Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1618 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 3.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t5 + t2 + 1 |
| (t − 1)4 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- c_1_2, a Duflot regular element of degree 1
- c_1_3, a Duflot regular element of degree 1
- a_2_8, a nilpotent element of degree 2
- b_2_9, an element of degree 2
- a_3_19, a nilpotent element of degree 3
- a_5_50, a nilpotent element of degree 5
- b_5_52, an element of degree 5
- a_6_76, a nilpotent element of degree 6
- c_8_146, a Duflot regular element of degree 8
Ring relations
There are 27 minimal relations of maximal degree 12:
- a_1_02
- a_1_0·a_1_1
- a_2_8·a_1_0
- b_2_9·a_1_0 + a_1_13
- a_2_82 + a_2_8·a_1_12
- a_2_8·b_2_9 + a_1_1·a_3_19
- a_1_0·a_3_19 + a_2_8·a_1_12
- b_2_9·a_1_13
- a_2_8·a_3_19 + a_1_12·a_3_19
- a_3_192 + b_2_9·a_1_1·a_3_19 + b_2_92·a_1_12 + a_1_13·a_3_19
- a_1_1·a_5_50
- a_1_0·a_5_50 + a_1_13·a_3_19
- a_1_0·b_5_52 + a_1_13·a_3_19
- a_2_8·a_5_50
- b_2_9·a_5_50 + a_1_12·b_5_52
- a_2_8·b_5_52 + a_6_76·a_1_1 + b_2_9·a_1_12·a_3_19
- a_6_76·a_1_0
- a_3_19·b_5_52 + b_2_9·a_6_76 + a_3_19·a_5_50 + b_2_92·a_1_1·a_3_19
- a_3_19·a_5_50 + a_6_76·a_1_12
- a_3_19·a_5_50 + a_2_8·a_6_76
- a_6_76·a_3_19 + b_2_9·a_1_12·b_5_52 + b_2_9·a_6_76·a_1_1
- a_5_502
- a_5_50·b_5_52 + b_2_94·a_1_12
- b_5_522 + b_2_95 + b_2_92·a_1_1·b_5_52 + b_2_94·a_1_12 + c_8_146·a_1_12
- a_6_76·a_5_50 + b_2_93·a_1_12·a_3_19
- a_6_76·b_5_52 + b_2_94·a_3_19 + a_2_8·c_8_146·a_1_1
- a_6_762 + b_2_94·a_1_1·a_3_19 + b_2_95·a_1_12 + b_2_92·a_6_76·a_1_12
+ a_2_8·c_8_146·a_1_12
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_1_2, a Duflot regular element of degree 1
- c_1_3, a Duflot regular element of degree 1
- c_8_146, a Duflot regular element of degree 8
- b_2_9, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 6, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- c_1_2 → c_1_0, an element of degree 1
- c_1_3 → c_1_1, an element of degree 1
- a_2_8 → 0, an element of degree 2
- b_2_9 → 0, an element of degree 2
- a_3_19 → 0, an element of degree 3
- a_5_50 → 0, an element of degree 5
- b_5_52 → 0, an element of degree 5
- a_6_76 → 0, an element of degree 6
- c_8_146 → c_1_28, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- c_1_2 → c_1_0, an element of degree 1
- c_1_3 → c_1_1, an element of degree 1
- a_2_8 → 0, an element of degree 2
- b_2_9 → c_1_32, an element of degree 2
- a_3_19 → 0, an element of degree 3
- a_5_50 → 0, an element of degree 5
- b_5_52 → c_1_35, an element of degree 5
- a_6_76 → 0, an element of degree 6
- c_8_146 → c_1_38 + c_1_24·c_1_34 + c_1_28, an element of degree 8
|