Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1736 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t5 + t4 − t3 + t2 + 1 |
| (t − 1)4 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-6,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 8:
- a_1_1, a nilpotent element of degree 1
- b_1_0, an element of degree 1
- b_1_2, an element of degree 1
- b_1_3, an element of degree 1
- a_2_8, a nilpotent element of degree 2
- c_2_9, a Duflot regular element of degree 2
- a_5_46, a nilpotent element of degree 5
- b_5_45, an element of degree 5
- b_5_47, an element of degree 5
- a_6_69, a nilpotent element of degree 6
- c_8_135, a Duflot regular element of degree 8
Ring relations
There are 27 minimal relations of maximal degree 12:
- a_1_1·b_1_0
- b_1_0·b_1_2
- b_1_0·b_1_32 + a_1_13
- a_2_8·b_1_0
- a_1_12·b_1_22 + a_2_8·a_1_1·b_1_2 + a_2_82 + c_2_9·a_1_12
- a_1_13·b_1_32
- b_1_0·a_5_46
- b_1_2·b_5_45 + a_2_8·a_1_12·b_1_32
- a_1_1·b_5_45
- b_1_2·a_5_46 + a_1_1·b_5_47 + a_2_8·b_1_34
- b_1_0·b_5_47
- b_1_32·b_5_45 + a_1_12·a_5_46
- a_2_8·b_5_45
- a_6_69·b_1_2 + a_2_8·b_5_47 + a_2_82·b_1_33 + a_2_82·a_1_1·b_1_32
+ c_2_9·a_1_1·b_1_34 + c_2_9·a_1_12·b_1_33
- a_1_12·b_1_2·b_1_34 + a_6_69·a_1_1 + a_2_8·a_5_46 + a_2_8·a_1_1·b_1_34
+ a_2_8·a_1_12·b_1_33
- a_6_69·b_1_0
- a_1_12·b_1_2·b_5_47 + a_2_8·a_1_1·b_5_47 + a_2_8·a_6_69 + c_2_9·a_1_1·a_5_46
- a_5_46·b_5_45
- b_5_45·b_5_47 + a_2_8·a_1_1·b_1_32·a_5_46 + a_2_8·a_1_12·b_1_36
- b_5_472 + b_1_2·b_1_34·b_5_47 + a_1_1·b_1_2·b_1_33·b_5_47 + a_2_8·b_1_2·b_1_37
+ a_2_82·a_1_1·b_1_35 + c_8_135·b_1_22 + c_2_9·b_1_38
- a_5_46·b_5_47 + a_1_1·b_1_34·b_5_47 + a_6_69·b_1_34 + a_1_12·b_1_33·b_5_47
+ a_6_69·a_1_1·b_1_33 + a_2_8·b_1_33·a_5_46 + a_2_8·a_1_1·b_1_37 + c_8_135·a_1_1·b_1_2
- b_5_452 + c_8_135·b_1_02
- a_5_462 + a_1_1·b_1_34·a_5_46 + a_1_12·b_1_38 + a_1_12·b_1_33·a_5_46
+ c_8_135·a_1_12
- a_6_69·b_5_45
- a_6_69·b_5_47 + a_2_8·b_1_34·b_5_47 + a_2_8·a_1_1·b_1_33·b_5_47
+ a_2_8·a_6_69·b_1_33 + a_2_82·b_1_37 + a_2_82·b_1_32·a_5_46 + c_2_9·b_1_34·a_5_46 + a_2_8·c_8_135·b_1_2 + c_2_9·a_1_1·b_1_33·a_5_46 + c_2_9·a_1_12·b_1_32·a_5_46
- a_1_12·b_1_34·b_5_47 + a_6_69·a_5_46 + a_2_8·a_1_12·b_1_37 + a_2_8·c_8_135·a_1_1
- a_6_692 + a_2_8·a_6_69·b_1_34 + a_2_82·b_1_33·a_5_46 + c_2_9·a_1_12·b_1_38
+ a_2_82·c_8_135
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_9, a Duflot regular element of degree 2
- c_8_135, a Duflot regular element of degree 8
- b_1_32 + b_1_2·b_1_3 + b_1_22 + b_1_02, an element of degree 2
- b_1_32, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 8, 10].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_2_8 → 0, an element of degree 2
- c_2_9 → c_1_02, an element of degree 2
- a_5_46 → 0, an element of degree 5
- b_5_45 → 0, an element of degree 5
- b_5_47 → 0, an element of degree 5
- a_6_69 → 0, an element of degree 6
- c_8_135 → c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- b_1_0 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_2_8 → 0, an element of degree 2
- c_2_9 → c_1_0·c_1_2 + c_1_02, an element of degree 2
- a_5_46 → 0, an element of degree 5
- b_5_45 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- b_5_47 → 0, an element of degree 5
- a_6_69 → 0, an element of degree 6
- c_8_135 → c_1_14·c_1_24 + c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_1 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- a_2_8 → 0, an element of degree 2
- c_2_9 → c_1_0·c_1_2 + c_1_02, an element of degree 2
- a_5_46 → 0, an element of degree 5
- b_5_45 → 0, an element of degree 5
- b_5_47 → c_1_14·c_1_2 + c_1_0·c_1_34, an element of degree 5
- a_6_69 → 0, an element of degree 6
- c_8_135 → c_1_14·c_1_34 + c_1_18, an element of degree 8
|