Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1825 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t3 − t2 + 1 |
| (t − 1)4 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 8:
- a_1_2, a nilpotent element of degree 1
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_3, an element of degree 1
- a_3_4, a nilpotent element of degree 3
- b_3_10, an element of degree 3
- b_3_12, an element of degree 3
- c_4_19, a Duflot regular element of degree 4
- a_5_8, a nilpotent element of degree 5
- b_5_28, an element of degree 5
- b_6_38, an element of degree 6
- a_7_28, a nilpotent element of degree 7
- b_7_51, an element of degree 7
- c_8_68, a Duflot regular element of degree 8
Ring relations
There are 53 minimal relations of maximal degree 14:
- a_1_2·b_1_0
- b_1_0·b_1_1 + a_1_22
- a_1_22·b_1_1
- b_1_0·b_1_32 + a_1_2·b_1_12
- b_1_0·a_3_4
- b_1_1·b_3_10 + b_1_14 + a_1_2·a_3_4 + a_1_22·b_1_32
- a_1_2·b_3_10 + a_1_22·b_1_32
- b_1_0·b_3_12 + a_1_2·a_3_4 + a_1_22·b_1_32
- a_1_2·b_1_12·b_1_32
- b_1_32·b_3_10 + b_1_13·b_1_32 + a_1_2·b_1_1·b_3_12 + a_1_22·b_3_12
+ a_1_22·b_1_33
- a_3_4·b_3_10 + b_1_13·a_3_4
- b_3_10·b_3_12 + b_1_13·b_3_12 + a_3_42 + a_1_22·b_1_3·b_3_12
- b_3_102 + b_1_16 + c_4_19·b_1_02
- a_3_42 + c_4_19·a_1_22
- b_1_02·b_1_3·b_3_10 + b_1_0·a_5_8
- b_3_122 + b_1_12·b_1_34 + b_1_16 + a_1_2·b_1_1·b_1_34 + a_3_42 + a_1_2·a_5_8
+ a_1_22·b_1_3·b_3_12 + c_4_19·b_1_12
- b_3_122 + b_1_1·b_5_28 + b_1_1·b_1_32·b_3_12 + b_1_12·b_1_3·b_3_12 + b_1_13·b_3_12
+ b_1_13·b_1_33 + b_1_16 + b_1_1·a_5_8 + b_1_1·b_1_32·a_3_4 + a_1_2·b_1_32·b_3_12 + a_1_2·b_1_1·b_1_3·b_3_12 + a_3_42 + a_1_22·b_1_3·b_3_12 + c_4_19·b_1_1·b_1_3
- b_3_122 + b_1_12·b_1_34 + b_1_16 + a_1_2·b_5_28 + a_1_2·b_1_32·b_3_12
+ a_1_2·b_1_1·b_1_3·b_3_12 + a_3_42 + a_1_2·b_1_32·a_3_4 + c_4_19·b_1_12 + c_4_19·a_1_2·b_1_3 + c_4_19·a_1_2·b_1_1
- a_1_2·b_1_1·b_1_32·b_3_12 + a_1_2·b_1_1·a_5_8
- b_1_32·b_5_28 + b_1_34·b_3_12 + b_1_1·b_1_33·b_3_12 + b_1_1·b_1_36
+ b_1_12·b_1_32·b_3_12 + b_1_12·b_1_35 + b_1_32·a_5_8 + b_1_12·a_5_8 + b_1_12·b_1_32·a_3_4 + b_1_13·b_1_3·a_3_4 + a_1_2·b_1_33·b_3_12 + a_1_2·b_1_33·a_3_4 + c_4_19·b_1_33 + c_4_19·b_1_1·b_1_32
- b_1_02·b_5_28 + b_1_04·b_3_10 + b_1_06·b_1_3 + b_6_38·b_1_0 + a_1_2·b_1_33·a_3_4
+ c_4_19·b_1_03 + c_4_19·a_1_2·b_1_12
- b_1_34·a_3_4 + b_1_12·a_5_8 + b_1_12·b_1_32·a_3_4 + b_1_13·b_1_3·a_3_4
+ a_1_2·b_1_33·b_3_12 + a_1_2·b_1_1·b_1_32·b_3_12 + a_1_2·b_1_1·b_1_35 + b_6_38·a_1_2 + a_1_2·b_1_3·a_5_8 + a_1_22·b_1_32·b_3_12 + c_4_19·a_1_2·b_1_32 + c_4_19·a_1_2·b_1_12 + c_4_19·a_1_22·b_1_3
- b_3_10·a_5_8 + b_1_13·a_5_8 + c_4_19·b_1_03·b_1_3
- b_3_12·b_5_28 + b_1_1·b_1_34·b_3_12 + b_1_12·b_1_33·b_3_12 + b_1_12·b_1_36
+ b_1_13·b_1_35 + b_1_14·b_1_34 + b_1_16·b_1_32 + b_1_17·b_1_3 + b_1_18 + b_3_12·a_5_8 + b_1_32·a_3_4·b_3_12 + a_1_2·b_1_1·b_1_36 + b_6_38·a_1_2·b_1_1 + a_3_4·a_5_8 + a_1_2·b_1_32·a_5_8 + a_1_2·b_1_1·b_1_3·a_5_8 + c_4_19·b_1_3·b_3_12 + c_4_19·b_1_1·b_3_12 + c_4_19·b_1_12·b_1_32 + c_4_19·b_1_13·b_1_3 + c_4_19·b_1_14 + c_4_19·a_1_2·b_1_12·b_1_3
- b_3_12·b_5_28 + b_1_1·b_1_34·b_3_12 + b_1_12·b_1_33·b_3_12 + b_1_12·b_1_36
+ b_1_13·b_1_35 + b_1_14·b_1_34 + b_1_16·b_1_32 + b_1_17·b_1_3 + b_1_18 + b_3_12·a_5_8 + a_3_4·b_5_28 + b_1_1·b_1_3·a_3_4·b_3_12 + b_1_12·a_3_4·b_3_12 + b_1_12·b_1_33·a_3_4 + b_1_13·a_5_8 + b_1_13·b_1_32·a_3_4 + b_1_14·b_1_3·a_3_4 + a_1_2·b_1_1·b_1_36 + a_1_2·b_1_32·a_5_8 + a_1_2·b_1_1·b_1_3·a_5_8 + b_6_38·a_1_22 + c_4_19·b_1_3·b_3_12 + c_4_19·b_1_1·b_3_12 + c_4_19·b_1_12·b_1_32 + c_4_19·b_1_13·b_1_3 + c_4_19·b_1_14 + c_4_19·b_1_3·a_3_4 + c_4_19·b_1_1·a_3_4 + c_4_19·a_1_2·b_1_1·b_1_32 + c_4_19·a_1_2·b_1_12·b_1_3
- b_1_07·b_1_3 + b_6_38·b_1_0·b_1_3 + b_1_0·a_7_28 + b_1_03·a_5_8 + c_4_19·b_1_03·b_1_3
+ c_4_19·a_1_2·b_1_12·b_1_3
- a_3_4·a_5_8 + a_1_2·a_7_28 + a_1_2·b_1_1·b_1_3·a_5_8
- b_3_12·b_5_28 + b_1_1·b_7_51 + b_1_13·b_1_35 + b_1_14·b_1_34 + b_1_16·b_1_32
+ b_1_18 + b_6_38·b_1_1·b_1_3 + b_3_12·a_5_8 + a_3_4·b_5_28 + b_1_32·a_3_4·b_3_12 + b_1_1·b_1_32·a_5_8 + b_1_12·b_1_33·a_3_4 + b_1_13·a_5_8 + b_1_13·b_1_32·a_3_4 + b_1_15·a_3_4 + a_1_2·b_1_1·b_1_36 + a_3_4·a_5_8 + a_1_2·b_1_32·a_5_8 + a_1_2·b_1_1·b_1_3·a_5_8 + c_4_19·b_1_3·b_3_12 + c_4_19·b_1_1·b_1_33 + c_4_19·b_1_14 + c_4_19·b_1_3·a_3_4 + c_4_19·a_1_2·b_1_12·b_1_3 + c_4_19·a_1_22·b_1_32
- b_3_10·b_5_28 + b_1_13·b_1_32·b_3_12 + b_1_14·b_1_3·b_3_12 + b_1_14·b_1_34
+ b_1_15·b_3_12 + b_1_15·b_1_33 + b_1_0·b_7_51 + b_6_38·b_1_02 + b_1_13·a_5_8 + b_1_13·b_1_32·a_3_4 + c_4_19·b_1_3·b_3_10 + c_4_19·b_1_14 + c_4_19·b_1_04
- b_3_12·b_5_28 + b_1_1·b_1_34·b_3_12 + b_1_12·b_1_33·b_3_12 + b_1_12·b_1_36
+ b_1_13·b_1_35 + b_1_14·b_1_34 + b_1_16·b_1_32 + b_1_17·b_1_3 + b_1_18 + b_3_12·a_5_8 + b_1_32·a_3_4·b_3_12 + a_1_2·b_7_51 + a_1_2·b_1_1·b_1_36 + b_6_38·a_1_2·b_1_3 + a_3_4·a_5_8 + a_1_2·b_1_32·a_5_8 + c_4_19·b_1_3·b_3_12 + c_4_19·b_1_1·b_3_12 + c_4_19·b_1_12·b_1_32 + c_4_19·b_1_13·b_1_3 + c_4_19·b_1_14 + c_4_19·a_1_2·b_3_12 + c_4_19·a_1_2·b_1_33 + c_4_19·a_1_2·a_3_4 + c_4_19·a_1_22·b_1_32
- b_1_33·a_3_4·b_3_12 + b_1_12·a_7_28 + b_1_12·b_1_3·a_3_4·b_3_12
+ b_1_13·a_3_4·b_3_12 + b_1_14·a_5_8 + b_6_38·a_3_4 + b_6_38·a_1_2·b_1_1·b_1_3 + a_1_2·b_1_3·a_7_28 + a_1_2·b_1_1·a_7_28 + a_1_2·b_1_1·b_1_32·a_5_8 + c_4_19·b_1_32·a_3_4 + c_4_19·b_1_12·a_3_4 + c_4_19·a_1_2·b_1_34 + c_4_19·a_1_2·b_1_1·b_1_33 + c_4_19·a_1_2·b_1_3·a_3_4 + c_4_19·a_1_22·b_3_12
- b_1_32·b_7_51 + b_1_36·b_3_12 + b_1_1·b_1_35·b_3_12 + b_1_1·b_1_38
+ b_1_16·b_1_33 + b_6_38·b_1_33 + b_1_33·a_3_4·b_3_12 + b_1_34·a_5_8 + b_1_1·b_3_12·a_5_8 + b_1_12·b_1_3·a_3_4·b_3_12 + b_1_13·b_1_33·a_3_4 + b_1_14·b_1_32·a_3_4 + b_6_38·a_1_2·b_1_32 + b_6_38·a_1_2·b_1_1·b_1_3 + a_1_2·b_1_1·a_7_28 + c_4_19·b_1_32·b_3_12 + c_4_19·b_1_35 + c_4_19·b_1_1·b_1_34 + c_4_19·b_1_12·b_1_33 + c_4_19·b_1_32·a_3_4 + c_4_19·a_1_2·b_1_34 + c_4_19·a_1_2·b_1_1·b_1_33 + c_4_19·a_1_22·b_1_33
- b_1_02·b_7_51 + b_6_38·b_3_10 + b_6_38·b_1_13 + b_6_38·b_1_03 + b_1_04·a_5_8
+ a_1_2·b_1_1·a_7_28 + c_4_19·b_1_0·b_1_3·b_3_10 + c_4_19·b_1_02·b_3_10 + c_4_19·a_1_2·b_1_1·b_3_12
- b_6_38·b_1_3·b_3_10 + b_6_38·b_1_13·b_1_3 + a_5_8·b_5_28 + b_1_32·b_3_12·a_5_8
+ b_1_1·b_1_3·b_3_12·a_5_8 + b_1_1·b_1_34·a_5_8 + b_1_12·b_1_3·a_7_28 + b_1_12·b_1_33·a_5_8 + b_1_14·b_1_3·a_5_8 + b_6_38·b_1_3·a_3_4 + a_5_82 + a_1_2·b_1_1·b_1_3·a_7_28 + a_1_2·b_1_1·b_1_33·a_5_8 + c_4_19·b_1_05·b_1_3 + c_4_19·b_1_3·a_5_8 + c_4_19·b_1_33·a_3_4 + c_4_19·b_1_1·a_5_8 + c_4_19·b_1_12·b_1_3·a_3_4 + c_4_19·b_1_0·a_5_8 + c_4_19·a_1_2·b_1_35 + c_4_19·a_1_2·b_1_1·b_1_3·b_3_12 + c_4_19·a_1_2·b_1_1·b_1_34 + c_4_19·a_1_2·b_1_32·a_3_4 + c_4_19·a_1_22·b_1_3·b_3_12
- a_5_8·b_5_28 + b_3_10·a_7_28 + b_1_32·b_3_12·a_5_8 + b_1_1·b_1_3·b_3_12·a_5_8
+ b_1_1·b_1_34·a_5_8 + b_1_12·b_1_3·a_7_28 + b_1_12·b_1_33·a_5_8 + b_1_13·a_7_28 + b_1_14·b_1_3·a_5_8 + b_1_05·a_5_8 + b_6_38·b_1_3·a_3_4 + a_5_82 + a_1_2·b_1_1·b_1_33·a_5_8 + c_4_19·b_1_3·a_5_8 + c_4_19·b_1_33·a_3_4 + c_4_19·b_1_1·a_5_8 + c_4_19·b_1_12·b_1_3·a_3_4 + c_4_19·a_1_2·b_1_35 + c_4_19·a_1_2·b_1_1·b_1_34 + c_4_19·a_1_2·b_1_32·a_3_4 + c_4_19·a_1_22·b_1_3·b_3_12
- b_6_38·b_1_3·b_3_10 + b_6_38·b_1_13·b_1_3 + a_5_8·b_5_28 + b_1_32·b_3_12·a_5_8
+ b_1_1·b_1_3·b_3_12·a_5_8 + b_1_1·b_1_34·a_5_8 + b_1_12·b_1_3·a_7_28 + b_1_12·b_1_33·a_5_8 + b_1_14·b_1_3·a_5_8 + b_6_38·b_1_3·a_3_4 + a_5_82 + a_3_4·a_7_28 + a_1_2·b_1_1·b_1_33·a_5_8 + c_4_19·b_1_05·b_1_3 + c_4_19·b_1_3·a_5_8 + c_4_19·b_1_33·a_3_4 + c_4_19·b_1_1·a_5_8 + c_4_19·b_1_12·b_1_3·a_3_4 + c_4_19·b_1_0·a_5_8 + c_4_19·a_1_2·b_1_35 + c_4_19·a_1_2·b_1_1·b_1_3·b_3_12 + c_4_19·a_1_2·b_1_1·b_1_34 + c_4_19·a_1_2·a_5_8 + c_4_19·a_1_2·b_1_32·a_3_4
- b_3_12·b_7_51 + b_1_1·b_1_36·b_3_12 + b_1_12·b_1_38 + b_1_13·b_1_37
+ b_1_16·b_1_3·b_3_12 + b_1_16·b_1_34 + b_1_17·b_1_33 + b_6_38·b_1_3·b_3_12 + b_1_32·b_3_12·a_5_8 + b_1_13·b_1_3·a_3_4·b_3_12 + b_1_13·b_1_32·a_5_8 + b_1_14·a_3_4·b_3_12 + b_1_14·b_1_3·a_5_8 + b_1_16·b_1_3·a_3_4 + b_1_17·a_3_4 + a_1_2·b_1_1·b_1_38 + b_6_38·a_1_2·b_1_1·b_1_32 + a_1_2·b_1_32·a_7_28 + a_1_2·b_1_34·a_5_8 + c_4_19·b_1_33·b_3_12 + c_4_19·b_1_1·b_1_32·b_3_12 + c_4_19·b_1_12·b_1_3·b_3_12 + c_4_19·b_1_13·b_1_33 + c_4_19·b_1_16 + c_4_19·a_3_4·b_3_12 + c_4_19·b_1_1·b_1_32·a_3_4 + c_4_19·b_1_12·b_1_3·a_3_4 + c_4_19·b_1_13·a_3_4 + c_4_19·a_1_2·b_1_32·b_3_12 + c_4_19·a_1_22·b_1_3·b_3_12 + c_4_192·b_1_12 + c_4_192·a_1_22
- b_3_10·b_7_51 + b_1_13·b_1_34·b_3_12 + b_1_14·b_1_33·b_3_12 + b_1_14·b_1_36
+ b_1_19·b_1_3 + b_6_38·b_1_3·b_3_10 + b_6_38·b_1_0·b_3_10 + a_5_8·b_5_28 + b_1_32·b_3_12·a_5_8 + b_1_1·b_1_3·b_3_12·a_5_8 + b_1_1·b_1_34·a_5_8 + b_1_12·b_1_3·a_7_28 + b_1_12·b_1_32·a_3_4·b_3_12 + b_1_12·b_1_33·a_5_8 + b_1_13·b_1_3·a_3_4·b_3_12 + b_1_13·b_1_32·a_5_8 + b_1_14·a_3_4·b_3_12 + b_1_14·b_1_3·a_5_8 + b_1_16·b_1_3·a_3_4 + b_1_17·a_3_4 + b_6_38·b_1_3·a_3_4 + a_5_82 + a_1_2·b_1_1·b_1_33·a_5_8 + c_4_19·b_1_13·b_3_12 + c_4_19·b_1_13·b_1_33 + c_4_19·b_1_14·b_1_32 + c_4_19·b_1_15·b_1_3 + c_4_19·b_1_0·b_5_28 + c_4_19·b_1_03·b_3_10 + c_4_19·b_1_05·b_1_3 + c_4_19·b_1_3·a_5_8 + c_4_19·b_1_33·a_3_4 + c_4_19·b_1_1·a_5_8 + c_4_19·b_1_12·b_1_3·a_3_4 + c_4_19·b_1_13·a_3_4 + c_4_19·b_1_0·a_5_8 + c_4_19·a_1_2·b_1_35 + c_4_19·a_1_2·b_1_1·b_1_3·b_3_12 + c_4_19·a_1_2·b_1_1·b_1_34 + c_4_19·a_1_2·b_1_32·a_3_4 + c_4_19·a_1_22·b_1_3·b_3_12 + c_4_192·b_1_0·b_1_3
- a_3_4·b_7_51 + b_1_12·b_1_3·a_7_28 + b_1_12·b_1_32·a_3_4·b_3_12 + b_1_13·a_7_28
+ b_1_13·b_1_32·a_5_8 + b_1_14·a_3_4·b_3_12 + b_1_14·b_1_3·a_5_8 + b_1_14·b_1_33·a_3_4 + b_1_15·b_1_32·a_3_4 + b_6_38·b_1_1·a_3_4 + c_4_19·a_3_4·b_3_12 + c_4_19·b_1_13·a_3_4 + c_4_19·a_1_2·b_1_35 + c_4_19·a_1_2·b_1_1·b_1_34 + c_4_19·a_1_2·b_1_32·a_3_4 + c_4_19·a_1_22·b_1_3·b_3_12 + c_4_192·a_1_22
- b_5_282 + b_1_18·b_1_32 + b_1_110 + b_1_03·a_7_28 + b_1_05·a_5_8
+ a_1_2·b_1_1·b_1_38 + a_5_82 + a_1_2·b_1_34·a_5_8 + c_8_68·b_1_02 + c_4_19·b_1_12·b_1_34 + c_4_19·b_1_14·b_1_32 + c_4_19·b_1_16 + c_4_192·b_1_32 + c_4_192·b_1_12
- a_1_2·b_1_1·b_1_38 + a_5_82 + a_1_2·b_1_34·a_5_8 + c_8_68·a_1_22
- b_6_38·b_5_28 + b_6_38·b_1_32·b_3_12 + b_6_38·b_1_1·b_1_3·b_3_12
+ b_6_38·b_1_1·b_1_34 + b_6_38·b_1_12·b_3_12 + b_6_38·b_1_12·b_1_33 + b_6_38·b_1_02·b_3_10 + b_6_38·b_1_04·b_1_3 + b_1_0·b_3_10·a_7_28 + b_1_04·a_7_28 + b_6_38·a_5_8 + b_6_38·b_1_32·a_3_4 + b_6_38·a_1_2·b_1_1·b_1_33 + a_1_2·b_1_33·a_7_28 + a_1_2·b_1_1·b_1_34·a_5_8 + c_8_68·b_1_03 + c_4_19·b_1_0·b_1_3·b_5_28 + c_4_19·b_1_06·b_1_3 + c_4_19·b_1_07 + c_4_19·b_6_38·b_1_3 + c_4_19·b_6_38·b_1_1 + c_4_19·b_6_38·b_1_0 + c_4_19·a_1_2·b_1_36 + c_4_19·b_6_38·a_1_2 + c_4_19·a_1_2·b_1_3·a_5_8 + c_4_19·a_1_2·b_1_33·a_3_4 + c_4_19·a_1_2·b_1_1·a_5_8 + c_4_192·b_1_02·b_1_3 + c_4_192·b_1_03 + c_4_192·a_1_2·b_1_32 + c_4_192·a_1_2·b_1_12
- b_1_33·b_3_12·a_5_8 + b_1_34·a_7_28 + b_1_12·b_1_34·a_5_8 + b_1_0·b_3_10·a_7_28
+ b_1_06·a_5_8 + b_6_38·a_5_8 + b_6_38·b_1_32·a_3_4 + b_6_38·b_1_1·b_1_3·a_3_4 + b_6_38·a_1_2·b_1_34 + b_6_38·a_1_2·b_1_1·b_1_33 + b_1_3·a_5_82 + a_1_2·b_1_33·a_7_28 + a_1_2·b_1_1·b_1_32·a_7_28 + c_4_19·b_1_06·b_1_3 + c_8_68·a_1_2·b_1_12 + c_4_19·b_1_32·a_5_8 + c_4_19·b_1_1·b_1_33·a_3_4 + c_4_19·b_1_02·a_5_8 + c_4_19·a_1_2·b_1_33·b_3_12 + c_4_19·a_1_2·b_1_1·b_1_35 + c_4_19·b_6_38·a_1_2 + c_4_19·a_1_2·b_1_33·a_3_4 + c_4_19·a_1_22·b_1_32·b_3_12 + c_4_192·a_1_2·b_1_32 + c_4_192·a_1_2·b_1_12 + c_4_192·a_1_22·b_1_3
- b_6_38·b_1_05·b_1_3 + b_5_28·a_7_28 + b_1_32·b_3_12·a_7_28
+ b_1_1·b_1_3·b_3_12·a_7_28 + b_1_1·b_1_34·a_7_28 + b_1_12·b_1_33·a_7_28 + b_1_14·b_1_3·a_7_28 + b_1_14·b_1_33·a_5_8 + b_1_16·b_1_3·a_5_8 + b_1_16·b_1_33·a_3_4 + b_1_18·b_1_3·a_3_4 + b_1_19·a_3_4 + b_1_07·a_5_8 + b_6_38·a_3_4·b_3_12 + b_6_38·b_1_12·b_1_3·a_3_4 + a_5_8·a_7_28 + a_1_2·b_1_1·b_1_33·a_7_28 + c_8_68·b_1_03·b_1_3 + c_4_19·b_6_38·b_1_0·b_1_3 + c_4_19·b_1_3·a_7_28 + c_4_19·b_1_32·a_3_4·b_3_12 + c_4_19·b_1_1·a_7_28 + c_4_19·b_1_12·a_3_4·b_3_12 + c_4_19·b_1_15·a_3_4 + c_4_19·b_1_0·a_7_28 + c_4_19·b_1_03·a_5_8 + c_4_19·a_1_2·b_1_1·b_1_36 + c_4_19·b_6_38·a_1_2·b_1_1 + c_4_19·a_1_2·b_1_32·a_5_8 + c_4_19·b_6_38·a_1_22 + c_4_192·b_1_03·b_1_3 + c_4_192·a_1_2·b_1_1·b_1_32 + c_4_192·a_1_2·b_1_12·b_1_3
- a_5_8·b_7_51 + b_1_35·a_7_28 + b_1_1·b_1_34·a_7_28 + b_1_1·b_1_36·a_5_8
+ b_1_12·b_1_35·a_5_8 + b_1_13·b_1_34·a_5_8 + b_1_16·b_1_3·a_5_8 + b_6_38·b_1_33·a_3_4 + b_6_38·b_1_1·a_5_8 + b_6_38·b_1_12·b_1_3·a_3_4 + b_6_38·b_1_0·a_5_8 + b_6_38·a_1_2·b_1_35 + a_1_2·b_1_1·b_1_33·a_7_28 + c_4_19·b_6_38·b_1_0·b_1_3 + c_8_68·a_1_2·b_1_12·b_1_3 + c_4_19·b_3_12·a_5_8 + c_4_19·b_1_12·b_1_3·a_5_8 + c_4_19·b_1_12·b_1_33·a_3_4 + c_4_19·b_1_13·a_5_8 + c_4_19·b_1_13·b_1_32·a_3_4 + c_4_19·b_1_14·b_1_3·a_3_4 + c_4_19·b_6_38·a_1_2·b_1_3 + c_4_19·b_6_38·a_1_2·b_1_1 + c_8_68·a_1_22·b_1_32 + c_4_19·a_1_2·a_7_28 + c_4_19·a_1_2·b_1_32·a_5_8 + c_4_19·a_1_2·b_1_1·b_1_3·a_5_8 + c_4_19·b_6_38·a_1_22 + c_4_192·b_1_03·b_1_3 + c_4_192·a_1_2·b_1_33 + c_4_192·a_1_2·b_1_1·b_1_32 + c_4_192·a_1_22·b_1_32
- b_1_12·b_1_37·b_3_12 + b_1_13·b_1_39 + b_1_15·b_1_34·b_3_12 + b_1_15·b_1_37
+ b_1_16·b_1_36 + b_1_17·b_1_35 + b_1_18·b_1_3·b_3_12 + b_1_18·b_1_34 + b_1_19·b_3_12 + b_1_110·b_1_32 + b_1_112 + b_6_38·b_1_12·b_1_34 + b_6_38·b_1_15·b_1_3 + b_6_382 + b_1_12·b_1_35·a_5_8 + b_1_13·b_1_34·a_5_8 + b_1_14·b_1_3·a_7_28 + b_1_15·a_7_28 + b_1_15·b_1_32·a_5_8 + b_1_16·b_1_33·a_3_4 + b_1_17·a_5_8 + b_1_17·b_1_32·a_3_4 + b_1_19·a_3_4 + b_1_05·a_7_28 + b_1_07·a_5_8 + b_6_38·b_1_12·b_1_3·a_3_4 + c_8_68·b_1_14 + c_8_68·b_1_04 + c_4_19·b_1_38 + c_4_19·b_1_15·b_1_33 + c_4_19·b_1_16·b_1_32 + c_4_19·b_1_18 + c_4_19·b_1_08 + c_4_19·b_1_12·b_1_33·a_3_4 + c_4_19·b_1_14·b_1_3·a_3_4 + c_8_68·a_1_22·b_1_32 + c_4_192·b_1_34 + c_4_192·b_1_14 + c_4_192·b_1_04 + c_4_192·a_1_22·b_1_32
- b_5_28·b_7_51 + b_1_12·b_1_37·b_3_12 + b_1_13·b_1_39 + b_1_15·b_1_37
+ b_1_16·b_1_33·b_3_12 + b_1_16·b_1_36 + b_1_17·b_1_32·b_3_12 + b_1_17·b_1_35 + b_1_18·b_1_3·b_3_12 + b_1_18·b_1_34 + b_1_19·b_1_33 + b_6_38·b_1_33·b_3_12 + b_6_38·b_1_1·b_1_32·b_3_12 + b_6_38·b_1_1·b_1_35 + b_6_38·b_1_12·b_1_3·b_3_12 + b_6_38·b_1_12·b_1_34 + b_6_38·b_1_03·b_3_10 + b_6_38·b_1_05·b_1_3 + b_1_12·b_1_33·a_7_28 + b_1_12·b_1_35·a_5_8 + b_1_13·b_1_32·a_7_28 + b_1_14·b_1_32·a_3_4·b_3_12 + b_1_14·b_1_33·a_5_8 + b_1_15·a_7_28 + b_1_15·b_1_3·a_3_4·b_3_12 + b_1_17·b_1_32·a_3_4 + b_1_18·b_1_3·a_3_4 + b_1_19·a_3_4 + b_1_05·a_7_28 + b_6_38·b_1_3·a_5_8 + b_6_38·b_1_1·b_1_32·a_3_4 + b_6_38·b_1_13·a_3_4 + b_6_38·b_1_0·a_5_8 + b_6_38·a_1_2·b_1_1·b_1_34 + b_6_38·a_1_2·a_5_8 + c_8_68·b_1_0·b_3_10 + c_8_68·b_1_04 + c_4_19·b_1_3·b_7_51 + c_4_19·b_1_35·b_3_12 + c_4_19·b_1_1·b_1_37 + c_4_19·b_1_12·b_1_33·b_3_12 + c_4_19·b_1_12·b_1_36 + c_4_19·b_1_13·b_1_35 + c_4_19·b_1_14·b_1_3·b_3_12 + c_4_19·b_1_15·b_1_33 + c_4_19·b_1_16·b_1_32 + c_4_19·b_1_18 + c_4_19·b_1_05·b_3_10 + c_4_19·b_1_08 + c_4_19·b_6_38·b_1_1·b_1_3 + c_4_19·b_3_12·a_5_8 + c_4_19·b_1_32·a_3_4·b_3_12 + c_4_19·b_1_33·a_5_8 + c_4_19·b_1_12·b_1_3·a_5_8 + c_4_19·b_1_12·b_1_33·a_3_4 + c_4_19·b_1_13·b_1_32·a_3_4 + c_4_19·b_1_14·b_1_3·a_3_4 + c_4_19·b_1_15·a_3_4 + c_4_19·b_1_0·a_7_28 + c_4_19·a_1_2·b_1_1·b_1_36 + c_4_19·b_6_38·a_1_2·b_1_1 + c_8_68·a_1_22·b_1_32 + c_4_19·a_1_2·a_7_28 + c_4_192·b_1_1·b_3_12 + c_4_192·b_1_1·b_1_33 + c_4_192·b_1_14 + c_4_192·b_1_1·a_3_4 + c_4_192·a_1_2·b_1_1·b_1_32 + c_4_192·a_1_2·b_1_12·b_1_3
- b_6_38·a_1_2·b_1_1·b_1_34 + a_5_8·a_7_28 + a_1_2·b_1_1·b_1_35·a_5_8
+ c_4_19·a_1_2·b_1_1·b_1_36 + c_8_68·a_1_2·a_3_4 + c_4_19·a_1_2·b_1_1·b_1_3·a_5_8
- b_6_38·b_7_51 + b_6_38·b_1_34·b_3_12 + b_6_38·b_1_1·b_1_33·b_3_12
+ b_6_38·b_1_1·b_1_36 + b_6_38·b_1_16·b_1_3 + b_6_382·b_1_3 + b_1_1·b_1_32·b_3_12·a_7_28 + b_1_13·b_1_33·a_7_28 + b_1_13·b_1_35·a_5_8 + b_1_15·b_1_33·a_5_8 + b_1_17·b_1_3·a_5_8 + b_1_06·a_7_28 + b_6_38·b_1_3·a_3_4·b_3_12 + b_6_38·b_1_32·a_5_8 + b_6_38·b_1_1·a_3_4·b_3_12 + b_6_38·b_1_1·b_1_33·a_3_4 + b_6_38·b_1_13·b_1_3·a_3_4 + b_6_38·b_1_14·a_3_4 + b_6_38·a_1_2·b_1_1·a_5_8 + c_8_68·b_1_02·b_3_10 + c_8_68·b_1_04·b_1_3 + c_8_68·b_1_05 + c_4_19·b_1_0·b_1_3·b_7_51 + c_4_19·b_1_06·b_3_10 + c_4_19·b_1_09 + c_4_19·b_6_38·b_3_12 + c_4_19·b_6_38·b_3_10 + c_4_19·b_6_38·b_1_33 + c_4_19·b_6_38·b_1_1·b_1_32 + c_4_19·b_6_38·b_1_12·b_1_3 + c_4_19·b_6_38·b_1_13 + c_4_19·b_1_1·b_3_12·a_5_8 + c_4_19·b_1_12·b_1_3·a_3_4·b_3_12 + c_4_19·b_1_14·b_1_32·a_3_4 + c_4_19·b_1_02·a_7_28 + c_4_19·a_1_2·b_1_38 + c_4_19·b_6_38·a_3_4 + c_4_19·b_6_38·a_1_2·b_1_32 + c_8_68·a_1_22·b_3_12 + c_4_19·a_1_2·b_1_1·a_7_28 + c_4_19·a_1_2·b_1_1·b_1_32·a_5_8 + c_4_192·b_1_0·b_1_3·b_3_10 + c_4_192·b_1_02·b_3_10 + c_4_192·b_1_05 + c_4_192·a_1_2·b_1_34 + c_4_192·a_1_2·b_1_1·b_3_12 + c_4_192·a_1_2·b_1_3·a_3_4
- b_1_33·b_3_12·a_7_28 + b_1_12·b_1_36·a_5_8 + b_1_13·b_1_35·a_5_8
+ b_1_14·b_1_32·a_7_28 + b_1_15·b_1_32·a_3_4·b_3_12 + b_1_16·a_7_28 + b_1_17·b_1_3·a_5_8 + b_1_17·b_1_33·a_3_4 + b_1_18·b_1_32·a_3_4 + b_1_19·b_1_3·a_3_4 + b_1_110·a_3_4 + b_1_0·b_5_28·a_7_28 + b_1_08·a_5_8 + b_6_38·a_7_28 + b_6_38·b_1_3·a_3_4·b_3_12 + b_6_38·b_1_1·a_3_4·b_3_12 + b_6_38·b_1_14·a_3_4 + b_6_38·b_1_02·a_5_8 + a_1_2·b_1_1·b_1_36·a_5_8 + c_4_19·b_6_38·b_1_02·b_1_3 + c_8_68·b_1_12·a_3_4 + c_4_19·b_1_32·a_7_28 + c_4_19·b_1_34·a_5_8 + c_4_19·b_1_1·b_1_32·a_3_4·b_3_12 + c_4_19·b_1_12·b_1_32·a_5_8 + c_4_19·b_1_13·b_1_3·a_5_8 + c_4_19·b_1_13·b_1_33·a_3_4 + c_4_19·a_1_2·b_1_38 + c_4_19·a_1_2·b_1_1·b_1_37 + c_4_19·b_6_38·a_3_4 + c_4_19·b_6_38·a_1_2·b_1_1·b_1_3 + c_8_68·a_1_2·b_1_3·a_3_4 + c_8_68·a_1_22·b_3_12 + c_8_68·a_1_22·b_1_33 + c_4_192·b_1_04·b_1_3 + c_4_192·b_1_32·a_3_4 + c_4_192·b_1_12·a_3_4 + c_4_192·a_1_2·b_1_34 + c_4_192·a_1_2·b_1_1·b_1_33 + c_4_192·a_1_2·b_1_3·a_3_4 + c_4_192·a_1_22·b_3_12
- a_7_282 + c_4_19·a_5_82
- b_7_512 + b_1_14·b_1_310 + b_1_16·b_1_38 + b_1_18·b_1_36 + b_1_112·b_1_32
+ b_6_382·b_1_32 + b_1_07·a_7_28 + b_1_09·a_5_8 + c_8_68·b_1_06 + c_4_19·b_1_12·b_1_38 + c_4_19·b_1_14·b_1_36 + c_4_19·b_1_010 + c_4_19·b_1_03·a_7_28 + c_4_19·b_1_05·a_5_8 + c_4_19·c_8_68·b_1_02 + c_4_192·b_1_36 + c_4_192·b_1_14·b_1_32 + c_4_192·b_1_16 + c_4_192·a_1_2·b_1_1·b_1_34 + c_4_192·a_1_2·a_5_8 + c_4_192·a_1_22·b_1_3·b_3_12 + c_4_193·b_1_12
- a_7_28·b_7_51 + b_1_1·b_1_36·a_7_28 + b_1_12·b_1_37·a_5_8 + b_1_14·b_1_33·a_7_28
+ b_1_14·b_1_35·a_5_8 + b_1_15·b_1_32·a_7_28 + b_1_16·b_1_32·a_3_4·b_3_12 + b_1_17·b_1_3·a_3_4·b_3_12 + b_1_17·b_1_32·a_5_8 + b_1_18·a_3_4·b_3_12 + b_1_18·b_1_3·a_5_8 + b_1_19·b_1_32·a_3_4 + b_1_110·b_1_3·a_3_4 + b_1_111·a_3_4 + b_6_38·b_1_32·a_3_4·b_3_12 + b_6_38·b_1_1·a_7_28 + b_6_38·b_1_12·a_3_4·b_3_12 + b_6_38·b_1_14·b_1_3·a_3_4 + b_6_38·b_1_0·a_7_28 + b_6_38·b_1_03·a_5_8 + b_1_32·a_5_8·a_7_28 + a_1_2·b_1_1·b_1_37·a_5_8 + b_6_38·a_1_2·b_1_1·b_1_3·a_5_8 + c_4_19·b_6_38·b_1_03·b_1_3 + c_8_68·b_1_12·b_1_3·a_3_4 + c_8_68·b_1_13·a_3_4 + c_8_68·b_1_0·a_5_8 + c_4_19·b_3_12·a_7_28 + c_4_19·b_1_35·a_5_8 + c_4_19·b_1_1·b_1_34·a_5_8 + c_4_19·b_1_12·b_1_3·a_7_28 + c_4_19·b_1_12·b_1_32·a_3_4·b_3_12 + c_4_19·b_1_12·b_1_33·a_5_8 + c_4_19·b_1_13·a_7_28 + c_4_19·b_1_13·b_1_3·a_3_4·b_3_12 + c_4_19·b_1_14·a_3_4·b_3_12 + c_4_19·b_1_14·b_1_3·a_5_8 + c_4_19·b_1_14·b_1_33·a_3_4 + c_4_19·b_1_16·b_1_3·a_3_4 + c_4_19·b_1_17·a_3_4 + c_4_19·a_1_2·b_1_39 + c_4_19·b_6_38·b_1_3·a_3_4 + c_4_19·b_6_38·a_1_2·b_1_1·b_1_32 + c_8_68·a_1_2·b_1_32·a_3_4 + c_4_19·a_1_2·b_1_34·a_5_8 + c_4_19·a_1_2·b_1_1·b_1_3·a_7_28 + c_4_192·b_1_05·b_1_3 + c_4_192·b_1_33·a_3_4 + c_4_192·b_1_12·b_1_3·a_3_4 + c_4_192·a_1_2·b_1_35 + c_4_192·a_1_2·b_1_1·b_1_34 + c_4_192·a_1_2·a_5_8 + c_4_192·a_1_2·b_1_32·a_3_4
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_19, a Duflot regular element of degree 4
- c_8_68, a Duflot regular element of degree 8
- b_1_32 + b_1_1·b_1_3 + b_1_12 + b_1_02, an element of degree 2
- b_1_32, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 8, 10, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_3_4 → 0, an element of degree 3
- b_3_10 → 0, an element of degree 3
- b_3_12 → 0, an element of degree 3
- c_4_19 → c_1_04, an element of degree 4
- a_5_8 → 0, an element of degree 5
- b_5_28 → 0, an element of degree 5
- b_6_38 → 0, an element of degree 6
- a_7_28 → 0, an element of degree 7
- b_7_51 → 0, an element of degree 7
- c_8_68 → c_1_18 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_2 → 0, an element of degree 1
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_3_4 → 0, an element of degree 3
- b_3_10 → c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_3_12 → 0, an element of degree 3
- c_4_19 → c_1_02·c_1_22 + c_1_04, an element of degree 4
- a_5_8 → 0, an element of degree 5
- b_5_28 → c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- b_6_38 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_0·c_1_25 + c_1_02·c_1_24, an element of degree 6
- a_7_28 → 0, an element of degree 7
- b_7_51 → c_1_12·c_1_25 + c_1_14·c_1_23 + c_1_0·c_1_26 + c_1_0·c_1_12·c_1_24
+ c_1_0·c_1_14·c_1_22 + c_1_02·c_1_12·c_1_23 + c_1_02·c_1_14·c_1_2 + c_1_03·c_1_24 + c_1_05·c_1_22 + c_1_06·c_1_2, an element of degree 7
- c_8_68 → c_1_14·c_1_24 + c_1_18 + c_1_04·c_1_24 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- a_3_4 → 0, an element of degree 3
- b_3_10 → c_1_33, an element of degree 3
- b_3_12 → c_1_33 + c_1_22·c_1_3 + c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
- c_4_19 → c_1_02·c_1_32 + c_1_04, an element of degree 4
- a_5_8 → 0, an element of degree 5
- b_5_28 → c_1_35 + c_1_2·c_1_34 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33
+ c_1_0·c_1_22·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_04·c_1_3 + c_1_04·c_1_2, an element of degree 5
- b_6_38 → c_1_24·c_1_32 + c_1_12·c_1_34 + c_1_14·c_1_32 + c_1_0·c_1_23·c_1_32
+ c_1_02·c_1_23·c_1_3 + c_1_02·c_1_24 + c_1_04·c_1_22, an element of degree 6
- a_7_28 → 0, an element of degree 7
- b_7_51 → c_1_2·c_1_36 + c_1_23·c_1_34 + c_1_24·c_1_33 + c_1_12·c_1_2·c_1_34
+ c_1_14·c_1_2·c_1_32 + c_1_0·c_1_23·c_1_33 + c_1_02·c_1_35 + c_1_02·c_1_2·c_1_34 + c_1_02·c_1_25 + c_1_03·c_1_34 + c_1_04·c_1_2·c_1_32 + c_1_05·c_1_32 + c_1_06·c_1_3, an element of degree 7
- c_8_68 → c_1_2·c_1_37 + c_1_23·c_1_35 + c_1_12·c_1_2·c_1_35 + c_1_12·c_1_24·c_1_32
+ c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33 + c_1_14·c_1_24 + c_1_18 + c_1_0·c_1_37 + c_1_0·c_1_2·c_1_36 + c_1_02·c_1_2·c_1_35 + c_1_02·c_1_22·c_1_34 + c_1_02·c_1_23·c_1_33 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_26 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_24 + c_1_08, an element of degree 8
|