_3_9
       + b_4_14·c_4_17·b_1_2·b_3_7 + b_4_14·c_4_17·b_1_24 + b_4_14·c_4_16·b_1_2·b_3_9
       + b_4_14·c_4_16·b_1_2·b_3_7 + b_4_14·c_4_16·b_1_24 + b_4_14·c_4_15·b_1_2·b_3_9
       + b_4_142·c_4_16 + c_4_17·a_1_02·a_3_6·a_3_8 + c_4_16·a_1_0·a_1_1·a_3_6·a_3_8
       + c_4_15·a_1_02·a_3_6·a_3_8 + c_4_15·a_1_02·a_3_3·a_3_8 + c_4_172·b_1_24
       + c_4_16·c_4_17·b_1_24 + c_4_162·b_1_24 + c_4_15·c_4_16·b_1_24
       + c_4_152·b_1_24


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 12.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_4_15, a Duflot regular element of degree 4
    2. c_4_16, a Duflot regular element of degree 4
    3. c_4_17, a Duflot regular element of degree 4
    4. b_1_22, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 8, 10].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_30, an element of degree 1
  4. b_1_20, an element of degree 1
  5. a_3_30, an element of degree 3
  6. a_3_60, an element of degree 3
  7. a_3_80, an element of degree 3
  8. b_3_70, an element of degree 3
  9. b_3_90, an element of degree 3
  10. b_4_140, an element of degree 4
  11. c_4_15c_1_14 + c_1_04, an element of degree 4
  12. c_4_16c_1_04, an element of degree 4
  13. c_4_17c_1_24, an element of degree 4
  14. b_5_270, an element of degree 5
  15. b_6_320, an element of degree 6
  16. b_6_340, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_1_30, an element of degree 1
  4. b_1_2c_1_3, an element of degree 1
  5. a_3_30, an element of degree 3
  6. a_3_60, an element of degree 3
  7. a_3_80, an element of degree 3
  8. b_3_7c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3
       + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
  9. b_3_9c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
  10. b_4_14c_1_1·c_1_33 + c_1_12·c_1_32, an element of degree 4
  11. c_4_15c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_14 + c_1_0·c_1_33 + c_1_04, an element of degree 4
  12. c_4_16c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_02·c_1_32 + c_1_04, an element of degree 4
  13. c_4_17c_1_34 + c_1_2·c_1_33 + c_1_24 + c_1_1·c_1_33 + c_1_12·c_1_32, an element of degree 4
  14. b_5_27c_1_35 + c_1_1·c_1_34 + c_1_14·c_1_3 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33
       + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_33 + c_1_0·c_1_12·c_1_32
       + c_1_02·c_1_33 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3
       + c_1_02·c_1_1·c_1_32 + c_1_02·c_1_12·c_1_3, an element of degree 5
  15. b_6_32c_1_2·c_1_35 + c_1_24·c_1_32 + c_1_1·c_1_35 + c_1_1·c_1_2·c_1_34
       + c_1_1·c_1_22·c_1_33 + c_1_12·c_1_34 + c_1_12·c_1_2·c_1_33
       + c_1_12·c_1_22·c_1_32 + c_1_0·c_1_35 + c_1_0·c_1_2·c_1_34
       + c_1_0·c_1_22·c_1_33 + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_22·c_1_32
       + c_1_04·c_1_32, an element of degree 6
  16. b_6_34c_1_36 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_22·c_1_33 + c_1_12·c_1_2·c_1_33
       + c_1_12·c_1_22·c_1_32 + c_1_0·c_1_35 + c_1_0·c_1_2·c_1_34
       + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_1·c_1_34 + c_1_0·c_1_12·c_1_33
       + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_1·c_1_33
       + c_1_02·c_1_12·c_1_32 + c_1_04·c_1_32, an element of degree 6


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009