Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 17 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t4 + t3 + t2 + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 18 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- a_2_1, a nilpotent element of degree 2
- b_2_2, an element of degree 2
- a_3_1, a nilpotent element of degree 3
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- a_4_2, a nilpotent element of degree 4
- a_4_3, a nilpotent element of degree 4
- a_4_4, a nilpotent element of degree 4
- b_4_6, an element of degree 4
- c_4_7, a Duflot regular element of degree 4
- c_4_8, a Duflot regular element of degree 4
- a_5_10, a nilpotent element of degree 5
- a_5_11, a nilpotent element of degree 5
- a_6_9, a nilpotent element of degree 6
Ring relations
There are 119 minimal relations of maximal degree 12:
- a_1_02
- a_1_12
- a_1_0·a_1_1
- a_2_0·a_1_1
- a_2_0·a_1_0
- a_2_1·a_1_1
- a_2_1·a_1_0
- b_2_2·a_1_0
- a_2_02
- a_2_0·a_2_1
- a_2_12
- a_1_1·a_3_1
- a_1_0·a_3_1
- a_1_1·a_3_2
- a_1_0·a_3_2
- a_2_0·b_2_2 + a_1_1·a_3_3
- a_1_0·a_3_3
- a_2_1·b_2_2 + a_2_0·b_2_2 + a_1_1·a_3_4
- a_1_0·a_3_4
- a_2_0·a_3_1
- a_2_1·a_3_1 + a_2_0·a_3_2
- a_2_1·a_3_2
- a_2_0·a_3_3
- b_2_2·a_3_1 + a_2_1·a_3_3
- b_2_2·a_3_1 + a_2_0·a_3_4
- b_2_2·a_3_1 + a_2_1·a_3_4
- a_4_2·a_1_1 + a_2_1·a_3_1
- a_4_2·a_1_0
- a_4_3·a_1_1
- a_4_3·a_1_0 + a_2_1·a_3_1
- b_2_2·a_3_1 + a_4_4·a_1_1
- a_4_4·a_1_0 + a_2_1·a_3_1
- b_4_6·a_1_1 + b_2_2·a_3_2 + b_2_2·a_3_1 + a_2_1·a_3_1
- b_4_6·a_1_0
- a_3_12
- a_3_22
- a_3_1·a_3_2
- a_3_1·a_3_3
- a_3_32 + b_2_2·a_1_1·a_3_3
- a_3_1·a_3_4
- a_3_42 + a_3_32
- b_2_2·a_4_2 + a_3_2·a_3_3 + b_2_2·a_1_1·a_3_4
- a_2_0·a_4_2
- a_2_1·a_4_2
- b_2_2·a_4_3 + a_3_2·a_3_4 + b_2_2·a_1_1·a_3_4
- a_2_0·a_4_3
- a_2_1·a_4_3
- b_2_2·a_4_4 + a_3_3·a_3_4 + a_3_32 + a_3_2·a_3_4
- a_2_0·a_4_4
- a_2_1·a_4_4
- a_2_0·b_4_6 + a_3_2·a_3_3
- a_2_1·b_4_6 + a_3_2·a_3_4 + a_3_2·a_3_3
- a_3_2·a_3_3 + a_1_1·a_5_10 + b_2_2·a_1_1·a_3_4
- a_1_0·a_5_10
- a_3_2·a_3_4 + a_1_1·a_5_11
- a_1_0·a_5_11
- a_4_2·a_3_3 + a_1_1·a_3_3·a_3_4
- a_4_2·a_3_2
- a_4_2·a_3_1
- a_4_3·a_3_3 + a_4_2·a_3_4 + a_1_1·a_3_3·a_3_4
- a_4_3·a_3_2
- a_4_3·a_3_1
- a_4_3·a_3_4
- a_4_4·a_3_3 + a_4_2·a_3_4 + a_1_1·a_3_3·a_3_4
- a_4_4·a_3_2 + a_4_2·a_3_4
- a_4_4·a_3_1
- a_4_4·a_3_4 + a_1_1·a_3_3·a_3_4
- b_4_6·a_3_2 + b_2_22·a_3_2 + a_4_2·a_3_4 + a_1_1·a_3_3·a_3_4 + b_2_2·c_4_7·a_1_1
- b_4_6·a_3_1 + a_4_2·a_3_4
- b_4_6·a_3_3 + b_2_2·a_5_10 + b_2_22·a_3_4 + b_2_22·a_3_2 + a_1_1·a_3_3·a_3_4
+ b_2_2·c_4_7·a_1_1
- a_2_0·a_5_10 + a_1_1·a_3_3·a_3_4
- a_4_2·a_3_4 + a_2_1·a_5_10 + a_1_1·a_3_3·a_3_4
- b_4_6·a_3_4 + b_2_2·a_5_11 + b_2_22·a_3_2 + a_4_2·a_3_4 + b_2_2·c_4_8·a_1_1
- a_4_2·a_3_4 + a_2_0·a_5_11
- a_4_2·a_3_4 + a_2_1·a_5_11
- a_6_9·a_1_1 + a_4_2·a_3_4 + a_1_1·a_3_3·a_3_4
- a_6_9·a_1_0
- a_4_22
- a_4_32
- a_4_2·a_4_3
- a_4_3·a_4_4
- a_4_42
- a_4_2·a_4_4
- a_4_3·b_4_6 + c_4_7·a_1_1·a_3_4
- a_3_3·a_5_10 + b_2_2·a_3_3·a_3_4 + c_4_7·a_1_1·a_3_3
- a_4_2·b_4_6 + a_3_2·a_5_10
- a_3_1·a_5_10
- b_4_62 + b_2_22·b_4_6 + b_2_2·a_1_1·a_5_10 + b_2_22·a_1_1·a_3_4
+ b_2_22·a_1_1·a_3_3 + b_2_22·c_4_7
- b_4_62 + b_2_22·b_4_6 + a_4_4·b_4_6 + a_3_4·a_5_10 + b_2_22·c_4_7
- b_4_62 + b_2_22·b_4_6 + a_4_4·b_4_6 + a_4_2·b_4_6 + a_3_3·a_5_11 + b_2_22·a_1_1·a_3_3
+ b_2_22·c_4_7 + c_4_8·a_1_1·a_3_3 + c_4_7·a_1_1·a_3_4 + c_4_7·a_1_1·a_3_3
- b_4_62 + b_2_22·b_4_6 + a_4_2·b_4_6 + a_3_2·a_5_11 + b_2_22·a_1_1·a_3_3
+ b_2_22·c_4_7 + c_4_7·a_1_1·a_3_4 + c_4_7·a_1_1·a_3_3
- a_3_1·a_5_11
- b_4_62 + b_2_22·b_4_6 + a_4_2·b_4_6 + b_2_2·a_1_1·a_5_11 + b_2_22·a_1_1·a_3_3
+ b_2_22·c_4_7 + c_4_7·a_1_1·a_3_3
- a_4_2·b_4_6 + a_3_4·a_5_11 + c_4_8·a_1_1·a_3_4 + c_4_7·a_1_1·a_3_3
- a_4_4·b_4_6 + a_4_2·b_4_6 + b_2_2·a_6_9 + b_2_2·a_3_3·a_3_4 + b_2_22·a_1_1·a_3_4
+ c_4_8·a_1_1·a_3_4 + c_4_7·a_1_1·a_3_4
- a_2_0·a_6_9
- a_2_1·a_6_9
- a_4_3·a_5_10 + a_2_0·c_4_8·a_3_2 + a_2_0·c_4_7·a_3_4
- a_4_2·a_5_10 + a_2_0·c_4_7·a_3_2
- a_4_3·a_5_11
- a_4_4·a_5_10 + a_1_1·a_3_3·a_5_11 + b_2_2·a_1_1·a_3_3·a_3_4 + a_2_0·c_4_8·a_3_2
- b_4_6·a_5_10 + b_2_22·a_5_11 + b_2_22·a_5_10 + b_2_23·a_3_4 + b_2_23·a_3_2
+ a_4_4·a_5_10 + b_2_2·a_1_1·a_3_3·a_3_4 + b_2_2·c_4_7·a_3_3 + b_2_2·c_4_7·a_3_2 + b_2_22·c_4_8·a_1_1 + a_2_0·c_4_7·a_3_4 + a_2_0·c_4_7·a_3_2
- a_4_4·a_5_11 + a_2_0·c_4_8·a_3_4 + a_2_0·c_4_8·a_3_2
- b_4_6·a_5_11 + b_4_6·a_5_10 + b_2_22·a_5_10 + b_2_23·a_3_4 + b_2_23·a_3_2
+ a_4_4·a_5_10 + b_2_2·a_1_1·a_3_3·a_3_4 + b_2_2·c_4_8·a_3_2 + b_2_2·c_4_7·a_3_4 + b_2_2·c_4_7·a_3_3 + b_2_2·c_4_7·a_3_2 + b_2_22·c_4_7·a_1_1 + a_2_0·c_4_8·a_3_4 + a_2_0·c_4_8·a_3_2 + a_2_0·c_4_7·a_3_2
- a_4_4·a_5_10 + a_4_2·a_5_11 + b_2_2·a_1_1·a_3_3·a_3_4 + a_2_0·c_4_7·a_3_4
- a_6_9·a_3_3 + a_4_4·a_5_10 + b_2_2·a_1_1·a_3_3·a_3_4 + a_2_0·c_4_8·a_3_4
+ a_2_0·c_4_8·a_3_2
- a_6_9·a_3_2 + a_2_0·c_4_8·a_3_2 + a_2_0·c_4_7·a_3_4 + a_2_0·c_4_7·a_3_2
- a_6_9·a_3_1 + a_2_0·c_4_8·a_3_2
- a_6_9·a_3_4 + a_2_0·c_4_8·a_3_2 + a_2_0·c_4_7·a_3_4
- a_5_102 + b_2_22·a_1_1·a_5_10 + b_2_23·a_1_1·a_3_4 + b_2_23·a_1_1·a_3_3
+ b_2_2·c_4_7·a_1_1·a_3_3
- a_5_112 + b_2_22·a_1_1·a_5_10 + b_2_23·a_1_1·a_3_4 + b_2_2·c_4_7·a_1_1·a_3_3
- a_5_10·a_5_11 + b_2_2·a_3_3·a_5_11 + b_2_22·a_1_1·a_5_10 + b_2_23·a_1_1·a_3_4
+ c_4_8·a_1_1·a_5_10 + c_4_7·a_3_3·a_3_4 + c_4_7·a_1_1·a_5_11 + b_2_2·c_4_8·a_1_1·a_3_3 + b_2_2·c_4_7·a_1_1·a_3_4 + b_2_2·c_4_7·a_1_1·a_3_3
- a_4_3·a_6_9
- a_4_4·a_6_9
- b_4_6·a_6_9 + b_2_22·a_1_1·a_5_11 + c_4_8·a_1_1·a_5_11 + c_4_7·a_3_3·a_3_4
+ c_4_7·a_1_1·a_5_10 + b_2_2·c_4_7·a_1_1·a_3_4
- a_4_2·a_6_9
- a_6_9·a_5_10 + b_2_2·a_1_1·a_3_3·a_5_11 + a_2_0·c_4_8·a_5_11 + a_2_0·c_4_7·a_5_11
- a_6_9·a_5_11 + a_2_0·c_4_8·a_5_11 + a_2_0·c_4_7·a_5_11 + c_4_8·a_1_1·a_3_3·a_3_4
+ c_4_7·a_1_1·a_3_3·a_3_4
- a_6_92
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_7, a Duflot regular element of degree 4
- c_4_8, a Duflot regular element of degree 4
- b_2_2, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 5, 7].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- a_3_1 → 0, an element of degree 3
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_2 → 0, an element of degree 4
- a_4_3 → 0, an element of degree 4
- a_4_4 → 0, an element of degree 4
- b_4_6 → 0, an element of degree 4
- c_4_7 → c_1_14 + c_1_04, an element of degree 4
- c_4_8 → c_1_04, an element of degree 4
- a_5_10 → 0, an element of degree 5
- a_5_11 → 0, an element of degree 5
- a_6_9 → 0, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- a_2_1 → 0, an element of degree 2
- b_2_2 → c_1_22, an element of degree 2
- a_3_1 → 0, an element of degree 3
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- a_4_2 → 0, an element of degree 4
- a_4_3 → 0, an element of degree 4
- a_4_4 → 0, an element of degree 4
- b_4_6 → c_1_12·c_1_22 + c_1_02·c_1_22, an element of degree 4
- c_4_7 → c_1_12·c_1_22 + c_1_14 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_8 → c_1_12·c_1_22 + c_1_04, an element of degree 4
- a_5_10 → 0, an element of degree 5
- a_5_11 → 0, an element of degree 5
- a_6_9 → 0, an element of degree 6
|