Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1653 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t8 − t7 + t5 + 1 |
| (t − 1)4 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 10:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_3, an element of degree 1
- a_3_10, a nilpotent element of degree 3
- a_3_11, a nilpotent element of degree 3
- c_4_16, a Duflot regular element of degree 4
- a_5_23, a nilpotent element of degree 5
- b_5_22, an element of degree 5
- b_5_24, an element of degree 5
- a_6_28, a nilpotent element of degree 6
- b_6_35, an element of degree 6
- a_7_35, a nilpotent element of degree 7
- c_8_58, a Duflot regular element of degree 8
- b_9_76, an element of degree 9
- a_10_68, a nilpotent element of degree 10
Ring relations
There are 78 minimal relations of maximal degree 20:
- a_1_02
- a_1_0·b_1_1 + a_1_22
- a_1_22·b_1_1
- a_1_2·b_1_12 + a_1_0·b_1_32
- a_1_0·a_3_10
- a_1_2·a_3_10 + a_1_0·a_3_11
- a_1_0·b_1_34
- b_1_32·a_3_10 + b_1_12·a_3_11 + b_1_12·a_3_10
- a_3_102
- a_3_10·a_3_11 + c_4_16·a_1_0·a_1_2
- a_1_2·b_1_1·b_1_34 + a_3_112 + a_1_0·b_1_32·a_3_11 + c_4_16·a_1_22
- a_3_10·a_3_11 + a_1_0·a_5_23 + a_1_0·b_1_32·a_3_11 + a_1_22·b_1_3·a_3_11
- a_1_0·b_5_22
- a_1_2·b_5_22
- a_1_0·b_5_24 + a_1_2·a_5_23 + a_1_2·b_1_1·b_1_3·a_3_11 + a_1_22·b_1_3·a_3_11
- b_1_1·a_5_23 + b_1_12·b_1_3·a_3_11 + b_1_12·b_1_3·a_3_10 + a_1_2·b_5_24
+ a_1_0·b_1_32·a_3_11
- b_1_32·b_5_22 + b_1_12·b_5_24 + b_1_32·a_5_23 + b_1_1·b_1_33·a_3_11
+ a_1_2·b_1_33·a_3_11 + a_1_2·b_1_1·b_1_32·a_3_11 + c_4_16·b_1_13 + c_4_16·a_1_2·b_1_32
- a_1_2·b_1_1·b_5_24 + a_1_0·b_1_33·a_3_11 + a_1_22·b_1_32·a_3_11
+ c_4_16·a_1_0·b_1_32
- a_1_0·b_1_33·a_3_11 + a_6_28·a_1_0 + a_1_22·b_1_32·a_3_11
- a_1_2·b_1_3·a_5_23 + a_1_2·b_1_1·b_1_32·a_3_11 + a_1_22·b_5_24
+ a_1_0·b_1_33·a_3_11 + a_6_28·a_1_2 + c_4_16·a_1_22·b_1_3 + c_4_16·a_1_0·a_1_2·b_1_3 + c_4_16·a_1_23
- b_6_35·a_1_0 + a_1_2·b_1_3·a_5_23 + a_1_2·b_1_1·b_1_32·a_3_11 + c_4_16·a_1_0·b_1_32
+ c_4_16·a_1_22·b_1_3 + c_4_16·a_1_23
- b_1_32·a_5_23 + b_1_1·b_1_33·a_3_11 + b_1_13·b_1_3·a_3_11 + b_1_13·b_1_3·a_3_10
+ a_1_2·b_1_3·b_5_24 + b_6_35·a_1_2 + a_1_2·b_1_33·a_3_11 + a_1_22·b_5_24 + a_1_0·b_1_33·a_3_11 + a_1_22·b_1_32·a_3_11 + c_4_16·a_1_2·b_1_1·b_1_3 + c_4_16·a_1_0·a_1_2·b_1_3 + c_4_16·a_1_23
- a_3_10·a_5_23 + c_4_16·a_1_0·a_3_11 + c_4_16·a_1_23·b_1_3
- a_3_11·b_5_22 + a_3_10·b_5_24 + b_1_14·b_1_3·a_3_11 + b_1_15·a_3_11 + b_1_15·a_3_10
+ a_6_28·b_1_12 + a_3_11·a_5_23 + c_4_16·b_1_1·a_3_10 + c_4_16·a_1_2·a_3_11 + c_4_16·a_1_23·b_1_3
- a_3_11·b_5_22 + a_3_10·b_5_24 + a_3_10·b_5_22 + a_3_11·a_5_23 + a_6_28·a_1_22
+ c_4_16·b_1_1·a_3_10 + c_4_16·a_1_2·a_3_11 + c_4_16·a_1_23·b_1_3
- a_3_11·b_5_22 + a_3_10·b_5_22 + b_1_12·b_1_33·a_3_11 + b_1_13·b_1_32·a_3_11
+ b_1_15·a_3_11 + b_1_15·a_3_10 + b_6_35·a_1_2·b_1_3 + a_6_28·b_1_32 + a_1_2·b_1_34·a_3_11 + a_6_28·a_1_2·b_1_1 + c_4_16·a_1_2·b_1_33 + c_4_16·a_1_0·b_1_33 + c_4_16·a_1_22·b_1_32
- a_1_0·a_7_35 + c_4_16·a_1_0·a_3_11 + c_4_16·a_1_23·b_1_3
- a_3_11·a_5_23 + a_1_2·a_7_35 + c_4_16·a_1_22·b_1_32 + c_4_16·a_1_23·b_1_3
- a_6_28·a_3_10
- b_1_3·a_3_11·b_5_24 + b_1_32·a_7_35 + b_1_12·b_1_34·a_3_11 + b_1_14·b_1_32·a_3_11
+ b_1_16·a_3_11 + b_1_16·a_3_10 + b_6_35·a_3_11 + b_6_35·a_3_10 + b_6_35·a_1_2·b_1_32 + a_6_28·b_1_33 + a_1_2·b_1_35·a_3_11 + a_6_28·a_3_11 + a_3_113 + c_4_16·b_1_1·b_1_3·a_3_11 + c_4_16·b_1_12·a_3_11 + c_4_16·b_1_12·a_3_10 + c_4_16·a_1_2·b_1_1·b_1_33 + c_4_16·a_1_2·b_1_1·a_3_11
- b_1_12·a_7_35 + b_1_12·b_1_34·a_3_11 + b_1_13·b_1_33·a_3_11 + b_1_16·a_3_11
+ b_1_16·a_3_10 + b_6_35·a_3_10 + b_6_35·a_1_2·b_1_32 + a_6_28·b_1_33 + a_1_2·b_1_3·a_7_35 + a_1_2·b_1_35·a_3_11 + c_4_16·b_1_12·a_3_10 + c_4_16·a_1_2·b_1_34 + c_4_16·a_1_2·b_1_3·a_3_11 + c_4_16·a_1_22·b_1_33 + c_4_16·a_1_22·a_3_11
- a_1_2·b_1_3·a_7_35 + a_1_2·b_1_1·a_7_35 + a_6_28·a_3_11 + c_4_16·a_1_2·b_1_3·a_3_11
+ c_4_16·a_1_2·b_1_1·a_3_11 + c_4_16·a_1_22·b_1_33 + c_4_16·a_1_0·b_1_3·a_3_11 + c_4_16·a_1_22·a_3_11
- a_5_232 + c_4_162·a_1_22
- b_5_222 + c_4_16·b_1_16
- b_5_22·b_5_24 + a_5_23·b_5_22 + c_4_16·b_1_1·b_5_22 + c_4_16·b_1_14·b_1_32
+ c_4_16·a_3_112 + c_4_16·a_1_0·b_1_32·a_3_11 + c_4_162·a_1_22
- a_5_23·b_5_22 + b_1_13·b_1_34·a_3_11 + b_1_14·b_1_33·a_3_11 + b_1_16·b_1_3·a_3_11
+ b_1_16·b_1_3·a_3_10 + b_6_35·a_1_2·b_1_1·b_1_32 + a_6_28·b_1_1·b_1_33 + b_1_3·a_3_113 + c_4_16·a_3_112 + c_4_16·a_1_0·b_1_32·a_3_11 + c_4_16·a_1_22·b_1_3·a_3_11 + c_4_162·a_1_22
- a_3_10·a_7_35 + c_4_16·a_1_22·b_1_3·a_3_11 + c_4_162·a_1_0·a_1_2
- a_5_23·b_5_22 + b_1_13·b_1_34·a_3_11 + b_1_14·b_1_33·a_3_11 + b_1_16·b_1_3·a_3_11
+ b_1_16·b_1_3·a_3_10 + a_6_28·b_1_1·b_1_33 + a_3_11·a_7_35 + b_1_3·a_3_113 + c_4_16·a_3_112 + c_4_16·a_1_2·a_5_23 + c_4_16·a_1_2·b_1_32·a_3_11 + c_4_16·a_1_0·b_1_32·a_3_11 + c_4_162·a_1_22
- a_5_23·b_5_24 + b_1_1·b_1_32·a_7_35 + b_1_14·b_1_33·a_3_11 + b_1_15·b_1_32·a_3_11
+ b_1_16·b_1_3·a_3_11 + b_1_16·b_1_3·a_3_10 + b_1_17·a_3_11 + b_1_17·a_3_10 + b_6_35·b_1_1·a_3_11 + b_6_35·b_1_1·a_3_10 + c_4_16·b_1_12·b_1_3·a_3_11 + c_4_16·b_1_12·b_1_3·a_3_10 + c_4_16·b_1_13·a_3_11 + c_4_16·b_1_13·a_3_10 + c_8_58·a_1_0·a_1_2 + c_4_16·a_1_22·b_1_3·a_3_11 + c_4_162·a_1_2·b_1_1 + c_4_162·a_1_0·a_1_2
- b_5_242 + c_4_16·b_1_12·b_1_34 + c_8_58·a_1_22 + c_4_16·a_1_22·b_1_3·a_3_11
+ c_4_162·b_1_12 + c_4_162·a_1_22
- a_1_0·b_9_76 + c_4_16·a_1_2·a_5_23 + c_4_16·a_1_2·b_1_1·b_1_3·a_3_11
+ c_4_16·a_1_0·b_1_32·a_3_11 + c_4_16·a_1_22·b_1_3·a_3_11 + c_4_162·a_1_0·b_1_3 + c_4_162·a_1_0·a_1_2
- a_1_2·b_9_76 + b_6_35·a_1_2·b_1_33 + a_6_28·b_1_3·a_3_11 + a_6_28·b_1_1·a_3_11
+ c_4_16·a_1_2·b_5_24 + c_4_16·a_3_112 + c_4_16·a_1_2·b_1_32·a_3_11 + c_4_16·a_1_22·b_1_3·a_3_11 + c_4_162·a_1_2·b_1_3
- b_1_14·b_1_34·a_3_11 + b_1_18·a_3_11 + b_1_18·a_3_10 + a_6_28·b_5_22
+ a_6_28·b_1_12·b_1_33 + a_6_28·b_1_13·b_1_32 + a_6_28·b_1_14·b_1_3 + c_4_16·b_1_14·a_3_10 + c_4_16·a_1_22·b_1_32·a_3_11
- a_6_28·a_5_23 + a_6_28·b_1_1·b_1_3·a_3_11 + c_4_16·a_6_28·a_1_2 + c_4_16·a_6_28·a_1_0
- b_6_35·a_5_23 + b_6_35·b_1_1·b_1_3·a_3_11 + b_6_35·b_1_1·b_1_3·a_3_10 + a_6_28·a_5_23
+ a_6_28·b_1_32·a_3_11 + c_4_16·a_1_2·b_1_3·b_5_24 + c_4_16·a_1_2·b_1_36 + c_8_58·a_1_0·a_1_2·b_1_3 + c_4_16·b_1_3·a_3_112 + c_4_16·a_1_2·b_1_33·a_3_11 + c_4_16·a_6_28·a_1_2 + c_4_16·a_6_28·a_1_0 + c_4_162·a_1_2·b_1_32 + c_4_162·a_1_2·b_1_1·b_1_3 + c_4_162·a_1_22·b_1_3 + c_4_162·a_1_23
- b_1_12·b_1_36·a_3_11 + b_1_16·b_1_32·a_3_11 + b_1_18·a_3_11 + b_1_18·a_3_10
+ b_6_35·a_5_23 + b_6_35·b_1_1·b_1_3·a_3_11 + b_6_35·b_1_1·b_1_3·a_3_10 + b_6_35·a_1_2·b_1_34 + a_6_28·b_5_24 + a_6_28·b_1_35 + a_6_28·b_1_1·b_1_34 + a_6_28·b_1_12·b_1_33 + b_1_3·a_3_11·a_7_35 + a_1_2·b_1_37·a_3_11 + a_6_28·a_5_23 + b_1_32·a_3_113 + c_4_16·b_1_14·a_3_11 + c_4_16·b_1_14·a_3_10 + c_4_16·a_1_2·b_1_3·b_5_24 + c_4_16·a_6_28·b_1_1 + c_4_16·b_1_3·a_3_112 + c_4_16·a_1_22·b_5_24 + c_4_16·a_6_28·a_1_2 + c_8_58·a_1_23 + c_4_16·a_1_22·b_1_32·a_3_11 + c_4_162·a_1_2·b_1_32 + c_4_162·a_1_2·b_1_1·b_1_3 + c_4_162·a_1_0·a_1_2·b_1_3
- b_1_32·b_9_76 + b_1_36·b_5_24 + b_1_1·b_1_35·b_5_24 + b_1_13·b_1_33·b_5_24
+ b_1_15·b_1_3·b_5_24 + b_1_16·b_5_24 + b_6_35·b_5_24 + b_6_35·b_1_35 + b_6_35·b_1_1·b_1_34 + b_6_35·b_1_12·b_1_33 + b_1_1·b_1_37·a_3_11 + b_1_13·b_1_35·a_3_11 + b_1_14·b_1_34·a_3_11 + b_1_16·b_1_32·a_3_11 + b_6_35·a_5_23 + b_6_35·b_1_32·a_3_11 + b_6_35·b_1_1·b_1_3·a_3_11 + b_6_35·b_1_1·b_1_3·a_3_10 + b_6_35·a_1_2·b_1_34 + a_6_28·b_5_24 + a_6_28·b_1_35 + a_6_28·b_1_12·b_1_33 + a_6_28·b_1_13·b_1_32 + b_1_3·a_3_11·a_7_35 + a_6_28·a_5_23 + a_6_28·b_1_32·a_3_11 + b_1_32·a_3_113 + c_4_16·b_1_12·b_5_24 + c_4_16·b_1_12·b_1_35 + c_4_16·b_1_14·b_1_33 + c_4_16·b_1_16·b_1_3 + c_4_16·b_1_17 + c_4_16·b_6_35·b_1_1 + c_8_58·a_1_0·b_1_32 + c_4_16·b_1_13·b_1_3·a_3_11 + c_4_16·b_1_13·b_1_3·a_3_10 + c_4_16·a_1_2·b_1_36 + c_4_16·b_6_35·a_1_2 + c_4_16·a_6_28·b_1_1 + c_8_58·a_1_22·b_1_3 + c_4_16·b_1_3·a_3_112 + c_4_16·a_1_2·b_1_33·a_3_11 + c_4_16·a_6_28·a_1_0 + c_4_16·a_1_22·b_1_32·a_3_11 + c_4_162·b_1_33 + c_4_162·b_1_1·b_1_32 + c_4_162·b_1_13 + c_4_162·a_1_2·b_1_32 + c_4_162·a_1_0·b_1_32 + c_4_162·a_1_22·b_1_3 + c_4_162·a_1_0·a_1_2·b_1_3 + c_4_162·a_1_23
- b_1_12·b_9_76 + b_1_12·b_1_34·b_5_24 + b_1_13·b_1_33·b_5_24
+ b_1_15·b_1_3·b_5_24 + b_1_15·b_1_3·b_5_22 + b_1_16·b_5_22 + b_6_35·b_5_22 + b_6_35·b_1_12·b_1_33 + b_6_35·b_1_13·b_1_32 + b_6_35·b_1_14·b_1_3 + b_1_13·b_1_35·a_3_11 + b_1_14·b_1_34·a_3_11 + b_1_15·b_1_33·a_3_11 + b_1_16·b_1_32·a_3_11 + b_1_17·b_1_3·a_3_10 + b_1_18·a_3_11 + b_6_35·b_1_1·b_1_3·a_3_10 + b_6_35·b_1_12·a_3_11 + a_6_28·b_1_13·b_1_32 + a_6_28·b_1_15 + c_4_16·b_1_12·b_5_22 + c_4_16·b_1_14·b_1_33 + c_4_16·b_1_16·b_1_3 + c_4_16·b_1_14·a_3_10 + c_4_16·a_1_2·b_1_3·b_5_24 + c_4_16·a_1_2·b_1_36 + c_4_16·b_6_35·a_1_2 + c_4_16·b_1_3·a_3_112 + c_4_16·a_1_2·b_1_1·b_1_32·a_3_11 + c_4_16·a_1_22·b_5_24 + c_4_16·a_6_28·a_1_0 + c_4_16·a_1_22·b_1_32·a_3_11 + c_4_162·b_1_12·b_1_3 + c_4_162·b_1_13 + c_4_162·a_1_2·b_1_32 + c_4_162·a_1_2·b_1_1·b_1_3 + c_4_162·a_1_0·b_1_32 + c_4_162·a_1_22·b_1_3 + c_4_162·a_1_0·a_1_2·b_1_3 + c_4_162·a_1_23
- b_6_35·a_5_23 + b_6_35·b_1_1·b_1_3·a_3_11 + b_6_35·b_1_1·b_1_3·a_3_10 + a_10_68·a_1_0
+ a_6_28·a_5_23 + a_6_28·b_1_32·a_3_11 + c_4_16·a_1_2·b_1_3·b_5_24 + c_4_16·a_1_2·b_1_36 + c_4_16·b_1_3·a_3_112 + c_4_16·a_1_2·b_1_33·a_3_11 + c_4_16·a_6_28·a_1_2 + c_4_16·a_6_28·a_1_0 + c_4_162·a_1_2·b_1_32 + c_4_162·a_1_2·b_1_1·b_1_3 + c_4_162·a_1_22·b_1_3
- b_1_12·b_1_36·a_3_11 + b_1_16·b_1_32·a_3_11 + b_1_18·a_3_11 + b_1_18·a_3_10
+ b_6_35·a_5_23 + b_6_35·b_1_1·b_1_3·a_3_11 + b_6_35·b_1_1·b_1_3·a_3_10 + b_6_35·a_1_2·b_1_34 + a_6_28·b_5_24 + a_6_28·b_1_35 + a_6_28·b_1_1·b_1_34 + a_6_28·b_1_12·b_1_33 + b_1_3·a_3_11·a_7_35 + a_1_2·b_1_37·a_3_11 + a_10_68·a_1_2 + a_6_28·a_5_23 + b_1_32·a_3_113 + c_4_16·b_1_14·a_3_11 + c_4_16·b_1_14·a_3_10 + c_4_16·a_1_2·b_1_3·b_5_24 + c_4_16·a_6_28·b_1_1 + c_8_58·a_1_22·b_1_3 + c_4_16·b_1_3·a_3_112 + c_4_16·a_1_2·b_1_1·b_1_32·a_3_11 + c_4_16·a_6_28·a_1_2 + c_4_16·a_6_28·a_1_0 + c_4_162·a_1_2·b_1_32 + c_4_162·a_1_2·b_1_1·b_1_3 + c_4_162·a_1_23
- a_6_282
- a_5_23·a_7_35 + c_4_16·a_1_2·b_1_34·a_3_11 + c_4_16·a_1_2·b_1_1·b_1_33·a_3_11
+ c_4_162·a_1_2·a_3_11 + c_4_162·a_1_22·b_1_32 + c_4_162·a_1_23·b_1_3
- b_5_22·a_7_35 + b_1_17·b_1_32·a_3_11 + b_1_18·b_1_3·a_3_11 + b_1_18·b_1_3·a_3_10
+ b_6_35·b_1_12·b_1_3·a_3_11 + b_6_35·b_1_13·a_3_11 + b_6_35·b_1_13·a_3_10 + a_6_28·b_1_1·b_5_22 + a_6_28·b_1_15·b_1_3 + a_6_28·b_6_35 + a_6_28·b_1_33·a_3_11 + c_4_16·b_1_14·b_1_3·a_3_10 + c_4_16·b_1_15·a_3_11 + c_4_16·a_1_2·b_1_37 + c_4_16·b_6_35·a_1_2·b_1_3 + c_4_16·a_6_28·b_1_12 + c_4_16·a_1_2·b_1_34·a_3_11 + c_4_16·a_1_2·b_1_1·b_1_33·a_3_11 + c_4_16·a_6_28·a_1_2·b_1_1 + c_8_58·a_1_23·b_1_3 + c_4_162·a_1_2·b_1_33 + c_4_162·a_1_0·b_1_33 + c_4_162·a_1_22·b_1_32
- b_1_12·b_1_35·b_5_24 + b_1_15·b_1_32·b_5_24 + b_1_16·b_1_3·b_5_22
+ b_1_17·b_5_24 + b_6_35·b_1_12·b_1_34 + b_6_35·b_1_14·b_1_32 + b_6_352 + b_5_22·a_7_35 + b_1_16·b_1_33·a_3_11 + b_1_18·b_1_3·a_3_11 + b_1_18·b_1_3·a_3_10 + b_1_19·a_3_11 + b_6_35·b_1_12·b_1_3·a_3_11 + b_6_35·b_1_12·b_1_3·a_3_10 + b_6_35·b_1_13·a_3_11 + b_6_35·b_1_13·a_3_10 + a_6_28·b_1_1·b_5_24 + a_6_28·b_1_1·b_1_35 + a_6_28·b_1_12·b_1_34 + a_6_28·b_1_14·b_1_32 + a_6_28·b_1_15·b_1_3 + a_6_28·b_6_35 + b_6_35·a_3_112 + a_6_28·b_1_33·a_3_11 + a_6_28·b_1_1·b_1_32·a_3_11 + b_1_33·a_3_113 + c_8_58·b_1_14 + c_4_16·b_1_38 + c_4_16·b_1_13·b_1_35 + c_4_16·b_1_16·b_1_32 + c_4_16·b_1_14·b_1_3·a_3_10 + c_4_16·a_1_2·b_1_37 + c_4_16·b_6_35·a_1_2·b_1_3 + c_8_58·a_1_22·b_1_32 + c_4_16·b_1_32·a_3_112 + c_4_16·a_1_2·b_1_34·a_3_11 + c_4_16·a_1_2·b_1_1·b_1_33·a_3_11 + c_4_16·a_6_28·a_1_2·b_1_1 + c_4_16·a_6_28·a_1_22 + c_4_162·b_1_34 + c_4_162·b_1_14 + c_4_162·a_1_2·b_1_33 + c_4_162·a_1_0·b_1_33 + c_4_162·a_1_23·b_1_3
- a_3_10·b_9_76 + b_1_16·b_1_33·a_3_11 + b_1_18·b_1_3·a_3_10 + a_6_28·b_1_3·b_5_24
+ a_6_28·b_1_3·b_5_22 + a_6_28·b_1_14·b_1_32 + a_6_28·b_1_15·b_1_3 + a_6_28·b_1_16 + a_6_28·b_6_35 + a_6_28·b_1_33·a_3_11 + c_4_16·b_1_13·b_1_32·a_3_11 + c_4_16·a_1_2·b_1_37 + c_4_16·b_6_35·a_1_2·b_1_3 + c_4_16·a_6_28·b_1_1·b_1_3 + c_4_16·a_6_28·b_1_12 + c_4_16·b_1_32·a_3_112 + c_4_16·a_1_2·a_7_35 + c_4_162·b_1_3·a_3_10 + c_4_162·b_1_1·a_3_10 + c_4_162·a_1_2·b_1_33 + c_4_162·a_1_0·b_1_33 + c_4_162·a_1_2·a_3_11 + c_4_162·a_1_22·b_1_32 + c_4_162·a_1_0·a_3_11
- b_5_24·a_7_35 + b_5_22·a_7_35 + a_3_11·b_9_76 + b_1_35·a_7_35 + b_1_1·b_1_34·a_7_35
+ b_1_16·b_1_33·a_3_11 + b_1_18·b_1_3·a_3_11 + b_1_19·a_3_11 + b_1_19·a_3_10 + b_6_35·b_1_12·b_1_3·a_3_10 + b_6_35·b_1_13·a_3_11 + b_6_35·b_1_13·a_3_10 + a_6_28·b_1_3·b_5_24 + a_6_28·b_1_1·b_5_24 + a_6_28·b_1_1·b_5_22 + a_6_28·b_1_1·b_1_35 + a_6_28·b_1_12·b_1_34 + a_6_28·b_1_13·b_1_33 + a_6_28·b_1_14·b_1_32 + a_6_28·b_1_16 + a_6_28·b_1_1·b_1_32·a_3_11 + c_4_16·b_1_1·a_7_35 + c_4_16·b_1_1·b_1_34·a_3_11 + c_4_16·b_1_13·b_1_32·a_3_11 + c_4_16·b_1_15·a_3_10 + c_4_16·a_1_2·b_1_37 + c_4_16·b_6_35·a_1_2·b_1_1 + c_4_16·a_6_28·b_1_1·b_1_3 + c_4_16·a_6_28·b_1_12 + c_8_58·a_1_0·a_3_11 + c_4_16·a_1_2·b_1_1·b_1_33·a_3_11 + c_4_162·b_1_3·a_3_11 + c_4_162·b_1_1·a_3_11 + c_4_162·a_1_2·b_1_1·b_1_32 + c_4_162·a_1_2·a_3_11 + c_4_162·a_1_22·b_1_32 + c_4_162·a_1_0·a_3_11
- b_5_24·a_7_35 + b_1_1·b_1_34·a_7_35 + b_1_18·b_1_3·a_3_11 + b_1_18·b_1_3·a_3_10
+ a_10_68·b_1_32 + b_6_35·b_1_1·b_1_32·a_3_11 + b_6_35·b_1_12·b_1_3·a_3_11 + b_6_35·b_1_12·b_1_3·a_3_10 + b_6_35·a_1_2·b_1_35 + a_6_28·b_1_3·b_5_22 + a_6_28·b_1_36 + a_6_28·b_1_1·b_5_22 + a_6_28·b_1_12·b_1_34 + a_6_28·b_1_15·b_1_3 + b_1_36·a_3_112 + a_6_28·b_1_1·b_1_32·a_3_11 + b_1_33·a_3_113 + c_8_58·a_1_2·b_1_33 + c_4_16·a_3_11·b_5_24 + c_4_16·b_1_1·a_7_35 + c_4_16·b_1_12·b_1_33·a_3_11 + c_4_16·b_1_13·b_1_32·a_3_11 + c_4_16·b_1_14·b_1_3·a_3_10 + c_4_16·b_1_15·a_3_11 + c_4_16·a_1_2·b_1_37 + c_4_16·b_6_35·a_1_2·b_1_3 + c_4_16·a_6_28·b_1_32 + c_8_58·a_1_22·b_1_32 + c_8_58·a_1_0·a_3_11 + c_4_16·a_1_2·b_1_34·a_3_11 + c_4_16·a_1_2·b_1_1·b_1_33·a_3_11 + c_4_16·a_6_28·a_1_2·b_1_1 + c_4_162·b_1_1·a_3_11 + c_4_162·a_1_2·b_1_33 + c_4_162·a_1_2·b_1_1·b_1_32 + c_4_162·a_1_0·a_3_11
- b_1_16·b_1_33·a_3_11 + b_1_19·a_3_10 + a_10_68·b_1_12
+ b_6_35·b_1_12·b_1_3·a_3_11 + b_6_35·b_1_12·b_1_3·a_3_10 + b_6_35·b_1_13·a_3_11 + a_6_28·b_1_3·b_5_22 + a_6_28·b_1_1·b_5_24 + a_6_28·b_1_1·b_5_22 + a_6_28·b_1_12·b_1_34 + a_6_28·b_1_14·b_1_32 + a_6_28·b_1_15·b_1_3 + a_6_28·b_6_35 + a_6_28·b_1_33·a_3_11 + c_8_58·a_1_0·b_1_33 + c_4_16·b_1_12·b_1_33·a_3_11 + c_4_16·b_1_13·b_1_32·a_3_11 + c_4_16·b_1_15·a_3_10 + c_4_16·a_1_2·b_1_37 + c_4_16·a_6_28·b_1_32 + c_4_16·a_1_2·b_1_34·a_3_11 + c_4_16·a_1_2·b_1_1·b_1_33·a_3_11 + c_4_16·a_6_28·a_1_2·b_1_1 + c_4_162·a_1_22·b_1_32
- a_6_28·a_7_35 + c_4_16·a_1_2·b_1_35·a_3_11 + c_4_16·a_6_28·a_3_11 + c_4_16·a_3_113
+ c_4_162·a_1_22·a_3_11
- a_10_68·a_3_10 + c_8_58·a_1_0·b_1_3·a_3_11 + c_4_162·a_1_22·a_3_11
- b_1_1·b_1_35·a_7_35 + b_1_110·a_3_10 + a_10_68·b_1_33 + a_10_68·b_1_13
+ b_6_35·a_7_35 + b_6_35·b_1_1·b_1_33·a_3_11 + b_6_35·b_1_14·a_3_11 + b_6_35·a_1_2·b_1_36 + a_6_28·b_1_32·b_5_24 + a_6_28·b_1_37 + a_6_28·b_1_1·b_1_3·b_5_22 + a_6_28·b_1_12·b_1_35 + a_6_28·b_1_13·b_1_34 + a_6_28·b_1_15·b_1_32 + a_6_28·b_1_16·b_1_3 + a_6_28·b_6_35·b_1_1 + b_1_37·a_3_112 + a_3_112·a_7_35 + b_1_34·a_3_113 + c_8_58·b_1_12·a_3_10 + c_8_58·a_1_2·b_1_34 + c_4_16·b_1_32·a_7_35 + c_4_16·b_1_36·a_3_11 + c_4_16·b_1_12·b_1_34·a_3_11 + c_4_16·b_1_13·b_1_33·a_3_11 + c_4_16·b_1_14·b_1_32·a_3_11 + c_4_16·b_1_16·a_3_11 + c_4_16·a_1_2·b_1_38 + c_4_16·b_6_35·a_3_11 + c_4_16·a_6_28·b_1_33 + c_4_16·a_6_28·b_1_13 + c_8_58·a_1_0·b_1_3·a_3_11 + c_4_16·a_1_2·b_1_35·a_3_11 + c_4_16·a_1_2·b_1_1·a_7_35 + c_4_162·b_1_32·a_3_11 + c_4_162·b_1_12·a_3_10 + c_4_162·a_1_2·b_1_1·b_1_33 + c_4_162·a_1_2·b_1_1·a_3_11 + c_4_162·a_1_0·b_1_3·a_3_11 + c_4_162·a_1_22·a_3_11
- a_10_68·a_3_11 + b_1_34·a_3_113 + c_8_58·a_1_2·b_1_3·a_3_11
+ c_4_16·a_1_2·b_1_1·a_7_35 + c_8_58·a_1_22·a_3_11 + c_4_16·a_3_113 + c_4_162·a_1_0·b_1_3·a_3_11
- a_7_352 + c_4_16·b_1_34·a_3_112 + c_4_162·a_3_112
- b_5_24·b_9_76 + b_6_35·b_1_33·b_5_24 + b_6_35·b_1_1·b_1_32·b_5_24
+ b_6_35·b_1_12·b_1_3·b_5_24 + a_10_68·b_1_34 + a_10_68·b_1_1·b_1_33 + a_10_68·b_1_12·b_1_32 + b_6_35·b_1_1·a_7_35 + b_6_35·b_1_12·b_1_33·a_3_11 + b_6_35·b_1_13·b_1_32·a_3_11 + b_6_35·a_1_2·b_1_37 + a_6_28·b_1_38 + a_6_28·b_1_1·b_1_37 + a_6_28·b_1_12·b_1_3·b_5_24 + a_6_28·b_1_12·b_1_36 + a_6_28·b_1_14·b_1_34 + a_6_28·b_1_15·b_1_33 + a_6_28·b_1_17·b_1_3 + b_1_38·a_3_112 + b_6_35·b_1_32·a_3_112 + b_1_35·a_3_113 + c_4_16·b_1_1·b_9_76 + c_4_16·b_1_1·b_1_34·b_5_24 + c_4_16·b_1_12·b_1_38 + c_4_16·b_1_13·b_1_37 + c_4_16·b_1_15·b_1_35 + c_4_16·b_1_17·b_1_33 + c_4_16·b_1_18·b_1_32 + c_4_16·b_6_35·b_1_1·b_1_33 + c_4_16·b_6_35·b_1_13·b_1_3 + c_8_58·b_1_13·a_3_10 + c_8_58·a_1_2·b_1_35 + c_4_16·b_1_33·a_7_35 + c_4_16·b_1_1·b_1_32·a_7_35 + c_4_16·b_1_1·b_1_36·a_3_11 + c_4_16·b_1_12·b_1_35·a_3_11 + c_4_16·b_1_14·b_1_33·a_3_11 + c_4_16·b_1_15·b_1_32·a_3_11 + c_4_16·b_1_17·a_3_10 + c_4_16·a_1_2·b_1_39 + c_4_16·b_6_35·b_1_3·a_3_11 + c_4_16·b_6_35·b_1_3·a_3_10 + c_4_16·b_6_35·b_1_1·a_3_11 + c_4_16·a_6_28·b_1_13·b_1_3 + c_8_58·a_3_112 + c_4_16·a_3_11·a_7_35 + c_4_16·a_6_28·b_1_3·a_3_11 + c_4_16·a_6_28·b_1_1·a_3_11 + c_8_58·a_1_22·b_1_3·a_3_11 + c_4_16·b_1_3·a_3_113 + c_4_162·b_1_3·b_5_24 + c_4_162·b_1_1·b_5_24 + c_4_162·b_1_12·b_1_34 + c_4_162·b_1_14·b_1_32 + c_4_162·b_1_1·b_1_32·a_3_11 + c_4_162·b_1_12·b_1_3·a_3_11 + c_4_162·b_1_12·b_1_3·a_3_10 + c_4_162·b_1_13·a_3_10 + c_4_162·a_1_2·b_5_24 + c_4_162·a_1_2·b_1_35 + c_4_162·a_1_2·a_5_23 + c_4_162·a_1_2·b_1_32·a_3_11 + c_4_162·a_1_2·b_1_1·b_1_3·a_3_11 + c_4_162·a_1_0·b_1_32·a_3_11 + c_4_163·b_1_1·b_1_3 + c_4_163·b_1_12 + c_4_163·a_1_2·b_1_1 + c_4_163·a_1_22
- b_5_24·b_9_76 + b_5_22·b_9_76 + b_6_35·b_1_33·b_5_24 + b_6_35·b_1_1·b_1_32·b_5_24
+ b_6_35·b_1_12·b_1_3·b_5_22 + b_6_35·b_1_13·b_5_24 + a_10_68·b_1_34 + a_10_68·b_1_13·b_1_3 + b_6_35·a_3_11·b_5_24 + b_6_35·b_1_3·a_7_35 + b_6_35·b_1_12·b_1_33·a_3_11 + b_6_35·a_1_2·b_1_37 + a_6_28·b_1_38 + a_6_28·b_1_12·b_1_3·b_5_24 + a_6_28·b_1_12·b_1_3·b_5_22 + a_6_28·b_1_13·b_5_22 + a_6_28·b_1_13·b_1_35 + a_6_28·b_1_14·b_1_34 + a_6_28·b_1_16·b_1_32 + a_6_28·b_1_17·b_1_3 + a_6_28·b_1_18 + a_6_28·b_6_35·b_1_32 + a_6_28·b_6_35·b_1_12 + b_1_38·a_3_112 + a_6_28·b_1_35·a_3_11 + b_1_3·a_3_112·a_7_35 + b_1_35·a_3_113 + c_4_16·b_1_1·b_9_76 + c_4_16·b_1_1·b_1_34·b_5_24 + c_4_16·b_1_12·b_1_38 + c_4_16·b_1_13·b_1_32·b_5_24 + c_4_16·b_1_13·b_1_37 + c_4_16·b_1_14·b_1_36 + c_4_16·b_1_18·b_1_32 + c_4_16·b_1_19·b_1_3 + c_4_16·b_1_110 + c_4_16·b_6_35·b_1_1·b_1_33 + c_8_58·b_1_12·b_1_3·a_3_10 + c_8_58·a_1_2·b_1_35 + c_4_16·b_1_33·a_7_35 + c_4_16·b_1_37·a_3_11 + c_4_16·b_1_12·b_1_35·a_3_11 + c_4_16·b_1_13·b_1_34·a_3_11 + c_4_16·b_1_14·b_1_33·a_3_11 + c_4_16·b_1_15·b_1_32·a_3_11 + c_4_16·b_1_16·b_1_3·a_3_10 + c_4_16·b_1_17·a_3_11 + c_4_16·b_1_17·a_3_10 + c_4_16·a_1_2·b_1_39 + c_4_16·b_6_35·b_1_3·a_3_11 + c_4_16·b_6_35·b_1_1·a_3_11 + c_4_16·a_6_28·b_1_34 + c_4_16·a_6_28·b_1_12·b_1_32 + c_4_16·a_6_28·b_1_14 + c_8_58·a_1_0·b_1_32·a_3_11 + c_4_16·a_3_11·a_7_35 + c_8_58·a_1_22·b_1_3·a_3_11 + c_4_16·b_1_3·a_3_113 + c_4_162·b_1_3·b_5_24 + c_4_162·b_1_3·b_5_22 + c_4_162·b_1_1·b_5_24 + c_4_162·b_1_1·b_5_22 + c_4_162·b_1_12·b_1_34 + c_4_162·b_1_16 + c_4_162·b_1_33·a_3_11 + c_4_162·b_1_12·b_1_3·a_3_10 + c_4_162·a_1_2·b_5_24 + c_4_16·c_8_58·a_1_22 + c_4_162·a_1_2·a_5_23 + c_4_162·a_1_2·b_1_32·a_3_11 + c_4_162·a_1_0·b_1_32·a_3_11 + c_4_162·a_1_22·b_1_3·a_3_11 + c_4_163·b_1_1·b_1_3 + c_4_163·b_1_12 + c_4_163·a_1_2·b_1_1 + c_4_163·a_1_22
- a_5_23·b_9_76 + b_1_111·a_3_10 + a_10_68·b_1_34 + a_10_68·b_1_1·b_1_33
+ a_10_68·b_1_14 + b_6_35·a_3_11·b_5_24 + b_6_35·b_1_1·b_1_34·a_3_11 + b_6_35·b_1_12·b_1_33·a_3_11 + b_6_35·b_1_13·b_1_32·a_3_11 + b_6_35·b_1_15·a_3_10 + b_6_35·a_1_2·b_1_37 + a_6_28·b_1_38 + a_6_28·b_1_1·b_1_32·b_5_24 + a_6_28·b_1_1·b_1_37 + a_6_28·b_1_12·b_1_3·b_5_22 + a_6_28·b_1_13·b_5_24 + a_6_28·b_1_13·b_5_22 + a_6_28·b_1_15·b_1_33 + a_6_28·b_1_16·b_1_32 + a_6_28·b_1_17·b_1_3 + a_6_28·b_6_35·b_1_32 + a_6_28·b_6_35·b_1_12 + b_1_38·a_3_112 + b_6_35·b_1_32·a_3_112 + b_1_35·a_3_113 + c_8_58·a_1_2·b_1_35 + c_4_16·b_1_33·a_7_35 + c_4_16·b_1_1·b_1_32·a_7_35 + c_4_16·b_1_12·b_1_35·a_3_11 + c_4_16·b_1_15·b_1_32·a_3_11 + c_4_16·b_1_16·b_1_3·a_3_11 + c_4_16·b_1_16·b_1_3·a_3_10 + c_4_16·b_1_17·a_3_10 + c_4_16·a_1_2·b_1_39 + c_4_16·b_6_35·b_1_3·a_3_11 + c_4_16·b_6_35·b_1_3·a_3_10 + c_4_16·b_6_35·b_1_1·a_3_10 + c_4_16·a_6_28·b_1_34 + c_8_58·a_3_112 + c_4_16·a_3_11·a_7_35 + c_4_16·b_1_34·a_3_112 + c_4_16·a_1_2·b_1_36·a_3_11 + c_4_16·a_6_28·b_1_3·a_3_11 + c_8_58·a_1_22·b_1_3·a_3_11 + c_4_16·b_1_3·a_3_113 + c_4_162·b_1_3·a_5_23 + c_4_162·b_1_13·a_3_11 + c_4_162·b_1_13·a_3_10 + c_4_16·c_8_58·a_1_22 + c_4_16·c_8_58·a_1_0·a_1_2 + c_4_162·a_1_2·b_1_1·b_1_3·a_3_11 + c_4_162·a_1_0·b_1_32·a_3_11 + c_4_163·a_1_2·b_1_1 + c_4_163·a_1_0·a_1_2
- b_6_35·b_1_12·b_1_34·a_3_11 + b_6_35·b_1_16·a_3_11 + b_6_35·b_1_16·a_3_10
+ a_6_28·b_9_76 + a_6_28·b_1_34·b_5_24 + a_6_28·b_1_1·b_1_33·b_5_24 + a_6_28·b_1_13·b_1_3·b_5_24 + a_6_28·b_1_13·b_1_3·b_5_22 + a_6_28·b_1_14·b_5_22 + a_6_28·b_1_36·a_3_11 + c_4_16·a_1_2·b_1_310 + c_4_16·b_6_35·b_1_12·a_3_10 + c_4_16·b_6_35·a_1_2·b_1_34 + c_4_16·a_6_28·b_5_22 + c_4_16·a_6_28·b_1_12·b_1_33 + c_4_16·a_6_28·b_1_14·b_1_3 + c_4_16·b_1_35·a_3_112 + c_4_16·a_1_2·b_1_37·a_3_11 + c_4_16·a_6_28·b_1_1·b_1_3·a_3_11 + c_4_16·b_1_32·a_3_113 + c_4_162·a_1_2·b_1_36 + c_4_162·a_6_28·b_1_3 + c_4_162·a_6_28·b_1_1 + c_4_16·c_8_58·a_1_0·a_1_2·b_1_3 + c_4_162·b_1_3·a_3_112 + c_4_162·a_1_2·b_1_1·b_1_32·a_3_11 + c_4_162·a_6_28·a_1_0 + c_4_16·c_8_58·a_1_23 + c_4_162·a_1_22·b_1_32·a_3_11 + c_4_163·a_1_22·b_1_3
- b_6_35·b_9_76 + b_6_35·b_1_34·b_5_24 + b_6_35·b_1_1·b_1_33·b_5_24
+ b_6_35·b_1_12·b_1_32·b_5_24 + b_6_35·b_1_13·b_1_3·b_5_24 + b_6_35·b_1_13·b_1_3·b_5_22 + b_6_35·b_1_14·b_5_24 + b_6_35·b_1_14·b_5_22 + b_6_352·b_1_33 + b_6_352·b_1_1·b_1_32 + b_6_352·b_1_12·b_1_3 + a_10_68·b_5_22 + b_6_35·b_1_1·b_1_35·a_3_11 + b_6_35·b_1_12·b_1_34·a_3_11 + b_6_35·b_1_13·b_1_33·a_3_11 + b_6_35·b_1_15·b_1_3·a_3_11 + b_6_35·b_1_15·b_1_3·a_3_10 + b_6_35·b_1_16·a_3_10 + b_6_352·a_3_11 + b_6_352·a_3_10 + a_6_28·b_1_1·b_1_33·b_5_24 + a_6_28·b_1_12·b_1_32·b_5_24 + a_6_28·b_1_13·b_1_3·b_5_24 + a_6_28·b_1_14·b_5_22 + a_6_28·b_6_35·b_1_1·b_1_32 + a_6_28·b_1_36·a_3_11 + c_8_58·b_1_12·b_5_22 + c_4_16·b_1_36·b_5_24 + c_4_16·b_1_14·b_1_37 + c_4_16·b_1_16·b_5_22 + c_4_16·b_1_17·b_1_34 + c_4_16·b_1_19·b_1_32 + c_4_16·b_1_110·b_1_3 + c_4_16·b_6_35·b_5_22 + c_4_16·b_6_35·b_1_12·b_1_33 + c_4_16·b_6_35·b_1_13·b_1_32 + c_4_16·b_6_35·b_1_14·b_1_3 + c_4_16·b_6_35·b_1_15 + c_8_58·b_1_13·b_1_3·a_3_10 + c_8_58·b_1_14·a_3_10 + c_4_16·b_1_16·b_1_32·a_3_11 + c_4_16·b_1_17·b_1_3·a_3_11 + c_4_16·b_1_17·b_1_3·a_3_10 + c_4_16·a_6_28·b_5_24 + c_4_16·a_6_28·b_1_35 + c_4_16·a_6_28·b_1_1·b_1_34 + c_4_16·a_6_28·b_1_12·b_1_33 + c_4_16·a_6_28·b_1_14·b_1_3 + c_4_16·b_1_3·a_3_11·a_7_35 + c_4_16·a_1_2·b_1_37·a_3_11 + c_4_16·a_6_28·b_1_32·a_3_11 + c_4_16·b_1_32·a_3_113 + c_4_162·b_1_32·b_5_24 + c_4_162·b_1_1·b_1_36 + c_4_162·b_1_12·b_5_22 + c_4_162·b_6_35·b_1_3 + c_4_162·b_6_35·b_1_1 + c_4_16·c_8_58·a_1_0·b_1_32 + c_4_162·b_1_12·b_1_32·a_3_11 + c_4_162·b_1_13·b_1_3·a_3_10 + c_4_162·b_1_14·a_3_11 + c_4_162·b_1_14·a_3_10 + c_4_162·a_1_2·b_1_36 + c_4_162·b_6_35·a_1_2 + c_4_162·a_6_28·b_1_1 + c_4_16·c_8_58·a_1_22·b_1_3 + c_4_16·c_8_58·a_1_0·a_1_2·b_1_3 + c_4_162·a_1_2·b_1_1·b_1_32·a_3_11 + c_4_162·a_1_22·b_5_24 + c_4_162·a_6_28·a_1_2 + c_4_163·b_1_1·b_1_32 + c_4_163·a_1_0·b_1_32 + c_4_163·a_1_23
- b_6_35·b_9_76 + b_6_35·b_1_34·b_5_24 + b_6_35·b_1_1·b_1_33·b_5_24
+ b_6_35·b_1_12·b_1_32·b_5_24 + b_6_35·b_1_13·b_1_3·b_5_24 + b_6_35·b_1_13·b_1_3·b_5_22 + b_6_35·b_1_14·b_5_24 + b_6_35·b_1_14·b_5_22 + b_6_352·b_1_33 + b_6_352·b_1_1·b_1_32 + b_6_352·b_1_12·b_1_3 + a_10_68·b_1_12·b_1_33 + a_10_68·b_1_13·b_1_32 + a_10_68·b_1_14·b_1_3 + b_6_35·b_1_1·b_1_35·a_3_11 + b_6_35·b_1_13·b_1_33·a_3_11 + b_6_35·b_1_15·b_1_3·a_3_11 + b_6_35·b_1_15·b_1_3·a_3_10 + b_6_35·b_1_16·a_3_11 + b_6_352·a_3_11 + b_6_352·a_3_10 + a_6_28·b_1_12·b_1_37 + a_6_28·b_1_13·b_1_36 + a_6_28·b_1_14·b_5_24 + a_6_28·b_1_14·b_5_22 + a_6_28·b_1_14·b_1_35 + a_6_28·b_1_16·b_1_33 + a_6_28·b_1_17·b_1_32 + a_6_28·b_1_19 + a_6_28·b_6_35·b_1_33 + a_6_28·b_6_35·b_1_13 + b_6_35·a_3_113 + c_8_58·b_1_12·b_5_22 + c_4_16·b_1_36·b_5_24 + c_4_16·b_1_14·b_1_37 + c_4_16·b_1_16·b_5_22 + c_4_16·b_1_17·b_1_34 + c_4_16·b_1_19·b_1_32 + c_4_16·b_1_110·b_1_3 + c_4_16·b_6_35·b_5_22 + c_4_16·b_6_35·b_1_12·b_1_33 + c_4_16·b_6_35·b_1_13·b_1_32 + c_4_16·b_6_35·b_1_14·b_1_3 + c_4_16·b_6_35·b_1_15 + c_8_58·b_1_13·b_1_3·a_3_10 + c_8_58·b_1_14·a_3_10 + c_4_16·b_1_16·b_1_32·a_3_11 + c_4_16·b_1_17·b_1_3·a_3_11 + c_4_16·b_1_17·b_1_3·a_3_10 + c_4_16·a_1_2·b_1_310 + c_4_16·b_6_35·b_1_12·a_3_10 + c_4_16·b_6_35·a_1_2·b_1_34 + c_4_16·a_6_28·b_5_22 + c_4_16·a_6_28·b_1_35 + c_4_16·a_6_28·b_1_1·b_1_34 + c_4_16·a_6_28·b_1_12·b_1_33 + c_4_16·a_6_28·b_1_15 + c_4_16·b_1_35·a_3_112 + c_4_16·a_1_2·b_1_37·a_3_11 + c_4_16·a_6_28·b_1_1·b_1_3·a_3_11 + c_4_16·b_1_32·a_3_113 + c_4_162·b_1_32·b_5_24 + c_4_162·b_1_1·b_1_36 + c_4_162·b_1_12·b_5_22 + c_4_162·b_6_35·b_1_3 + c_4_162·b_6_35·b_1_1 + c_4_16·c_8_58·a_1_0·b_1_32 + c_4_162·b_1_12·b_1_32·a_3_11 + c_4_162·b_1_13·b_1_3·a_3_10 + c_4_162·b_1_14·a_3_11 + c_4_162·b_1_14·a_3_10 + c_4_162·b_6_35·a_1_2 + c_4_16·c_8_58·a_1_22·b_1_3 + c_4_162·a_1_2·b_1_33·a_3_11 + c_4_162·a_1_2·b_1_1·b_1_32·a_3_11 + c_4_162·a_6_28·a_1_2 + c_4_162·a_6_28·a_1_0 + c_4_16·c_8_58·a_1_23 + c_4_163·b_1_1·b_1_32 + c_4_163·a_1_0·b_1_32 + c_4_163·a_1_22·b_1_3 + c_4_163·a_1_0·a_1_2·b_1_3
- a_10_68·a_5_23 + c_8_58·a_1_2·b_1_1·b_1_32·a_3_11 + c_8_58·a_1_22·b_5_24
+ a_6_28·c_8_58·a_1_2 + a_6_28·c_8_58·a_1_0 + c_4_16·a_6_28·b_1_1·b_1_3·a_3_11 + c_4_16·c_8_58·a_1_22·b_1_3 + c_4_16·c_8_58·a_1_0·a_1_2·b_1_3 + c_4_162·a_1_2·b_1_1·b_1_32·a_3_11 + c_4_162·a_6_28·a_1_0 + c_4_163·a_1_0·a_1_2·b_1_3 + c_4_163·a_1_23
- a_10_68·b_5_24 + b_6_35·b_1_15·b_1_3·a_3_11 + b_6_35·b_1_15·b_1_3·a_3_10
+ b_6_35·b_1_16·a_3_11 + b_6_35·b_1_16·a_3_10 + b_6_352·a_3_11 + a_6_28·b_1_1·b_1_33·b_5_24 + a_6_28·b_1_12·b_1_32·b_5_24 + a_6_28·b_1_13·b_1_3·b_5_24 + a_6_28·b_1_13·b_1_3·b_5_22 + a_6_28·b_1_14·b_5_24 + a_6_28·b_1_14·b_5_22 + a_6_28·b_6_35·b_1_33 + a_6_28·b_6_35·b_1_1·b_1_32 + a_6_28·b_1_36·a_3_11 + c_8_58·b_1_14·a_3_11 + c_8_58·a_1_2·b_1_3·b_5_24 + c_4_16·b_1_38·a_3_11 + c_4_16·b_1_13·b_1_35·a_3_11 + c_4_16·b_1_16·b_1_32·a_3_11 + c_4_16·b_1_17·b_1_3·a_3_11 + c_4_16·b_1_18·a_3_11 + c_4_16·b_1_18·a_3_10 + c_4_16·a_1_2·b_1_310 + c_4_16·a_10_68·b_1_1 + c_4_16·b_6_35·b_1_12·a_3_11 + c_4_16·b_6_35·b_1_12·a_3_10 + c_4_16·b_6_35·a_1_2·b_1_34 + c_4_16·a_6_28·b_5_24 + c_4_16·a_6_28·b_1_13·b_1_32 + c_4_16·a_6_28·b_1_14·b_1_3 + c_4_16·a_6_28·b_1_15 + c_8_58·a_1_22·b_5_24 + c_4_16·b_1_3·a_3_11·a_7_35 + c_4_16·b_1_35·a_3_112 + c_4_16·a_6_28·b_1_32·a_3_11 + c_8_58·a_1_22·b_1_32·a_3_11 + c_4_16·c_8_58·a_1_2·b_1_1·b_1_3 + c_4_162·b_1_34·a_3_11 + c_4_162·b_1_12·b_1_32·a_3_11 + c_4_162·b_1_14·a_3_10 + c_4_162·a_1_2·b_1_36 + c_4_162·a_6_28·b_1_1 + c_4_16·c_8_58·a_1_0·a_1_2·b_1_3 + c_4_162·a_1_2·b_1_33·a_3_11 + c_4_162·a_1_2·b_1_1·b_1_32·a_3_11 + c_4_162·a_1_22·b_5_24 + c_4_162·a_6_28·a_1_2 + c_4_162·a_6_28·a_1_0 + c_4_163·a_1_22·b_1_3 + c_4_163·a_1_23
- a_7_35·b_9_76 + b_6_35·b_1_16·b_1_3·a_3_11 + b_6_35·b_1_17·a_3_11
+ b_6_35·b_1_17·a_3_10 + b_6_352·b_1_3·a_3_11 + b_6_352·b_1_1·a_3_11 + b_6_352·b_1_1·a_3_10 + a_6_28·b_1_1·b_9_76 + a_6_28·b_1_13·b_1_32·b_5_24 + a_6_28·b_1_15·b_5_24 + a_6_28·b_1_15·b_5_22 + a_6_28·b_6_35·b_1_13·b_1_3 + a_6_28·b_6_35·b_1_14 + c_8_58·b_1_14·b_1_3·a_3_11 + c_8_58·b_1_15·a_3_11 + c_8_58·b_1_15·a_3_10 + a_6_28·c_8_58·b_1_12 + c_4_16·b_1_35·a_7_35 + c_4_16·b_1_1·b_1_34·a_7_35 + c_4_16·b_6_35·b_1_33·a_3_11 + c_4_16·b_6_35·b_1_12·b_1_3·a_3_11 + c_4_16·b_6_35·b_1_13·a_3_11 + c_4_16·a_6_28·b_1_36 + c_4_16·a_6_28·b_1_1·b_1_35 + c_4_16·a_6_28·b_1_12·b_1_34 + c_4_16·a_6_28·b_1_13·b_1_33 + c_4_16·a_6_28·b_1_14·b_1_32 + c_4_16·a_6_28·b_1_16 + c_4_16·a_1_2·b_1_38·a_3_11 + c_4_16·b_6_35·a_3_112 + c_4_16·a_6_28·b_1_33·a_3_11 + c_4_16·a_6_28·b_1_1·b_1_32·a_3_11 + c_4_162·a_3_11·b_5_24 + c_4_162·b_1_3·a_7_35 + c_4_162·b_1_1·a_7_35 + c_4_162·b_1_13·b_1_32·a_3_11 + c_4_162·b_1_15·a_3_11 + c_4_162·b_6_35·a_1_2·b_1_3 + c_4_162·b_6_35·a_1_2·b_1_1 + c_4_162·a_6_28·b_1_32 + c_4_162·a_6_28·b_1_1·b_1_3 + c_4_162·a_6_28·b_1_12 + c_4_16·c_8_58·a_1_0·a_3_11 + c_4_162·a_1_2·a_7_35 + c_4_16·c_8_58·a_1_23·b_1_3 + c_4_162·a_6_28·a_1_22 + c_4_163·b_1_1·a_3_11 + c_4_163·a_1_2·b_1_33 + c_4_163·a_1_2·b_1_1·b_1_32 + c_4_163·a_1_0·b_1_33 + c_4_163·a_1_22·b_1_32 + c_4_163·a_1_0·a_3_11 + c_4_163·a_1_23·b_1_3
- b_6_35·b_1_1·b_1_32·a_7_35 + b_6_35·b_1_17·a_3_11 + b_6_35·a_10_68
+ b_6_352·b_1_3·a_3_10 + b_6_352·b_1_1·a_3_11 + a_6_28·b_1_3·b_9_76 + a_6_28·b_1_35·b_5_24 + a_6_28·b_1_1·b_1_34·b_5_24 + a_6_28·b_1_13·b_1_32·b_5_24 + a_6_28·b_1_14·b_1_3·b_5_22 + a_6_28·b_1_15·b_5_24 + a_6_28·b_6_35·b_1_1·b_1_33 + b_6_35·b_1_34·a_3_112 + c_8_58·b_1_14·b_1_3·a_3_11 + c_8_58·b_1_15·a_3_11 + c_8_58·b_1_15·a_3_10 + b_6_35·c_8_58·a_1_2·b_1_3 + a_6_28·c_8_58·b_1_12 + c_4_16·b_1_35·a_7_35 + c_4_16·b_1_1·b_1_34·a_7_35 + c_4_16·b_1_17·b_1_32·a_3_11 + c_4_16·b_1_18·b_1_3·a_3_11 + c_4_16·b_1_18·b_1_3·a_3_10 + c_4_16·b_1_19·a_3_11 + c_4_16·a_1_2·b_1_311 + c_4_16·a_10_68·b_1_32 + c_4_16·a_10_68·b_1_12 + c_4_16·b_6_35·b_1_33·a_3_11 + c_4_16·b_6_35·b_1_1·b_1_32·a_3_11 + c_4_16·b_6_35·b_1_12·b_1_3·a_3_11 + c_4_16·b_6_35·b_1_12·b_1_3·a_3_10 + c_4_16·b_6_35·b_1_13·a_3_10 + c_4_16·a_6_28·b_1_3·b_5_22 + c_4_16·a_6_28·b_1_36 + c_4_16·a_6_28·b_1_1·b_5_24 + c_4_16·a_6_28·b_1_1·b_1_35 + a_6_28·c_8_58·a_1_2·b_1_1 + c_4_16·b_1_36·a_3_112 + c_4_16·a_1_2·b_1_38·a_3_11 + c_4_16·a_6_28·b_1_33·a_3_11 + c_4_16·a_6_28·b_1_1·b_1_32·a_3_11 + c_4_16·b_1_33·a_3_113 + c_4_16·c_8_58·a_1_2·b_1_33 + c_4_16·c_8_58·a_1_0·b_1_33 + c_4_162·b_1_14·b_1_3·a_3_11 + c_4_162·b_1_14·b_1_3·a_3_10 + c_4_162·a_1_2·b_1_37 + c_4_162·b_6_35·a_1_2·b_1_1 + c_4_162·a_6_28·b_1_32 + c_4_162·a_6_28·b_1_1·b_1_3 + c_4_162·a_6_28·b_1_12 + c_4_162·b_1_32·a_3_112 + c_4_162·a_1_2·b_1_34·a_3_11 + c_4_162·a_1_2·b_1_1·b_1_33·a_3_11 + c_4_163·a_1_2·b_1_1·b_1_32 + c_4_163·a_1_23·b_1_3
- a_6_28·a_10_68 + a_6_28·c_8_58·a_1_2·b_1_1 + c_4_16·a_6_28·b_1_1·b_1_32·a_3_11
+ c_4_162·a_6_28·a_1_2·b_1_1 + c_4_162·a_6_28·a_1_22
- a_10_68·a_7_35 + b_6_35·b_1_32·a_3_113 + c_8_58·a_1_2·b_1_1·a_7_35
+ a_6_28·c_8_58·a_3_11 + c_4_16·a_3_112·a_7_35 + c_4_16·c_8_58·a_1_2·b_1_3·a_3_11 + c_4_16·c_8_58·a_1_2·b_1_1·a_3_11 + c_4_16·c_8_58·a_1_22·b_1_33 + c_4_16·c_8_58·a_1_0·b_1_3·a_3_11 + c_4_163·a_1_2·b_1_1·a_3_11 + c_4_163·a_1_0·b_1_3·a_3_11
- b_9_762 + b_6_352·b_1_36 + b_6_352·b_1_12·b_1_34 + b_6_352·b_1_14·b_1_32
+ c_4_16·b_1_12·b_1_312 + c_4_16·b_1_14·b_1_310 + c_4_16·b_1_18·b_1_36 + c_4_16·b_1_112·b_1_32 + c_4_16·b_1_114 + c_4_16·b_6_352·b_1_12 + c_4_16·b_1_38·a_3_112 + c_4_162·b_1_12·b_1_38 + c_4_162·b_1_34·a_3_112 + c_4_163·b_1_16 + c_4_162·c_8_58·a_1_22 + c_4_163·a_1_22·b_1_3·a_3_11 + c_4_164·b_1_32 + c_4_164·b_1_12
- a_10_68·b_9_76 + a_10_68·b_1_16·b_1_33 + a_10_68·b_1_17·b_1_32
+ a_10_68·b_1_18·b_1_3 + b_6_35·a_10_68·b_1_33 + b_6_352·b_1_13·b_1_3·a_3_11 + b_6_352·b_1_13·b_1_3·a_3_10 + b_6_352·b_1_14·a_3_10 + a_6_28·b_1_38·b_5_24 + a_6_28·b_1_1·b_1_37·b_5_24 + a_6_28·b_1_14·b_1_34·b_5_24 + a_6_28·b_1_16·b_1_32·b_5_24 + a_6_28·b_1_16·b_1_37 + a_6_28·b_1_17·b_1_3·b_5_22 + a_6_28·b_1_17·b_1_36 + a_6_28·b_1_18·b_5_24 + a_6_28·b_1_18·b_1_35 + a_6_28·b_1_110·b_1_33 + a_6_28·b_1_111·b_1_32 + a_6_28·b_1_113 + a_6_28·b_6_35·b_1_32·b_5_24 + a_6_28·b_6_35·b_1_1·b_1_3·b_5_22 + a_6_28·b_6_35·b_1_1·b_1_36 + a_6_28·b_6_35·b_1_12·b_5_22 + a_6_28·b_6_35·b_1_12·b_1_35 + a_6_28·b_6_35·b_1_13·b_1_34 + a_6_28·b_6_35·b_1_15·b_1_32 + a_6_28·b_6_352·b_1_1 + c_8_58·b_1_15·b_1_33·a_3_11 + c_8_58·b_1_16·b_1_32·a_3_11 + c_8_58·b_1_17·b_1_3·a_3_11 + c_8_58·b_1_17·b_1_3·a_3_10 + c_8_58·b_1_18·a_3_10 + a_6_28·c_8_58·b_1_13·b_1_32 + c_4_16·a_10_68·b_1_35 + c_4_16·a_10_68·b_1_12·b_1_33 + c_4_16·a_10_68·b_1_15 + c_4_16·b_6_35·b_1_32·a_7_35 + c_4_16·b_6_35·b_1_13·b_1_33·a_3_11 + c_4_16·b_6_35·b_1_14·b_1_32·a_3_11 + c_4_16·b_6_35·b_1_15·b_1_3·a_3_11 + c_4_16·b_6_35·b_1_16·a_3_10 + c_4_16·b_6_35·a_1_2·b_1_38 + c_4_16·b_6_352·a_3_10 + c_4_16·a_6_28·b_1_34·b_5_24 + c_4_16·a_6_28·b_1_39 + c_4_16·a_6_28·b_1_1·b_1_33·b_5_24 + c_4_16·a_6_28·b_1_14·b_1_35 + c_4_16·a_6_28·b_1_15·b_1_34 + c_4_16·a_6_28·b_1_16·b_1_33 + c_4_16·a_6_28·b_1_18·b_1_3 + c_4_16·a_6_28·b_6_35·b_1_33 + c_4_16·a_6_28·b_6_35·b_1_1·b_1_32 + a_6_28·c_8_58·b_1_32·a_3_11 + a_6_28·c_8_58·b_1_1·b_1_3·a_3_11 + c_4_16·b_1_39·a_3_112 + c_4_16·a_6_28·b_1_36·a_3_11 + c_4_16·b_6_35·a_3_113 + c_4_16·c_8_58·b_1_14·a_3_11 + c_4_16·c_8_58·b_1_14·a_3_10 + c_4_16·c_8_58·a_1_2·b_1_3·b_5_24 + c_4_16·c_8_58·a_1_2·b_1_36 + c_4_162·b_1_34·a_7_35 + c_4_162·b_1_38·a_3_11 + c_4_162·b_1_15·b_1_33·a_3_11 + c_4_162·a_10_68·b_1_3 + c_4_162·a_10_68·b_1_1 + c_4_162·b_6_35·b_1_32·a_3_11 + c_4_162·b_6_35·b_1_12·a_3_11 + c_4_162·b_6_35·b_1_12·a_3_10 + c_4_162·b_6_35·a_1_2·b_1_34 + c_4_162·a_6_28·b_5_24 + c_4_162·a_6_28·b_1_35 + c_4_162·a_6_28·b_1_1·b_1_34 + c_4_162·a_6_28·b_1_13·b_1_32 + c_4_162·a_6_28·b_1_15 + c_4_16·c_8_58·b_1_3·a_3_112 + c_4_16·c_8_58·a_1_2·b_1_33·a_3_11 + c_4_16·c_8_58·a_1_22·b_5_24 + c_4_16·a_6_28·c_8_58·a_1_0 + c_4_162·b_1_3·a_3_11·a_7_35 + c_4_162·b_1_35·a_3_112 + c_4_162·a_1_2·b_1_37·a_3_11 + c_4_162·a_6_28·b_1_32·a_3_11 + c_4_162·a_6_28·b_1_1·b_1_3·a_3_11 + c_4_162·c_8_58·a_1_2·b_1_1·b_1_3 + c_4_163·b_1_34·a_3_11 + c_4_163·b_1_14·a_3_11 + c_4_163·a_1_2·b_1_36 + c_4_163·a_6_28·b_1_1 + c_4_162·c_8_58·a_1_0·a_1_2·b_1_3 + c_4_163·b_1_3·a_3_112 + c_4_163·a_1_2·b_1_33·a_3_11 + c_4_163·a_1_2·b_1_1·b_1_32·a_3_11 + c_4_163·a_6_28·a_1_2 + c_4_163·a_6_28·a_1_0 + c_4_162·c_8_58·a_1_23 + c_4_164·a_1_0·a_1_2·b_1_3
- a_10_682 + c_8_582·a_1_22·b_1_32
Data used for Benson′s test
- Benson′s completion test succeeded in degree 20.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_16, a Duflot regular element of degree 4
- c_8_58, a Duflot regular element of degree 8
- b_1_32 + b_1_1·b_1_3 + b_1_12, an element of degree 2
- b_1_32, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 8, 10, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_3_10 → 0, an element of degree 3
- a_3_11 → 0, an element of degree 3
- c_4_16 → c_1_04, an element of degree 4
- a_5_23 → 0, an element of degree 5
- b_5_22 → 0, an element of degree 5
- b_5_24 → 0, an element of degree 5
- a_6_28 → 0, an element of degree 6
- b_6_35 → 0, an element of degree 6
- a_7_35 → 0, an element of degree 7
- c_8_58 → c_1_18 + c_1_08, an element of degree 8
- b_9_76 → 0, an element of degree 9
- a_10_68 → 0, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- a_3_10 → 0, an element of degree 3
- a_3_11 → 0, an element of degree 3
- c_4_16 → c_1_02·c_1_22 + c_1_04, an element of degree 4
- a_5_23 → 0, an element of degree 5
- b_5_22 → c_1_0·c_1_24 + c_1_02·c_1_23, an element of degree 5
- b_5_24 → c_1_0·c_1_22·c_1_32 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- a_6_28 → 0, an element of degree 6
- b_6_35 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_24·c_1_3
+ c_1_0·c_1_25 + c_1_02·c_1_34 + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_23·c_1_3 + c_1_02·c_1_24 + c_1_04·c_1_32, an element of degree 6
- a_7_35 → 0, an element of degree 7
- c_8_58 → c_1_12·c_1_22·c_1_34 + c_1_12·c_1_24·c_1_32 + c_1_14·c_1_34
+ c_1_14·c_1_22·c_1_32 + c_1_14·c_1_24 + c_1_18 + c_1_0·c_1_24·c_1_33 + c_1_0·c_1_26·c_1_3 + c_1_02·c_1_23·c_1_33 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_25·c_1_3 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_08, an element of degree 8
- b_9_76 → c_1_12·c_1_24·c_1_33 + c_1_12·c_1_25·c_1_32 + c_1_12·c_1_26·c_1_3
+ c_1_14·c_1_22·c_1_33 + c_1_14·c_1_23·c_1_32 + c_1_14·c_1_24·c_1_3 + c_1_0·c_1_25·c_1_33 + c_1_0·c_1_28 + c_1_0·c_1_12·c_1_26 + c_1_0·c_1_14·c_1_24 + c_1_02·c_1_37 + c_1_02·c_1_2·c_1_36 + c_1_02·c_1_22·c_1_35 + c_1_02·c_1_23·c_1_34 + c_1_02·c_1_26·c_1_3 + c_1_02·c_1_12·c_1_25 + c_1_02·c_1_14·c_1_23 + c_1_03·c_1_22·c_1_34 + c_1_03·c_1_26 + c_1_04·c_1_35 + c_1_04·c_1_2·c_1_34 + c_1_04·c_1_25 + c_1_05·c_1_22·c_1_32 + c_1_05·c_1_24 + c_1_06·c_1_2·c_1_32 + c_1_06·c_1_23 + c_1_08·c_1_3 + c_1_08·c_1_2, an element of degree 9
- a_10_68 → 0, an element of degree 10
|