Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1688 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1) · (t6 − t5 + t2 + t + 1) |
| (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-4,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_1_3, an element of degree 1
- b_2_8, an element of degree 2
- a_6_27, a nilpotent element of degree 6
- a_6_13, a nilpotent element of degree 6
- a_7_25, a nilpotent element of degree 7
- c_8_43, a Duflot regular element of degree 8
Ring relations
There are 18 minimal relations of maximal degree 14:
- a_1_02
- b_1_1·b_1_2 + a_1_0·b_1_1
- b_1_2·b_1_32 + b_1_22·b_1_3 + b_2_8·b_1_2 + b_2_8·b_1_1 + b_2_8·a_1_0
- b_2_8·b_1_1·b_1_32 + a_1_0·b_1_12·b_1_32 + b_2_8·a_1_0·b_1_32
+ b_2_8·a_1_0·b_1_2·b_1_3 + b_2_8·a_1_0·b_1_1·b_1_3
- a_6_27·b_1_2
- a_6_27·a_1_0
- a_6_13·a_1_0
- a_1_0·b_1_14·b_1_32 + a_1_0·b_1_15·b_1_3 + a_6_13·b_1_1 + a_6_27·b_1_1
- a_6_13·b_1_32 + a_6_13·b_1_2·b_1_3 + a_6_13·b_1_1·b_1_3 + a_6_27·b_1_32
+ a_6_27·b_1_1·b_1_3 + b_2_8·a_1_0·b_1_35 + b_2_8·a_1_0·b_1_24·b_1_3 + b_2_8·a_6_13 + b_2_82·a_1_0·b_1_33
- b_1_2·a_7_25 + a_6_13·b_1_22 + b_2_8·a_1_0·b_1_24·b_1_3 + b_2_83·a_1_0·b_1_1
- b_2_8·a_6_27 + b_2_83·a_1_0·b_1_1 + a_1_0·a_7_25
- b_1_1·a_7_25 + a_6_27·b_1_12 + b_2_8·a_6_27
- a_6_272
- a_6_27·a_6_13
- a_6_132
- a_6_27·a_7_25
- a_6_13·a_7_25 + b_2_8·a_1_0·b_1_33·a_7_25
- a_7_252
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_43, a Duflot regular element of degree 8
- b_1_34 + b_1_23·b_1_3 + b_1_24 + b_1_12·b_1_32 + b_1_14 + b_2_8·b_1_32
+ b_2_8·b_1_2·b_1_3 + b_2_8·b_1_22 + b_2_82, an element of degree 4
- b_1_32, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 8, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_2_8 → 0, an element of degree 2
- a_6_27 → 0, an element of degree 6
- a_6_13 → 0, an element of degree 6
- a_7_25 → 0, an element of degree 7
- c_8_43 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_2_8 → 0, an element of degree 2
- a_6_27 → 0, an element of degree 6
- a_6_13 → 0, an element of degree 6
- a_7_25 → 0, an element of degree 7
- c_8_43 → c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24
+ c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_1, an element of degree 1
- b_2_8 → c_1_22, an element of degree 2
- a_6_27 → 0, an element of degree 6
- a_6_13 → 0, an element of degree 6
- a_7_25 → 0, an element of degree 7
- c_8_43 → c_1_12·c_1_26 + c_1_14·c_1_24 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- b_1_3 → c_1_2 + c_1_1, an element of degree 1
- b_2_8 → c_1_22 + c_1_1·c_1_2, an element of degree 2
- a_6_27 → 0, an element of degree 6
- a_6_13 → 0, an element of degree 6
- a_7_25 → 0, an element of degree 7
- c_8_43 → c_1_1·c_1_27 + c_1_13·c_1_25 + c_1_15·c_1_23 + c_1_17·c_1_2
+ c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22 + c_1_04·c_1_24 + c_1_04·c_1_12·c_1_22 + c_1_04·c_1_14 + c_1_08, an element of degree 8
|