Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1575 of order 128
General information on the group
- The group has 4 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 3.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 3.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t3 + t + 1) · (t3 + t2 + 1) |
| (t − 1)3 · (t2 + 1)3 |
- The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 5:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- a_1_3, a nilpotent element of degree 1
- a_3_5, a nilpotent element of degree 3
- a_3_6, a nilpotent element of degree 3
- a_3_7, a nilpotent element of degree 3
- a_3_8, a nilpotent element of degree 3
- a_3_9, a nilpotent element of degree 3
- c_4_14, a Duflot regular element of degree 4
- c_4_15, a Duflot regular element of degree 4
- c_4_16, a Duflot regular element of degree 4
- a_5_25, a nilpotent element of degree 5
Ring relations
There are 37 minimal relations of maximal degree 10:
- a_1_22 + a_1_1·a_1_2 + a_1_12
- a_1_1·a_1_3 + a_1_0·a_1_2 + a_1_02
- a_1_32 + a_1_2·a_1_3 + a_1_0·a_1_2 + a_1_0·a_1_1 + a_1_02
- a_1_13
- a_1_0·a_1_12
- a_1_0·a_1_1·a_1_2 + a_1_02·a_1_1
- a_1_1·a_3_5 + a_1_0·a_3_6 + a_1_03·a_1_2
- a_1_3·a_3_6 + a_1_2·a_3_5 + a_1_0·a_3_5 + a_1_03·a_1_2
- a_1_3·a_3_5 + a_1_2·a_3_5 + a_1_1·a_3_5 + a_1_0·a_3_7 + a_1_0·a_3_5 + a_1_03·a_1_2
- a_1_3·a_3_7 + a_1_3·a_3_5 + a_1_1·a_3_5 + a_1_03·a_1_2
- a_1_2·a_3_8 + a_1_2·a_3_6 + a_1_1·a_3_9 + a_1_1·a_3_8 + a_1_1·a_3_7 + a_1_1·a_3_5
+ a_1_0·a_3_8
- a_1_3·a_3_8 + a_1_3·a_3_5 + a_1_1·a_3_5 + a_1_0·a_3_9 + a_1_0·a_3_8
- a_1_3·a_3_9 + a_1_3·a_3_8 + a_1_3·a_3_5 + a_1_2·a_3_9 + a_1_2·a_3_7 + a_1_2·a_3_5
+ a_1_1·a_3_8 + a_1_1·a_3_7 + a_1_1·a_3_5 + a_1_0·a_3_8 + a_1_0·a_3_5
- a_1_0·a_1_1·a_3_6
- a_1_12·a_3_8 + a_1_12·a_3_6
- a_1_12·a_3_9 + a_1_12·a_3_7
- a_3_7·a_3_8 + a_3_6·a_3_9 + a_3_62 + a_3_5·a_3_9 + a_3_5·a_3_8 + a_3_5·a_3_7
+ a_1_02·a_1_1·a_3_9 + a_1_03·a_3_9 + a_1_03·a_3_8 + c_4_14·a_1_2·a_1_3 + c_4_14·a_1_0·a_1_3 + c_4_14·a_1_0·a_1_2 + c_4_14·a_1_0·a_1_1
- a_3_62 + a_1_02·a_1_1·a_3_9 + a_1_03·a_3_7 + c_4_15·a_1_12 + c_4_14·a_1_1·a_1_2
+ c_4_14·a_1_12 + c_4_14·a_1_02
- a_3_5·a_3_6 + a_1_03·a_3_9 + a_1_03·a_3_7 + c_4_15·a_1_0·a_1_1 + c_4_14·a_1_2·a_1_3
+ c_4_14·a_1_0·a_1_3
- a_3_7·a_3_8 + a_3_6·a_3_9 + a_3_62 + a_3_5·a_3_9 + a_3_5·a_3_8 + a_3_5·a_3_7 + a_3_52
+ a_1_03·a_3_9 + a_1_03·a_3_6 + c_4_15·a_1_02 + c_4_14·a_1_0·a_1_3 + c_4_14·a_1_02
- a_3_7·a_3_9 + a_3_7·a_3_8 + a_3_6·a_3_8 + a_3_6·a_3_7 + a_3_5·a_3_9 + a_3_5·a_3_8
+ a_3_5·a_3_7 + a_3_52 + a_1_03·a_3_8 + a_1_03·a_3_6 + c_4_15·a_1_2·a_1_3 + c_4_14·a_1_2·a_1_3 + c_4_14·a_1_0·a_1_3 + c_4_14·a_1_0·a_1_1 + c_4_14·a_1_02
- a_3_7·a_3_9 + a_3_7·a_3_8 + a_3_72 + a_3_6·a_3_8 + a_3_6·a_3_7 + a_3_5·a_3_9 + a_3_5·a_3_8
+ a_1_02·a_1_1·a_3_9 + a_1_03·a_3_9 + a_1_03·a_3_7 + c_4_15·a_1_1·a_1_2 + c_4_15·a_1_0·a_1_3 + c_4_14·a_1_12 + c_4_14·a_1_0·a_1_3 + c_4_14·a_1_02
- a_3_7·a_3_8 + a_3_6·a_3_9 + a_3_62 + a_3_5·a_3_9 + a_3_5·a_3_8 + a_3_5·a_3_6 + a_3_52
+ a_1_02·a_1_1·a_3_9 + a_1_03·a_3_9 + c_4_15·a_1_0·a_1_3 + c_4_15·a_1_0·a_1_2 + c_4_14·a_1_0·a_1_1 + c_4_14·a_1_02
- a_3_82 + a_3_62 + a_1_03·a_3_9 + a_1_03·a_3_7 + c_4_16·a_1_02 + c_4_14·a_1_12
- a_3_8·a_3_9 + a_3_82 + a_3_7·a_3_8 + a_3_6·a_3_9 + a_3_6·a_3_8 + a_3_6·a_3_7
+ a_1_03·a_3_7 + c_4_16·a_1_0·a_1_3 + c_4_14·a_1_1·a_1_2 + c_4_14·a_1_0·a_1_1
- a_3_92 + a_3_72 + a_3_62 + a_1_02·a_1_1·a_3_9 + a_1_03·a_3_9 + c_4_16·a_1_2·a_1_3
+ c_4_16·a_1_0·a_1_2 + c_4_16·a_1_0·a_1_1 + c_4_14·a_1_1·a_1_2 + c_4_14·a_1_02
- a_3_92 + a_3_82 + a_3_7·a_3_9 + a_3_6·a_3_9 + a_3_6·a_3_7 + a_3_5·a_3_7 + a_1_1·a_5_25
+ a_1_02·a_1_1·a_3_9 + a_1_03·a_3_6 + c_4_16·a_1_2·a_1_3 + c_4_16·a_1_0·a_1_1 + c_4_15·a_1_0·a_1_3 + c_4_14·a_1_2·a_1_3 + c_4_14·a_1_12 + c_4_14·a_1_0·a_1_1 + c_4_14·a_1_02
- a_3_8·a_3_9 + a_3_82 + a_3_7·a_3_8 + a_3_6·a_3_9 + a_3_6·a_3_8 + a_3_6·a_3_7 + a_3_5·a_3_8
+ a_3_5·a_3_7 + a_3_52 + a_1_0·a_5_25 + a_1_03·a_3_9 + a_1_03·a_3_8 + a_1_03·a_3_7 + a_1_03·a_3_6 + c_4_15·a_1_0·a_1_3 + c_4_14·a_1_2·a_1_3 + c_4_14·a_1_1·a_1_2 + c_4_14·a_1_02
- a_3_92 + a_3_82 + a_3_7·a_3_9 + a_3_7·a_3_8 + a_3_72 + a_3_6·a_3_8 + a_3_6·a_3_7
+ a_3_52 + a_1_3·a_5_25 + a_1_03·a_3_9 + a_1_03·a_3_7 + c_4_14·a_1_2·a_1_3 + c_4_14·a_1_1·a_1_2 + c_4_14·a_1_12 + c_4_14·a_1_0·a_1_3
- a_3_7·a_3_9 + a_3_7·a_3_8 + a_3_72 + a_3_6·a_3_9 + a_3_62 + a_3_5·a_3_9 + a_3_5·a_3_6
+ a_1_2·a_5_25 + a_1_03·a_3_9 + a_1_03·a_3_6 + c_4_16·a_1_2·a_1_3 + c_4_15·a_1_0·a_1_3 + c_4_14·a_1_2·a_1_3 + c_4_14·a_1_1·a_1_2 + c_4_14·a_1_12 + c_4_14·a_1_0·a_1_3
- a_1_12·a_5_25 + c_4_15·a_1_12·a_1_2
- a_3_9·a_5_25 + a_3_8·a_5_25 + a_1_03·a_5_25 + c_4_16·a_1_2·a_3_9 + c_4_16·a_1_2·a_3_7
+ c_4_16·a_1_2·a_3_5 + c_4_16·a_1_1·a_3_8 + c_4_16·a_1_1·a_3_7 + c_4_16·a_1_0·a_3_8 + c_4_16·a_1_0·a_3_6 + c_4_16·a_1_0·a_3_5 + c_4_15·a_1_2·a_3_9 + c_4_15·a_1_2·a_3_6 + c_4_15·a_1_1·a_3_8 + c_4_15·a_1_1·a_3_6 + c_4_15·a_1_0·a_3_9 + c_4_15·a_1_0·a_3_7 + c_4_15·a_1_0·a_3_6 + c_4_14·a_1_2·a_3_9 + c_4_14·a_1_2·a_3_7 + c_4_14·a_1_1·a_3_9 + c_4_14·a_1_1·a_3_8 + c_4_14·a_1_1·a_3_6 + c_4_14·a_1_0·a_3_8 + c_4_16·a_1_03·a_1_2 + c_4_15·a_1_03·a_1_2
- a_3_8·a_5_25 + a_1_02·a_1_3·a_5_25 + c_4_16·a_1_2·a_3_5 + c_4_16·a_1_0·a_3_9
+ c_4_16·a_1_0·a_3_8 + c_4_16·a_1_0·a_3_7 + c_4_15·a_1_2·a_3_6 + c_4_15·a_1_1·a_3_9 + c_4_15·a_1_1·a_3_7 + c_4_15·a_1_1·a_3_6 + c_4_15·a_1_0·a_3_8 + c_4_15·a_1_0·a_3_6 + c_4_14·a_1_2·a_3_9 + c_4_14·a_1_2·a_3_7 + c_4_14·a_1_2·a_3_5 + c_4_14·a_1_1·a_3_8 + c_4_14·a_1_1·a_3_6 + c_4_14·a_1_0·a_3_5 + c_4_16·a_1_03·a_1_2
- a_3_7·a_5_25 + a_1_02·a_1_1·a_5_25 + c_4_16·a_1_2·a_3_5 + c_4_16·a_1_0·a_3_7
+ c_4_16·a_1_0·a_3_5 + c_4_15·a_1_2·a_3_7 + c_4_15·a_1_1·a_3_9 + c_4_15·a_1_1·a_3_7 + c_4_15·a_1_1·a_3_6 + c_4_15·a_1_0·a_3_9 + c_4_15·a_1_0·a_3_8 + c_4_15·a_1_0·a_3_7 + c_4_14·a_1_2·a_3_9 + c_4_14·a_1_2·a_3_7 + c_4_14·a_1_2·a_3_5 + c_4_14·a_1_1·a_3_9 + c_4_14·a_1_1·a_3_7 + c_4_14·a_1_1·a_3_6 + c_4_14·a_1_0·a_3_8 + c_4_14·a_1_0·a_3_5
- a_3_9·a_5_25 + a_3_8·a_5_25 + a_3_6·a_5_25 + a_1_02·a_1_2·a_5_25 + a_1_02·a_1_1·a_5_25
+ c_4_16·a_1_2·a_3_9 + c_4_16·a_1_2·a_3_7 + c_4_16·a_1_1·a_3_8 + c_4_16·a_1_1·a_3_7 + c_4_16·a_1_0·a_3_8 + c_4_16·a_1_0·a_3_6 + c_4_15·a_1_2·a_3_9 + c_4_15·a_1_0·a_3_9 + c_4_15·a_1_0·a_3_7 + c_4_15·a_1_0·a_3_6 + c_4_14·a_1_2·a_3_5 + c_4_14·a_1_1·a_3_7 + c_4_14·a_1_0·a_3_9 + c_4_14·a_1_0·a_3_8 + c_4_14·a_1_0·a_3_7 + c_4_14·a_1_0·a_3_6 + c_4_14·a_1_0·a_3_5
- a_3_5·a_5_25 + a_1_02·a_1_2·a_5_25 + a_1_02·a_1_1·a_5_25 + c_4_16·a_1_2·a_3_5
+ c_4_16·a_1_0·a_3_7 + c_4_16·a_1_0·a_3_6 + c_4_16·a_1_0·a_3_5 + c_4_15·a_1_2·a_3_5 + c_4_15·a_1_0·a_3_8 + c_4_15·a_1_0·a_3_6 + c_4_14·a_1_2·a_3_9 + c_4_14·a_1_2·a_3_7 + c_4_14·a_1_2·a_3_5 + c_4_14·a_1_1·a_3_8 + c_4_14·a_1_1·a_3_7 + c_4_14·a_1_0·a_3_8 + c_4_14·a_1_0·a_3_7 + c_4_16·a_1_03·a_1_2 + c_4_15·a_1_03·a_1_2 + c_4_14·a_1_03·a_1_2
- a_5_252 + c_4_16·a_1_02·a_1_1·a_3_9 + c_4_16·a_1_03·a_3_8 + c_4_16·a_1_03·a_3_6
+ c_4_15·a_1_03·a_3_9 + c_4_15·a_1_03·a_3_7 + c_4_162·a_1_2·a_1_3 + c_4_162·a_1_0·a_1_2 + c_4_162·a_1_0·a_1_1 + c_4_162·a_1_02 + c_4_15·c_4_16·a_1_02 + c_4_152·a_1_1·a_1_2 + c_4_152·a_1_12 + c_4_14·c_4_16·a_1_2·a_1_3 + c_4_14·c_4_16·a_1_0·a_1_2 + c_4_14·c_4_16·a_1_0·a_1_1 + c_4_14·c_4_16·a_1_02 + c_4_14·c_4_15·a_1_12 + c_4_142·a_1_2·a_1_3 + c_4_142·a_1_12 + c_4_142·a_1_0·a_1_2 + c_4_142·a_1_0·a_1_1
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_14, a Duflot regular element of degree 4
- c_4_15, a Duflot regular element of degree 4
- c_4_16, a Duflot regular element of degree 4
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- a_1_3 → 0, an element of degree 1
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_3_7 → 0, an element of degree 3
- a_3_8 → 0, an element of degree 3
- a_3_9 → 0, an element of degree 3
- c_4_14 → c_1_14, an element of degree 4
- c_4_15 → c_1_04, an element of degree 4
- c_4_16 → c_1_24, an element of degree 4
- a_5_25 → 0, an element of degree 5
|