Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1611 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
t5 + t2 + 1 |
| (t − 1)4 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_1_3, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- c_2_9, a Duflot regular element of degree 2
- b_3_19, an element of degree 3
- b_5_50, an element of degree 5
- b_5_51, an element of degree 5
- b_6_76, an element of degree 6
- c_8_146, a Duflot regular element of degree 8
Ring relations
There are 27 minimal relations of maximal degree 12:
- a_1_02
- a_1_0·b_1_1
- b_1_1·b_1_22 + b_1_12·b_1_2 + a_1_0·b_1_32
- a_2_3·a_1_0
- a_2_32
- a_1_0·b_3_19 + a_1_0·b_1_2·b_1_32 + a_2_3·b_1_22 + a_2_3·b_1_1·b_1_2
- b_1_1·b_3_19 + b_1_1·b_1_2·b_1_32 + a_2_3·b_1_32
- a_1_0·b_1_34 + a_1_0·b_1_22·b_1_32
- a_1_0·b_1_22·b_1_32 + a_2_3·b_3_19 + a_2_3·b_1_2·b_1_32 + c_2_9·a_1_0·b_1_22
- b_3_192 + b_1_1·b_1_2·b_1_34 + a_2_3·b_1_3·b_3_19 + a_2_3·b_1_2·b_1_33
+ a_2_3·b_1_22·b_1_32 + a_2_3·b_1_24 + a_2_3·b_1_1·b_1_2·b_1_32 + a_2_3·b_1_13·b_1_2 + c_2_9·b_1_24 + c_2_9·b_1_13·b_1_2 + c_2_9·a_1_0·b_1_22·b_1_3
- a_1_0·b_5_50
- b_1_1·b_5_50 + b_1_1·b_1_2·b_1_34 + b_1_13·b_1_2·b_1_32 + a_2_3·b_1_34
+ a_2_3·b_1_2·b_3_19 + c_2_9·a_1_0·b_1_23
- a_1_0·b_5_51
- a_2_3·b_5_50 + a_2_3·b_1_2·b_1_34 + a_2_3·b_1_23·b_1_32
- b_1_32·b_5_50 + b_1_34·b_3_19 + b_1_22·b_5_51 + b_1_22·b_1_32·b_3_19
+ b_1_1·b_1_2·b_5_51
- b_6_76·a_1_0
- b_1_32·b_5_50 + b_1_34·b_3_19 + b_1_22·b_5_51 + b_1_22·b_1_32·b_3_19 + b_6_76·b_1_1
+ a_2_3·b_5_51
- b_3_19·b_5_51 + b_6_76·b_1_32 + c_2_9·b_1_22·b_1_34 + c_2_9·b_1_24·b_1_32
+ c_2_9·b_1_1·b_1_2·b_1_34 + c_2_9·b_1_13·b_1_2·b_1_32 + a_2_3·c_2_9·b_1_2·b_3_19 + a_2_3·c_2_9·b_1_22·b_1_32 + c_2_92·a_1_0·b_1_23
- b_3_19·b_5_50 + b_1_1·b_1_2·b_1_36 + b_1_13·b_1_2·b_1_34 + b_6_76·b_1_22
+ b_6_76·b_1_12 + a_2_3·b_1_2·b_5_51 + a_2_3·b_1_23·b_3_19 + a_2_3·b_1_24·b_1_32 + a_2_3·b_1_1·b_5_51 + c_2_9·a_1_0·b_1_25
- a_2_3·b_1_2·b_5_51 + a_2_3·b_6_76
- b_6_76·b_3_19 + b_6_76·b_1_1·b_1_32 + a_2_3·b_1_32·b_5_51 + c_2_9·b_1_22·b_5_50
+ c_2_9·b_1_12·b_1_2·b_1_34 + c_2_9·b_1_14·b_1_2·b_1_32 + a_2_3·c_2_9·b_1_2·b_1_34 + a_2_3·c_2_9·b_1_23·b_1_32
- b_5_502 + b_1_1·b_1_2·b_1_38 + b_1_15·b_1_2·b_1_34 + a_2_3·b_1_25·b_3_19
+ a_2_3·b_1_26·b_1_32 + c_2_9·a_1_0·b_1_27
- b_5_50·b_5_51 + b_6_76·b_1_34 + b_6_76·b_1_22·b_1_32
- b_5_512 + b_1_1·b_1_34·b_5_51 + b_1_12·b_1_33·b_5_51 + b_1_14·b_1_3·b_5_51
+ b_1_15·b_5_51 + b_1_15·b_1_2·b_1_34 + b_6_76·b_1_12·b_1_32 + a_2_3·b_1_1·b_1_2·b_1_36 + a_2_3·b_1_12·b_1_36 + a_2_3·b_1_13·b_1_2·b_1_34 + a_2_3·b_1_14·b_1_34 + a_2_3·b_1_15·b_1_2·b_1_32 + a_2_3·b_1_17·b_1_2 + c_8_146·b_1_12 + c_2_9·b_1_38 + c_2_9·b_1_24·b_1_34 + c_2_9·b_1_12·b_1_3·b_5_51 + c_2_9·b_1_12·b_1_2·b_1_35 + c_2_9·b_1_13·b_1_35 + c_2_9·b_1_13·b_1_2·b_1_34 + c_2_9·b_1_14·b_1_34 + c_2_9·b_1_16·b_1_2·b_1_3 + c_2_9·b_1_17·b_1_2 + c_2_9·b_6_76·b_1_12 + a_2_3·c_2_9·b_1_1·b_1_2·b_1_34 + a_2_3·c_2_9·b_1_12·b_1_34 + a_2_3·c_2_9·b_1_12·b_1_2·b_1_33 + a_2_3·c_2_9·b_1_13·b_1_2·b_1_32 + a_2_3·c_2_9·b_1_15·b_1_2 + c_2_92·b_1_13·b_1_33 + c_2_92·b_1_15·b_1_2 + a_2_3·c_2_92·b_1_1·b_1_33 + a_2_3·c_2_92·b_1_1·b_1_2·b_1_32 + a_2_3·c_2_92·b_1_12·b_1_2·b_1_3 + a_2_3·c_2_92·b_1_13·b_1_2 + c_2_93·b_1_12·b_1_2·b_1_3
- b_6_76·b_5_50 + b_6_76·b_1_1·b_1_34 + b_6_76·b_1_13·b_1_32 + a_2_3·b_1_34·b_5_51
+ a_2_3·b_1_12·b_1_32·b_5_51
- b_1_16·b_1_2·b_1_34 + b_6_76·b_5_51 + b_6_76·b_1_1·b_1_34
+ b_6_76·b_1_12·b_1_33 + b_6_76·b_1_13·b_1_32 + b_6_76·b_1_14·b_1_3 + b_6_76·b_1_15 + a_2_3·b_1_12·b_1_32·b_5_51 + a_2_3·b_1_14·b_1_2·b_1_34 + a_2_3·b_1_16·b_1_2·b_1_32 + a_2_3·b_1_18·b_1_2 + c_8_146·b_1_12·b_1_2 + c_2_9·b_1_36·b_3_19 + c_2_9·b_1_22·b_1_32·b_5_51 + c_2_9·b_1_24·b_5_51 + c_2_9·b_1_24·b_1_32·b_3_19 + c_2_9·b_1_17·b_1_2·b_1_3 + c_2_9·b_1_18·b_1_2 + c_2_9·b_6_76·b_1_1·b_1_32 + c_2_9·b_6_76·b_1_12·b_1_3 + a_2_3·c_8_146·b_1_1 + a_2_3·c_2_9·b_1_32·b_5_51 + a_2_3·c_2_9·b_1_1·b_1_2·b_1_35 + a_2_3·c_2_9·b_1_12·b_1_35 + a_2_3·c_2_9·b_1_12·b_1_2·b_1_34 + a_2_3·c_2_9·b_1_13·b_1_34 + a_2_3·c_2_9·b_1_13·b_1_2·b_1_33 + a_2_3·c_2_9·b_1_14·b_1_2·b_1_32 + a_2_3·c_2_9·b_1_15·b_1_2·b_1_3 + c_2_92·b_1_13·b_1_2·b_1_33 + c_2_92·b_1_16·b_1_2 + a_2_3·c_2_92·b_1_1·b_1_2·b_1_33 + a_2_3·c_2_92·b_1_12·b_1_33 + a_2_3·c_2_92·b_1_12·b_1_2·b_1_32 + a_2_3·c_2_92·b_1_13·b_1_2·b_1_3 + c_2_93·b_1_13·b_1_2·b_1_3 + a_2_3·c_2_93·b_1_1·b_1_2·b_1_3
- b_6_76·b_1_1·b_5_51 + b_6_762 + a_2_3·b_1_1·b_1_34·b_5_51
+ a_2_3·b_1_12·b_1_33·b_5_51 + a_2_3·b_1_14·b_1_3·b_5_51 + a_2_3·b_1_15·b_5_51 + a_2_3·b_1_15·b_1_2·b_1_34 + a_2_3·b_6_76·b_1_12·b_1_32 + a_2_3·c_8_146·b_1_12 + a_2_3·c_2_9·b_1_38 + a_2_3·c_2_9·b_1_26·b_1_32 + a_2_3·c_2_9·b_1_12·b_1_3·b_5_51 + a_2_3·c_2_9·b_1_12·b_1_2·b_1_35 + a_2_3·c_2_9·b_1_13·b_1_35 + a_2_3·c_2_9·b_1_14·b_1_34 + a_2_3·c_2_9·b_1_15·b_1_2·b_1_32 + a_2_3·c_2_9·b_1_16·b_1_2·b_1_3 + a_2_3·c_2_9·b_1_17·b_1_2 + a_2_3·c_2_9·b_6_76·b_1_12 + a_2_3·c_2_92·b_1_13·b_1_33 + a_2_3·c_2_92·b_1_15·b_1_2 + a_2_3·c_2_93·b_1_12·b_1_2·b_1_3
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_9, a Duflot regular element of degree 2
- c_8_146, a Duflot regular element of degree 8
- b_1_34 + b_1_22·b_1_32 + b_1_24 + b_1_1·b_1_2·b_1_32 + b_1_12·b_1_32
+ b_1_13·b_1_2 + b_1_14, an element of degree 4
- b_1_2·b_5_50 + b_1_22·b_1_34 + b_1_24·b_1_32 + b_1_12·b_1_34 + b_1_14·b_1_32, an element of degree 6
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 10, 16].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
- We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 2 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- c_2_9 → c_1_02, an element of degree 2
- b_3_19 → 0, an element of degree 3
- b_5_50 → 0, an element of degree 5
- b_5_51 → 0, an element of degree 5
- b_6_76 → 0, an element of degree 6
- c_8_146 → c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- a_2_3 → 0, an element of degree 2
- c_2_9 → c_1_0·c_1_2 + c_1_02, an element of degree 2
- b_3_19 → 0, an element of degree 3
- b_5_50 → 0, an element of degree 5
- b_5_51 → c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_0·c_1_34 + c_1_0·c_1_22·c_1_32, an element of degree 5
- b_6_76 → 0, an element of degree 6
- c_8_146 → c_1_12·c_1_22·c_1_34 + c_1_12·c_1_23·c_1_33 + c_1_12·c_1_25·c_1_3
+ c_1_12·c_1_26 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_23·c_1_3 + c_1_18 + c_1_0·c_1_37 + c_1_0·c_1_2·c_1_36 + c_1_0·c_1_22·c_1_35 + c_1_0·c_1_24·c_1_33 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_03·c_1_35 + c_1_03·c_1_22·c_1_33 + c_1_04·c_1_2·c_1_33, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- a_2_3 → 0, an element of degree 2
- c_2_9 → c_1_02, an element of degree 2
- b_3_19 → c_1_0·c_1_22, an element of degree 3
- b_5_50 → 0, an element of degree 5
- b_5_51 → c_1_0·c_1_34 + c_1_0·c_1_22·c_1_32, an element of degree 5
- b_6_76 → 0, an element of degree 6
- c_8_146 → c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_14·c_1_34
+ c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24 + c_1_18 + c_1_0·c_1_37 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_24·c_1_33 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_24·c_1_32 + c_1_03·c_1_35 + c_1_03·c_1_23·c_1_32 + c_1_03·c_1_25 + c_1_04·c_1_2·c_1_33 + c_1_04·c_1_23·c_1_3 + c_1_05·c_1_22·c_1_3 + c_1_05·c_1_23 + c_1_06·c_1_2·c_1_3 + c_1_06·c_1_22, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- a_2_3 → 0, an element of degree 2
- c_2_9 → c_1_0·c_1_3 + c_1_02, an element of degree 2
- b_3_19 → c_1_22·c_1_3, an element of degree 3
- b_5_50 → c_1_22·c_1_33 + c_1_24·c_1_3, an element of degree 5
- b_5_51 → c_1_35 + c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_12·c_1_33 + c_1_14·c_1_3
+ c_1_0·c_1_2·c_1_33 + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_24 + c_1_02·c_1_2·c_1_32, an element of degree 5
- b_6_76 → c_1_36 + c_1_2·c_1_35 + c_1_22·c_1_34 + c_1_12·c_1_34 + c_1_14·c_1_32
+ c_1_0·c_1_2·c_1_34 + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_24·c_1_3 + c_1_02·c_1_2·c_1_33, an element of degree 6
- c_8_146 → c_1_23·c_1_35 + c_1_24·c_1_34 + c_1_26·c_1_32 + c_1_12·c_1_36
+ c_1_12·c_1_2·c_1_35 + c_1_12·c_1_22·c_1_34 + c_1_12·c_1_23·c_1_33 + c_1_12·c_1_24·c_1_32 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_23·c_1_3 + c_1_14·c_1_24 + c_1_18 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_27 + c_1_0·c_1_12·c_1_35 + c_1_0·c_1_12·c_1_2·c_1_34 + c_1_0·c_1_14·c_1_33 + c_1_0·c_1_14·c_1_2·c_1_32 + c_1_02·c_1_36 + c_1_02·c_1_2·c_1_35 + c_1_02·c_1_12·c_1_34 + c_1_02·c_1_12·c_1_2·c_1_33 + c_1_02·c_1_14·c_1_32 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_03·c_1_2·c_1_34 + c_1_03·c_1_22·c_1_33 + c_1_03·c_1_23·c_1_32 + c_1_03·c_1_24·c_1_3 + c_1_03·c_1_25 + c_1_04·c_1_34 + c_1_04·c_1_23·c_1_3 + c_1_05·c_1_2·c_1_32 + c_1_06·c_1_2·c_1_3, an element of degree 8
|