Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1632 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
t5 + t2 + 1 |
| (t − 1)4 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- c_1_3, a Duflot regular element of degree 1
- a_2_8, a nilpotent element of degree 2
- b_2_9, an element of degree 2
- b_3_19, an element of degree 3
- a_5_47, a nilpotent element of degree 5
- b_5_52, an element of degree 5
- a_6_65, a nilpotent element of degree 6
- c_8_146, a Duflot regular element of degree 8
Ring relations
There are 27 minimal relations of maximal degree 12:
- a_1_02
- a_1_0·b_1_1
- a_2_8·a_1_0
- b_2_9·b_1_1 + a_1_0·b_1_22 + b_2_9·a_1_0
- a_2_82
- a_1_0·b_3_19 + b_2_9·a_1_0·b_1_2 + a_2_8·b_2_9
- b_1_1·b_3_19 + a_1_0·b_1_23 + b_2_9·a_1_0·b_1_2 + a_2_8·b_1_22 + a_2_8·b_2_9
- a_1_0·b_1_24 + b_2_9·a_1_0·b_1_22
- a_1_0·b_1_24 + a_2_8·b_3_19 + a_2_8·b_2_9·b_1_2
- b_3_192 + b_2_9·b_1_24 + b_2_92·b_1_22 + b_2_92·a_1_0·b_1_2
+ a_2_8·b_2_9·b_1_22
- a_2_8·b_2_9·b_1_22 + a_2_8·b_2_92 + a_1_0·a_5_47
- b_1_1·a_5_47 + a_2_8·b_2_9·b_1_22 + a_2_8·b_2_92
- a_1_0·b_5_52 + b_2_92·a_1_0·b_1_2 + a_2_8·b_2_92
- a_2_8·a_5_47
- b_2_9·b_5_52 + b_2_92·b_3_19 + b_1_22·a_5_47 + b_2_93·a_1_0
- a_1_0·b_1_2·a_5_47 + a_6_65·a_1_0
- a_6_65·b_1_1 + a_2_8·b_5_52 + a_2_8·b_1_1·b_1_24 + a_2_8·b_1_12·b_1_23
+ a_2_8·b_2_9·b_3_19 + a_1_0·b_1_2·a_5_47
- b_3_19·a_5_47 + b_2_9·a_6_65 + a_2_8·b_2_9·b_1_2·b_3_19
- b_3_19·b_5_52 + b_2_92·b_1_24 + b_2_93·b_1_22 + a_6_65·b_1_22 + a_2_8·b_1_26
+ a_2_8·b_1_1·b_1_25 + a_2_8·b_2_9·b_1_2·b_3_19 + a_2_8·b_2_93
- a_2_8·a_6_65
- b_1_24·a_5_47 + a_6_65·b_3_19 + b_2_9·b_1_22·a_5_47 + b_2_9·a_6_65·a_1_0
- b_2_94·a_1_0·b_1_2 + a_2_8·b_2_92·b_1_2·b_3_19 + a_2_8·b_2_94 + a_5_472
+ b_2_92·a_1_0·a_5_47
- a_5_47·b_5_52 + b_2_92·a_6_65 + a_2_8·b_2_92·b_1_2·b_3_19 + b_2_92·a_1_0·a_5_47
- b_5_522 + b_1_1·b_1_24·b_5_52 + b_1_15·b_5_52 + b_2_93·b_1_24 + b_2_94·b_1_22
+ b_2_94·a_1_0·b_1_2 + a_2_8·b_1_28 + a_2_8·b_1_1·b_1_27 + a_2_8·b_1_12·b_1_2·b_5_52 + a_2_8·b_1_14·b_1_24 + a_2_8·b_1_15·b_1_23 + c_8_146·b_1_12
- a_6_65·a_5_47 + b_2_92·a_6_65·a_1_0
- a_6_65·b_5_52 + b_2_9·a_6_65·b_3_19 + a_2_8·b_1_1·b_1_23·b_5_52
+ a_2_8·b_1_14·b_5_52 + b_2_92·a_6_65·a_1_0 + a_2_8·c_8_146·b_1_1
- a_6_652
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_1_3, a Duflot regular element of degree 1
- c_8_146, a Duflot regular element of degree 8
- b_1_24 + b_1_12·b_1_22 + b_1_14 + b_2_9·b_1_22 + b_2_92, an element of degree 4
- b_3_19 + b_1_1·b_1_22 + b_1_12·b_1_2, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 9, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
- We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 2 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- c_1_3 → c_1_0, an element of degree 1
- a_2_8 → 0, an element of degree 2
- b_2_9 → 0, an element of degree 2
- b_3_19 → 0, an element of degree 3
- a_5_47 → 0, an element of degree 5
- b_5_52 → 0, an element of degree 5
- a_6_65 → 0, an element of degree 6
- c_8_146 → c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- c_1_3 → c_1_0, an element of degree 1
- a_2_8 → 0, an element of degree 2
- b_2_9 → 0, an element of degree 2
- b_3_19 → 0, an element of degree 3
- a_5_47 → 0, an element of degree 5
- b_5_52 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- a_6_65 → 0, an element of degree 6
- c_8_146 → c_1_12·c_1_22·c_1_34 + c_1_12·c_1_26 + c_1_14·c_1_34 + c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- c_1_3 → c_1_0, an element of degree 1
- a_2_8 → 0, an element of degree 2
- b_2_9 → c_1_32, an element of degree 2
- b_3_19 → c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
- a_5_47 → 0, an element of degree 5
- b_5_52 → c_1_2·c_1_34 + c_1_22·c_1_33, an element of degree 5
- a_6_65 → 0, an element of degree 6
- c_8_146 → c_1_38 + c_1_22·c_1_36 + c_1_24·c_1_34 + c_1_27·c_1_3
+ c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24 + c_1_18, an element of degree 8
|