Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1827 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
- The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 18 minimal generators of maximal degree 10:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_3, an element of degree 1
- a_3_8, a nilpotent element of degree 3
- a_3_6, a nilpotent element of degree 3
- a_4_10, a nilpotent element of degree 4
- b_4_16, an element of degree 4
- c_4_17, a Duflot regular element of degree 4
- a_5_14, a nilpotent element of degree 5
- a_5_15, a nilpotent element of degree 5
- b_5_26, an element of degree 5
- a_6_24, a nilpotent element of degree 6
- a_7_34, a nilpotent element of degree 7
- a_7_31, a nilpotent element of degree 7
- a_8_40, a nilpotent element of degree 8
- c_8_66, a Duflot regular element of degree 8
- a_10_67, a nilpotent element of degree 10
Ring relations
There are 107 minimal relations of maximal degree 20:
- a_1_0·a_1_2
- a_1_0·b_1_1 + a_1_22
- a_1_22·b_1_1
- a_1_2·b_1_32 + a_1_03
- a_1_2·a_3_8
- a_1_0·a_3_6
- b_1_1·a_3_8 + a_1_2·b_1_12·b_1_3 + a_1_2·a_3_6
- a_1_03·b_1_32
- b_1_32·a_3_6 + b_1_1·b_1_3·a_3_6 + a_4_10·b_1_1 + a_1_2·b_1_3·a_3_6 + a_1_02·a_3_8
- a_1_0·b_1_3·a_3_8 + a_1_02·b_1_33 + a_4_10·a_1_0
- a_1_2·b_1_3·a_3_6 + a_4_10·a_1_2
- b_1_32·a_3_8 + a_1_0·b_1_34 + b_4_16·a_1_0 + a_1_0·b_1_3·a_3_8
- a_1_2·b_1_13·b_1_3 + b_4_16·a_1_2 + a_1_2·b_1_3·a_3_6 + a_1_2·b_1_1·a_3_6
+ a_1_02·a_3_8
- a_3_82 + a_1_02·b_1_34 + c_4_17·a_1_02
- a_3_8·a_3_6 + a_4_10·a_1_2·b_1_1
- b_4_16·a_1_2·b_1_1 + a_3_62 + a_3_8·a_3_6 + c_4_17·a_1_22
- a_1_2·a_5_14 + c_4_17·a_1_22
- a_1_0·a_5_15
- b_1_1·a_5_14 + b_4_16·a_1_0·b_1_3 + a_4_10·b_1_32 + a_4_10·b_1_1·b_1_3 + a_1_2·a_5_15
+ a_1_02·b_1_34 + a_4_10·a_1_0·b_1_3 + a_4_10·a_1_02 + c_4_17·a_1_2·b_1_1 + c_4_17·a_1_22
- b_1_1·a_5_14 + a_1_0·b_5_26 + a_1_0·b_1_35 + b_4_16·a_1_0·b_1_3 + a_4_10·b_1_32
+ a_4_10·b_1_1·b_1_3 + a_3_82 + a_4_10·a_1_0·b_1_3 + c_4_17·a_1_2·b_1_1 + c_4_17·a_1_0·b_1_3
- b_1_1·a_5_15 + b_1_12·b_1_3·a_3_6 + a_1_2·b_5_26 + a_4_10·b_1_12 + c_4_17·a_1_2·b_1_3
+ c_4_17·a_1_2·b_1_1
- a_4_10·a_3_8 + a_4_10·a_1_0·b_1_32 + c_4_17·a_1_02·b_1_3
- a_4_10·a_3_6 + a_4_10·a_1_2·b_1_12 + c_4_17·a_1_22·b_1_3
- b_4_16·a_3_8 + b_4_16·a_1_0·b_1_32 + a_4_10·a_3_8 + a_4_10·a_1_02·b_1_3
+ c_4_17·a_1_0·b_1_32
- b_1_32·a_5_15 + b_1_13·b_1_3·a_3_6 + a_4_10·b_1_1·b_1_32 + a_4_10·b_1_12·b_1_3
+ a_4_10·b_1_13 + a_4_10·a_1_2·b_1_12 + a_1_02·a_5_14 + a_4_10·a_1_02·b_1_3 + c_4_17·a_1_03
- a_1_22·b_5_26 + a_4_10·a_1_02·b_1_3 + c_4_17·a_1_22·b_1_3
- a_6_24·b_1_1 + b_4_16·a_3_6 + b_4_16·a_3_8 + a_4_10·b_1_33 + a_4_10·b_1_1·b_1_32
+ a_4_10·b_1_12·b_1_3 + a_1_2·b_1_3·a_5_15 + a_1_02·b_1_35 + c_4_17·a_1_2·b_1_1·b_1_3 + c_4_17·a_1_0·b_1_32 + c_4_17·a_1_22·b_1_3 + c_4_17·a_1_02·b_1_3 + c_4_17·a_1_03
- a_1_0·b_1_3·a_5_14 + a_1_02·b_1_35 + a_6_24·a_1_0 + a_4_10·a_3_8
- a_6_24·a_1_2 + a_4_10·a_1_2·b_1_12 + c_4_17·a_1_22·b_1_3
- a_4_102 + c_4_17·a_1_02·b_1_32
- b_1_12·b_1_36 + b_1_16·b_1_32 + b_4_162 + b_1_12·a_3_62 + a_1_02·b_1_36
+ c_4_17·b_1_34 + c_4_17·a_1_02·b_1_32
- a_3_6·a_5_14 + c_4_17·a_1_2·a_3_6
- a_3_8·a_5_15 + a_4_10·a_1_02·b_1_32
- a_3_8·b_5_26 + a_1_2·b_1_1·b_1_3·b_5_26 + a_1_0·b_1_37 + b_4_16·a_1_0·b_1_33
+ a_3_6·a_5_15 + a_1_02·b_1_36 + a_4_10·a_1_0·b_1_33 + c_4_17·b_1_3·a_3_8 + c_4_17·a_1_2·a_3_6 + c_4_17·a_1_0·a_3_8 + c_4_17·a_1_03·b_1_3
- b_1_33·a_5_14 + a_1_0·b_1_37 + a_6_24·b_1_32 + b_4_16·b_1_3·a_3_6
+ b_4_16·a_1_0·b_1_33 + a_4_10·b_1_1·b_1_33 + a_4_10·b_4_16 + a_4_10·a_1_02·b_1_32 + c_4_17·a_1_02·b_1_32
- b_1_1·a_7_34 + b_1_14·b_1_3·a_3_6 + b_4_16·b_1_3·a_3_6 + a_4_10·b_1_1·b_1_33
+ a_4_10·b_1_13·b_1_3 + a_4_10·b_1_14 + a_4_10·b_4_16 + a_3_6·a_5_15 + a_4_10·a_1_2·b_1_13 + a_4_10·a_1_0·b_1_33 + a_4_10·a_1_02·b_1_32 + c_4_17·a_1_2·b_1_12·b_1_3 + c_4_17·a_1_2·b_1_13 + c_4_17·a_1_0·b_1_33 + c_4_17·a_1_2·a_3_6 + c_4_17·a_1_02·b_1_32
- a_3_8·a_5_14 + a_1_0·a_7_34 + a_1_02·b_1_36 + a_6_24·a_1_0·b_1_3
+ c_4_17·a_1_02·b_1_32 + c_4_17·a_1_03·b_1_3
- a_1_2·a_7_34
- a_3_6·b_5_26 + a_3_8·b_5_26 + b_1_1·a_7_31 + a_1_2·b_1_12·b_5_26 + a_1_0·b_1_37
+ b_4_16·b_1_3·a_3_6 + b_4_16·b_1_1·a_3_6 + a_4_10·b_1_34 + a_4_10·b_1_1·b_1_33 + a_4_10·b_1_13·b_1_3 + a_4_10·b_1_14 + a_3_6·a_5_15 + a_4_10·a_1_2·b_1_13 + c_4_17·b_1_3·a_3_6 + c_4_17·b_1_3·a_3_8 + c_4_17·a_1_2·b_1_12·b_1_3 + c_4_17·a_1_2·b_1_13 + c_4_17·a_1_2·a_3_6 + c_4_17·a_1_0·a_3_8
- a_1_0·a_7_31 + a_6_24·a_1_0·b_1_3 + c_4_17·a_1_03·b_1_3
- a_3_6·a_5_15 + a_1_2·a_7_31 + a_4_10·a_1_02·b_1_32 + c_4_17·a_1_2·a_3_6
- a_6_24·a_3_8 + a_6_24·a_1_0·b_1_32 + a_4_10·a_5_14 + a_4_10·a_1_0·b_1_34
+ c_4_17·a_1_02·b_1_33 + a_4_10·c_4_17·a_1_2 + a_4_10·c_4_17·a_1_0
- a_6_24·a_3_6 + a_4_10·c_4_17·a_1_2
- b_1_32·a_7_34 + b_1_15·b_1_3·a_3_6 + b_4_16·a_5_14 + b_4_16·b_1_1·b_1_3·a_3_6
+ a_4_10·b_1_35 + a_4_10·b_1_12·b_1_33 + a_4_10·b_1_13·b_1_32 + a_4_10·b_1_14·b_1_3 + a_4_10·b_1_15 + a_4_10·b_4_16·b_1_1 + a_6_24·a_3_8 + a_3_63 + a_6_24·a_1_02·b_1_3 + b_4_16·c_4_17·a_1_2 + c_4_17·a_1_02·b_1_33 + a_4_10·c_4_17·a_1_0
- a_1_0·b_1_3·a_7_34 + a_4_10·a_5_14 + a_4_10·a_1_0·b_1_34 + a_4_10·c_4_17·a_1_2
- b_1_32·a_7_31 + b_1_1·b_1_3·a_7_31 + a_1_2·b_1_12·b_1_3·b_5_26 + a_6_24·b_1_33
+ b_4_16·b_1_1·b_1_3·a_3_6 + a_4_10·b_5_26 + a_4_10·b_1_35 + a_4_10·b_1_12·b_1_33 + a_4_10·b_1_14·b_1_3 + a_1_02·b_1_37 + a_4_10·a_5_15 + a_1_02·a_7_34 + a_6_24·a_1_02·b_1_3 + b_4_16·c_4_17·a_1_2 + a_4_10·c_4_17·b_1_3 + c_4_17·a_1_2·b_1_1·a_3_6 + c_4_17·a_1_02·b_1_33 + a_4_10·c_4_17·a_1_0 + c_4_17·a_1_02·a_3_8
- a_1_2·b_1_3·a_7_31 + a_4_10·a_5_15 + a_4_10·c_4_17·a_1_2
- a_1_2·b_1_12·b_1_3·b_5_26 + b_4_16·a_5_15 + b_4_16·b_1_1·b_1_3·a_3_6
+ a_4_10·b_4_16·b_1_1 + a_1_2·b_1_1·a_7_31 + a_4_10·a_5_15 + a_1_02·a_7_34 + b_4_16·c_4_17·a_1_2 + a_4_10·c_4_17·a_1_2
- b_1_32·a_7_31 + b_1_12·a_7_31 + a_1_2·b_1_13·b_5_26 + a_8_40·b_1_1 + a_6_24·b_1_33
+ b_4_16·b_1_12·a_3_6 + b_4_16·a_1_0·b_1_34 + a_4_10·b_1_35 + a_4_10·b_1_1·b_1_34 + a_4_10·b_1_12·b_1_33 + a_4_10·b_1_13·b_1_32 + a_4_10·b_1_15 + a_4_10·a_1_0·b_1_34 + a_1_02·a_7_34 + a_6_24·a_1_02·b_1_3 + c_4_17·b_1_1·b_1_3·a_3_6 + c_4_17·b_1_12·a_3_6 + b_4_16·c_4_17·a_1_2 + a_4_10·c_4_17·b_1_1 + c_4_17·a_1_2·b_1_1·a_3_6 + c_4_17·a_1_02·b_1_33 + c_4_17·a_1_02·a_3_8
- a_8_40·a_1_0 + a_6_24·a_1_02·b_1_3 + c_4_17·a_1_02·b_1_33 + c_4_17·a_1_02·a_3_8
- a_1_2·b_1_12·b_1_3·b_5_26 + b_4_16·a_5_15 + b_4_16·b_1_1·b_1_3·a_3_6
+ a_4_10·b_4_16·b_1_1 + a_8_40·a_1_2 + a_4_10·a_5_15 + a_1_02·a_7_34 + b_4_16·c_4_17·a_1_2 + c_4_17·a_1_2·b_1_1·a_3_6 + a_4_10·c_4_17·a_1_2
- a_5_14·a_5_15 + c_4_17·a_1_2·a_5_15
- a_4_10·b_1_3·a_5_14 + a_4_10·a_1_0·b_1_35 + a_4_10·a_6_24 + c_4_17·a_1_02·b_1_34
+ a_4_10·c_4_17·a_1_0·b_1_3
- b_4_16·b_1_3·a_5_14 + b_4_16·a_1_0·b_1_35 + b_4_16·a_6_24 + a_4_10·b_1_12·b_1_34
+ a_4_10·b_1_13·b_1_33 + a_4_10·b_1_14·b_1_32 + a_4_10·b_1_15·b_1_3 + a_4_10·b_4_16·b_1_1·b_1_3 + b_1_1·a_3_63 + c_4_17·b_1_12·b_1_3·a_3_6 + c_4_17·a_1_0·b_1_35 + a_4_10·c_4_17·b_1_32 + a_4_10·c_4_17·b_1_1·b_1_3 + a_4_10·c_4_17·b_1_12 + a_4_10·c_4_17·a_1_2·b_1_1 + a_4_10·c_4_17·a_1_0·b_1_3 + a_4_10·c_4_17·a_1_02
- a_3_8·a_7_34 + a_4_10·b_1_3·a_5_14 + a_4_10·a_1_0·b_1_35 + c_4_17·a_1_0·a_5_14
+ c_4_17·a_1_02·b_1_34 + a_4_10·c_4_17·a_1_02
- a_3_6·a_7_34 + c_4_17·a_1_2·b_1_12·a_3_6 + a_4_10·c_4_17·a_1_2·b_1_1
- a_3_8·a_7_31 + a_6_24·a_1_0·b_1_33 + a_4_10·b_1_3·a_5_14 + a_4_10·a_1_2·b_5_26
+ a_4_10·a_1_0·b_1_35 + c_4_17·a_1_02·b_1_34 + a_4_10·c_4_17·a_1_0·b_1_3 + a_4_10·c_4_17·a_1_02
- b_5_262 + b_1_310 + b_1_12·b_1_33·b_5_26 + b_1_15·b_1_35 + b_1_18·b_1_32
+ b_4_16·b_1_12·b_1_34 + b_4_16·b_1_13·b_1_33 + b_4_16·b_1_15·b_1_3 + b_4_16·b_1_16 + b_4_162·b_1_32 + b_4_162·b_1_1·b_1_3 + b_4_162·b_1_12 + a_5_15·b_5_26 + b_1_16·b_1_3·a_3_6 + b_4_16·b_1_13·a_3_6 + a_4_10·b_1_1·b_5_26 + a_4_10·b_1_12·b_1_34 + a_4_10·b_1_14·b_1_32 + a_4_10·b_1_15·b_1_3 + a_4_10·b_1_16 + a_4_10·b_4_16·b_1_1·b_1_3 + a_3_6·a_7_31 + b_1_14·a_3_62 + a_1_02·b_1_38 + a_4_10·a_1_2·b_5_26 + b_1_1·a_3_63 + a_6_24·a_1_02·b_1_32 + c_8_66·b_1_12 + c_4_17·b_1_36 + c_4_17·b_1_1·b_1_35 + c_4_17·b_1_12·b_1_34 + c_4_17·b_1_13·b_1_33 + c_4_17·b_1_14·b_1_32 + c_4_17·b_1_15·b_1_3 + c_8_66·a_1_2·b_1_1 + c_4_17·b_1_3·a_5_15 + c_4_17·b_1_13·a_3_6 + c_4_17·a_1_2·b_5_26 + a_4_10·c_4_17·b_1_1·b_1_3 + a_4_10·c_4_17·b_1_12 + c_4_17·a_1_2·a_5_15 + c_4_17·a_1_02·b_1_34 + a_4_10·c_4_17·a_1_2·b_1_1 + c_4_172·b_1_32 + c_4_172·a_1_2·b_1_3 + c_4_172·a_1_22 + c_4_172·a_1_02
- a_5_142 + a_1_02·b_1_38 + a_6_24·a_1_0·b_1_33 + a_4_10·a_1_0·b_1_35
+ a_4_10·a_1_0·a_5_14 + c_8_66·a_1_02 + c_4_17·a_1_02·b_1_34 + a_4_10·c_4_17·a_1_02 + c_4_172·a_1_22
- a_5_152 + c_8_66·a_1_22 + c_4_172·a_1_22
- a_5_14·b_5_26 + a_1_0·b_1_39 + a_8_40·b_1_32 + a_6_24·b_1_34
+ b_4_16·b_1_12·b_1_3·a_3_6 + b_4_16·a_1_0·b_1_35 + a_4_10·b_1_13·b_1_33 + a_4_10·b_4_16·b_1_1·b_1_3 + a_4_10·b_4_16·b_1_12 + a_5_152 + a_1_02·b_1_38 + a_6_24·a_1_0·b_1_33 + a_4_10·a_1_0·b_1_35 + a_4_10·a_1_0·a_5_14 + c_4_17·b_1_3·a_5_14 + c_4_17·a_1_2·b_5_26 + b_4_16·c_4_17·a_1_0·b_1_3 + a_4_10·c_4_17·b_1_32 + a_4_10·c_4_17·b_1_1·b_1_3 + c_4_17·a_1_0·a_5_14 + c_4_17·a_1_02·b_1_34 + a_4_10·c_4_17·a_1_02 + c_4_172·a_1_2·b_1_3 + c_4_172·a_1_22
- b_5_262 + b_1_310 + b_1_12·b_1_33·b_5_26 + b_1_15·b_1_35 + b_1_18·b_1_32
+ b_4_16·b_1_12·b_1_34 + b_4_16·b_1_13·b_1_33 + b_4_16·b_1_15·b_1_3 + b_4_16·b_1_16 + b_4_162·b_1_32 + b_4_162·b_1_1·b_1_3 + b_4_162·b_1_12 + b_1_13·a_7_31 + b_1_16·b_1_3·a_3_6 + a_1_2·b_1_14·b_5_26 + a_8_40·b_1_12 + b_4_16·b_1_12·b_1_3·a_3_6 + a_4_10·b_1_1·b_5_26 + a_4_10·b_1_1·b_1_35 + a_4_10·b_1_12·b_1_34 + a_4_10·b_1_14·b_1_32 + a_4_10·b_1_15·b_1_3 + a_4_10·b_4_16·b_1_1·b_1_3 + a_4_10·b_4_16·b_1_12 + a_3_6·a_7_31 + a_1_02·b_1_38 + a_4_10·a_1_2·b_5_26 + c_8_66·b_1_12 + c_4_17·b_1_36 + c_4_17·b_1_1·b_1_35 + c_4_17·b_1_12·b_1_34 + c_4_17·b_1_13·b_1_33 + c_4_17·b_1_14·b_1_32 + c_4_17·b_1_15·b_1_3 + c_4_17·b_1_12·b_1_3·a_3_6 + a_4_10·c_4_17·b_1_1·b_1_3 + c_4_17·a_1_2·a_5_15 + c_4_17·a_1_2·b_1_12·a_3_6 + c_4_17·a_1_02·b_1_34 + a_4_10·c_4_17·a_1_2·b_1_1 + c_4_172·b_1_32 + c_4_172·a_1_22 + c_4_172·a_1_02
- b_4_16·a_1_2·b_5_26 + a_3_6·a_7_31 + a_8_40·a_1_2·b_1_1 + b_1_1·a_3_63
+ c_4_17·a_1_2·a_5_15 + a_4_10·c_4_17·a_1_2·b_1_1 + a_4_10·c_4_17·a_1_02 + c_4_172·a_1_22
- a_6_24·a_5_15 + a_4_10·a_1_2·b_1_1·b_5_26 + c_4_17·a_1_2·b_1_3·a_5_15
+ a_4_10·c_4_17·a_1_2·b_1_12
- a_4_10·a_7_34 + c_4_17·a_6_24·a_1_0 + a_4_10·c_4_17·a_1_2·b_1_12
+ a_4_10·c_4_17·a_1_0·b_1_32 + a_4_10·c_4_17·a_1_02·b_1_3 + c_4_172·a_1_02·b_1_3
- b_4_16·a_7_34 + b_4_16·b_1_13·b_1_3·a_3_6 + a_4_10·b_1_1·b_1_36
+ a_4_10·b_1_12·b_1_35 + a_4_10·b_1_13·b_1_34 + a_4_10·b_1_14·b_1_33 + a_4_10·b_4_16·b_1_33 + a_4_10·b_4_16·b_1_12·b_1_3 + a_4_10·b_4_16·b_1_13 + a_4_10·a_1_2·b_1_1·b_5_26 + a_4_10·a_6_24·b_1_3 + a_4_10·a_6_24·a_1_0 + c_4_17·b_1_32·a_5_14 + c_4_17·b_1_13·b_1_3·a_3_6 + a_4_10·c_4_17·b_1_1·b_1_32 + a_4_10·c_4_17·b_1_12·b_1_3 + a_4_10·c_4_17·b_1_13 + c_4_17·b_1_1·a_3_62 + c_4_17·a_6_24·a_1_0 + a_4_10·c_4_17·a_1_2·b_1_12 + a_4_10·c_4_17·a_1_0·b_1_32 + c_4_172·a_1_02·b_1_3 + c_4_172·a_1_03
- a_4_10·a_7_31 + a_4_10·a_6_24·b_1_3 + c_4_17·a_1_2·b_1_3·a_5_15
+ a_4_10·c_4_17·a_1_2·b_1_12 + a_4_10·c_4_17·a_1_02·b_1_3 + c_4_172·a_1_22·b_1_3
- a_6_24·a_5_14 + a_4_10·a_1_0·b_1_36 + a_4_10·a_6_24·b_1_3 + a_6_24·a_1_02·b_1_33
+ a_4_10·a_6_24·a_1_0 + c_8_66·a_1_02·b_1_3 + c_4_17·a_6_24·a_1_0 + a_4_10·c_4_17·a_1_2·b_1_12 + c_4_172·a_1_22·b_1_3 + c_4_172·a_1_02·b_1_3
- a_8_40·a_3_8 + a_4_10·a_1_2·b_1_1·b_5_26 + a_6_24·a_1_02·b_1_33
+ a_4_10·a_6_24·a_1_0 + c_4_17·a_1_02·b_1_35 + a_4_10·c_4_17·a_1_2·b_1_12 + a_4_10·c_4_17·a_1_0·b_1_32 + a_4_10·c_4_17·a_1_02·b_1_3 + c_4_172·a_1_03
- a_8_40·b_1_33 + a_6_24·b_5_26 + a_6_24·b_1_35 + b_4_16·a_7_31
+ b_4_16·b_1_13·b_1_3·a_3_6 + b_4_16·a_6_24·b_1_3 + a_4_10·b_1_1·b_1_3·b_5_26 + a_4_10·b_1_14·b_1_33 + a_4_10·b_1_15·b_1_32 + a_4_10·b_1_16·b_1_3 + b_1_1·a_3_6·a_7_31 + a_1_02·b_1_39 + a_8_40·a_1_2·b_1_12 + a_6_24·a_1_0·b_1_34 + a_4_10·a_1_2·b_1_1·b_5_26 + a_4_10·a_1_0·b_1_36 + c_4_17·b_1_13·b_1_3·a_3_6 + c_4_17·a_1_2·b_1_3·b_5_26 + c_4_17·a_1_0·b_1_36 + c_4_17·a_6_24·b_1_3 + b_4_16·c_4_17·a_1_0·b_1_32 + a_4_10·c_4_17·b_1_33 + a_4_10·c_4_17·b_1_1·b_1_32 + a_4_10·c_4_17·b_1_12·b_1_3 + a_4_10·c_4_17·b_1_13 + c_8_66·a_1_22·b_1_3 + c_4_17·b_1_1·a_3_62 + c_4_17·a_1_02·b_1_35 + c_4_17·a_6_24·a_1_0 + a_4_10·c_4_17·a_1_0·b_1_32 + c_4_17·a_1_02·a_5_14 + c_4_172·a_1_03
- a_8_40·b_1_33 + a_6_24·b_5_26 + a_6_24·b_1_35 + b_4_16·a_7_31
+ b_4_16·b_1_13·b_1_3·a_3_6 + b_4_16·a_6_24·b_1_3 + a_4_10·b_1_1·b_1_3·b_5_26 + a_4_10·b_1_14·b_1_33 + a_4_10·b_1_15·b_1_32 + a_4_10·b_1_16·b_1_3 + a_1_02·b_1_39 + a_8_40·a_3_6 + a_6_24·a_1_0·b_1_34 + a_4_10·a_1_2·b_1_1·b_5_26 + a_4_10·a_1_0·b_1_36 + b_1_12·a_3_63 + c_4_17·b_1_13·b_1_3·a_3_6 + c_4_17·a_1_2·b_1_3·b_5_26 + c_4_17·a_1_0·b_1_36 + c_4_17·a_6_24·b_1_3 + b_4_16·c_4_17·a_1_0·b_1_32 + a_4_10·c_4_17·b_1_33 + a_4_10·c_4_17·b_1_1·b_1_32 + a_4_10·c_4_17·b_1_12·b_1_3 + a_4_10·c_4_17·b_1_13 + c_8_66·a_1_22·b_1_3 + c_4_17·a_1_2·b_1_13·a_3_6 + c_4_17·a_1_02·b_1_35 + c_4_17·a_6_24·a_1_0 + a_4_10·c_4_17·a_1_0·b_1_32 + c_4_17·a_1_02·a_5_14 + c_4_172·a_1_03
- b_1_17·b_1_3·a_3_6 + a_10_67·b_1_1 + a_8_40·b_1_33 + a_8_40·b_1_13 + a_6_24·b_5_26
+ a_6_24·b_1_35 + b_4_16·b_1_14·a_3_6 + a_4_10·b_1_32·b_5_26 + a_4_10·b_1_37 + a_4_10·b_1_1·b_1_36 + a_4_10·b_1_12·b_5_26 + a_4_10·b_1_12·b_1_35 + a_4_10·b_1_15·b_1_32 + a_4_10·b_1_16·b_1_3 + a_4_10·b_1_17 + a_4_10·b_4_16·b_1_1·b_1_32 + a_4_10·b_4_16·b_1_13 + b_1_1·a_3_6·a_7_31 + a_1_02·b_1_39 + a_6_24·a_1_0·b_1_34 + a_4_10·a_1_2·b_1_1·b_5_26 + b_1_12·a_3_63 + a_4_10·a_6_24·a_1_0 + c_8_66·a_1_2·b_1_12 + c_4_17·b_1_13·b_1_3·a_3_6 + c_4_17·a_1_2·b_1_1·b_5_26 + c_4_17·a_1_2·b_1_16 + c_4_17·a_1_0·b_1_36 + c_4_17·a_6_24·b_1_3 + b_4_16·c_4_17·a_3_6 + a_4_10·c_4_17·b_1_33 + a_4_10·c_4_17·b_1_13 + c_4_17·b_1_1·a_3_62 + c_4_17·a_6_24·a_1_0 + a_4_10·c_4_17·a_1_02·b_1_3 + c_4_172·a_1_2·b_1_1·b_1_3 + c_4_172·a_1_2·b_1_12 + c_4_172·a_1_22·b_1_3 + c_4_172·a_1_03
- a_10_67·a_1_0 + a_6_24·a_5_14 + a_6_24·a_1_02·b_1_33 + a_4_10·a_6_24·a_1_0
+ c_4_17·a_1_02·b_1_35 + a_4_10·c_4_17·a_1_2·b_1_12 + c_4_172·a_1_22·b_1_3
- a_8_40·b_1_33 + a_6_24·b_5_26 + a_6_24·b_1_35 + b_4_16·a_7_31
+ b_4_16·b_1_13·b_1_3·a_3_6 + b_4_16·a_6_24·b_1_3 + a_4_10·b_1_1·b_1_3·b_5_26 + a_4_10·b_1_14·b_1_33 + a_4_10·b_1_15·b_1_32 + a_4_10·b_1_16·b_1_3 + b_1_1·a_3_6·a_7_31 + a_1_02·b_1_39 + a_10_67·a_1_2 + a_6_24·a_1_0·b_1_34 + a_4_10·a_1_2·b_1_1·b_5_26 + a_4_10·a_1_0·b_1_36 + b_1_12·a_3_63 + c_4_17·b_1_13·b_1_3·a_3_6 + c_4_17·a_1_2·b_1_3·b_5_26 + c_4_17·a_1_0·b_1_36 + c_4_17·a_6_24·b_1_3 + b_4_16·c_4_17·a_1_0·b_1_32 + a_4_10·c_4_17·b_1_33 + a_4_10·c_4_17·b_1_1·b_1_32 + a_4_10·c_4_17·b_1_12·b_1_3 + a_4_10·c_4_17·b_1_13 + c_8_66·a_1_22·b_1_3 + c_4_17·b_1_1·a_3_62 + c_4_17·a_1_2·b_1_3·a_5_15 + c_4_17·a_1_02·b_1_35 + c_4_17·a_6_24·a_1_0 + a_4_10·c_4_17·a_1_2·b_1_12 + a_4_10·c_4_17·a_1_0·b_1_32 + c_4_17·a_1_02·a_5_14 + a_4_10·c_4_17·a_1_02·b_1_3 + c_4_172·a_1_22·b_1_3 + c_4_172·a_1_03
- a_5_15·a_7_34 + a_4_10·c_4_17·a_1_02·b_1_32
- a_5_14·a_7_31 + a_6_24·a_1_0·b_1_35 + a_6_242 + a_4_10·a_6_24·b_1_32
+ c_4_17·a_1_2·a_7_31 + c_4_17·a_6_24·a_1_0·b_1_3 + c_4_17·a_6_24·a_1_02 + a_4_10·c_4_17·a_1_02·b_1_32 + c_4_172·a_1_03·b_1_3
- a_5_14·a_7_34 + a_6_24·a_1_0·b_1_35 + a_6_242 + a_4_10·a_1_0·b_1_37
+ a_6_24·a_1_02·b_1_34 + a_4_10·a_6_24·a_1_0·b_1_3 + c_8_66·a_1_0·a_3_8 + c_4_172·a_1_02·b_1_32 + c_4_172·a_1_03·b_1_3
- a_6_24·a_1_0·b_1_35 + a_6_242 + a_4_10·a_1_0·b_1_37 + a_4_10·a_6_24·a_1_0·b_1_3
+ c_8_66·a_1_02·b_1_32 + c_4_172·a_1_02·b_1_32
- a_5_15·a_7_31 + b_1_13·a_3_63 + c_8_66·a_1_2·a_3_6 + c_4_17·a_1_2·a_7_31
+ a_4_10·c_4_17·a_1_2·b_1_13
- a_4_10·a_1_2·b_1_12·b_5_26 + a_4_10·a_8_40 + a_4_10·a_6_24·a_1_0·b_1_3
+ a_4_10·c_4_17·a_1_0·b_1_33 + a_4_10·c_4_17·a_1_02·b_1_32 + c_4_172·a_1_03·b_1_3
- b_5_26·a_7_34 + b_1_15·a_7_31 + a_1_2·b_1_16·b_5_26 + a_8_40·b_1_14
+ b_4_16·b_1_1·a_7_31 + b_4_16·b_1_14·b_1_3·a_3_6 + b_4_16·b_1_15·a_3_6 + b_4_16·a_1_0·b_1_37 + b_4_16·a_8_40 + b_4_16·a_6_24·b_1_32 + a_4_10·b_1_33·b_5_26 + a_4_10·b_1_12·b_1_3·b_5_26 + a_4_10·b_1_13·b_1_35 + a_4_10·b_1_14·b_1_34 + a_4_10·b_1_15·b_1_33 + a_4_10·b_1_16·b_1_32 + a_4_10·b_1_17·b_1_3 + a_4_10·b_1_18 + a_4_10·b_4_16·b_1_34 + a_4_10·b_4_16·b_1_1·b_1_33 + a_5_15·a_7_31 + a_8_40·b_1_1·a_3_6 + a_6_24·a_1_0·b_1_35 + b_1_13·a_3_63 + a_4_10·a_6_24·a_1_0·b_1_3 + c_4_17·b_1_3·a_7_34 + c_4_17·b_1_15·a_3_6 + c_4_17·a_1_2·b_1_1·b_1_3·b_5_26 + c_4_17·a_1_2·b_1_12·b_5_26 + b_4_16·c_4_17·b_1_3·a_3_6 + b_4_16·c_4_17·b_1_1·a_3_6 + a_4_10·c_4_17·b_1_34 + a_4_10·c_4_17·b_1_13·b_1_3 + a_4_10·b_4_16·c_4_17 + c_4_17·a_1_2·a_7_31 + c_4_17·a_1_0·a_7_34 + c_4_17·a_1_02·b_1_36 + a_4_10·c_4_17·a_1_0·b_1_33 + c_4_17·a_6_24·a_1_02 + c_4_172·a_1_2·b_1_12·b_1_3 + c_4_172·a_1_0·b_1_33
- b_5_26·a_7_31 + b_5_26·a_7_34 + a_10_67·b_1_32 + a_6_24·b_1_36 + b_4_16·b_1_3·a_7_31
+ b_4_16·b_1_1·a_7_31 + b_4_16·b_1_15·a_3_6 + b_4_16·a_1_0·b_1_37 + b_4_16·a_6_24·b_1_32 + a_4_10·b_1_33·b_5_26 + a_4_10·b_1_38 + a_4_10·b_1_13·b_5_26 + a_4_10·b_1_17·b_1_3 + a_5_15·a_7_31 + b_1_16·a_3_62 + a_8_40·b_1_1·a_3_6 + a_6_24·a_1_02·b_1_34 + c_8_66·b_1_1·a_3_6 + c_8_66·a_1_2·b_1_12·b_1_3 + c_8_66·a_1_2·b_1_13 + c_8_66·a_1_0·b_1_33 + c_4_17·b_1_3·a_7_31 + c_4_17·b_1_3·a_7_34 + c_4_17·a_1_2·b_1_1·b_1_3·b_5_26 + c_4_17·a_6_24·b_1_32 + b_4_16·c_4_17·a_1_0·b_1_33 + a_4_10·c_4_17·b_1_34 + a_4_10·c_4_17·b_1_14 + c_4_17·a_1_2·a_7_31 + c_4_17·a_1_2·b_1_14·a_3_6 + c_4_17·a_1_0·a_7_34 + c_4_17·a_1_02·b_1_36 + c_4_17·a_6_24·a_1_0·b_1_3 + a_4_10·c_4_17·a_1_2·b_1_13 + a_4_10·c_4_17·a_1_0·b_1_33 + c_4_17·a_6_24·a_1_02 + a_4_10·c_4_17·a_1_02·b_1_32 + c_4_172·a_1_0·b_1_33 + c_4_172·a_1_03·b_1_3
- b_5_26·a_7_31 + b_1_15·a_7_31 + a_1_2·b_1_16·b_5_26 + a_10_67·b_1_12
+ a_6_24·b_1_3·b_5_26 + b_4_16·b_1_14·b_1_3·a_3_6 + b_4_16·b_1_15·a_3_6 + b_4_16·a_1_0·b_1_37 + a_4_10·b_1_38 + a_4_10·b_1_12·b_1_3·b_5_26 + a_4_10·b_1_13·b_1_35 + a_4_10·b_1_14·b_1_34 + a_4_10·b_1_15·b_1_33 + a_4_10·b_1_18 + a_4_10·b_4_16·b_1_12·b_1_32 + a_4_10·b_4_16·b_1_13·b_1_3 + a_4_10·b_4_16·b_1_14 + a_4_10·b_4_162 + b_1_16·a_3_62 + a_8_40·b_1_1·a_3_6 + a_8_40·a_1_2·b_1_13 + a_4_10·a_1_2·b_1_12·b_5_26 + a_4_10·a_1_0·b_1_37 + a_6_24·a_1_02·b_1_34 + a_4_10·a_6_24·a_1_0·b_1_3 + c_8_66·b_1_1·a_3_6 + c_8_66·a_1_2·b_1_12·b_1_3 + c_4_17·b_1_3·a_7_31 + c_4_17·b_1_15·a_3_6 + c_4_17·a_1_2·b_1_1·b_1_3·b_5_26 + c_4_17·a_1_2·b_1_17 + c_4_17·a_6_24·b_1_32 + b_4_16·c_4_17·b_1_1·a_3_6 + a_4_10·c_4_17·b_1_34 + a_4_10·c_4_17·b_1_1·b_1_33 + a_4_10·c_4_17·b_1_12·b_1_32 + a_4_10·c_4_17·b_1_13·b_1_3 + a_4_10·c_4_17·b_1_14 + c_4_17·b_1_12·a_3_62 + c_4_17·a_1_02·b_1_36 + c_4_172·a_1_2·b_1_13 + c_4_172·a_1_03·b_1_3
- a_6_24·a_7_31 + a_6_242·b_1_3 + a_3_62·a_7_31 + a_6_242·a_1_0 + a_4_10·c_4_17·a_5_15
+ c_4_17·a_3_63 + c_4_17·a_6_24·a_1_02·b_1_3 + a_4_10·c_4_172·a_1_2
- a_6_24·a_7_34 + a_4_10·a_6_24·b_1_33 + a_6_242·a_1_0 + a_4_10·a_6_24·a_1_0·b_1_32
+ c_4_17·a_1_02·b_1_37 + c_4_17·a_6_24·a_1_0·b_1_32 + a_4_10·c_8_66·a_1_0 + a_4_10·c_4_17·a_5_14 + a_4_10·c_4_17·a_1_0·b_1_34 + c_4_17·a_3_63 + c_4_172·a_1_02·b_1_33 + a_4_10·c_4_172·a_1_2
- a_8_40·b_5_26 + a_6_24·b_1_32·b_5_26 + a_6_24·b_1_37 + b_4_16·b_1_12·a_7_31
+ b_4_16·b_1_16·a_3_6 + b_4_16·a_8_40·b_1_1 + a_4_10·b_1_1·b_1_33·b_5_26 + a_4_10·b_1_12·b_1_32·b_5_26 + a_4_10·b_1_13·b_1_3·b_5_26 + a_4_10·b_1_14·b_1_35 + a_4_10·b_1_17·b_1_32 + a_4_10·b_1_18·b_1_3 + a_4_10·b_4_16·b_5_26 + a_4_10·b_4_16·b_1_12·b_1_33 + a_4_10·b_4_162·b_1_1 + a_1_02·b_1_311 + a_8_40·b_1_12·a_3_6 + a_6_242·b_1_3 + a_3_62·a_7_31 + b_1_14·a_3_63 + c_8_66·b_1_1·b_1_3·a_3_6 + c_8_66·b_1_12·a_3_6 + c_4_17·a_1_2·b_1_13·b_5_26 + c_4_17·a_8_40·b_1_3 + c_4_17·a_8_40·b_1_1 + c_4_17·a_6_24·b_1_33 + b_4_16·c_8_66·a_1_2 + b_4_16·c_4_17·a_5_15 + b_4_16·c_4_17·b_1_12·a_3_6 + b_4_16·c_4_17·a_1_0·b_1_34 + a_4_10·c_8_66·b_1_1 + a_4_10·c_4_17·b_1_35 + a_4_10·c_4_17·b_1_1·b_1_34 + a_4_10·c_4_17·b_1_12·b_1_33 + a_4_10·c_4_17·b_1_13·b_1_32 + a_4_10·c_4_17·b_1_14·b_1_3 + a_4_10·c_4_17·b_1_15 + a_4_10·b_4_16·c_4_17·b_1_3 + a_4_10·b_4_16·c_4_17·b_1_1 + c_8_66·a_1_2·b_1_1·a_3_6 + c_8_66·a_1_02·b_1_33 + c_4_17·a_1_2·b_1_15·a_3_6 + c_4_17·a_8_40·a_1_2 + c_4_17·a_6_24·a_1_0·b_1_32 + a_4_10·c_4_17·a_5_15 + c_8_66·a_1_02·a_3_8 + c_4_17·a_3_63 + c_4_17·a_1_02·a_7_34 + c_4_17·a_6_24·a_1_02·b_1_3 + c_4_172·b_1_1·b_1_3·a_3_6 + c_4_172·b_1_12·a_3_6 + c_4_172·a_1_2·b_1_14 + a_4_10·c_4_172·b_1_1 + c_4_172·a_1_02·b_1_33 + a_4_10·c_4_172·a_1_2
- a_8_40·a_5_15 + b_1_14·a_3_63 + c_8_66·a_1_2·b_1_1·a_3_6 + c_4_17·a_3_63
+ c_4_172·a_1_2·b_1_1·a_3_6
- a_8_40·a_5_14 + a_6_242·a_1_0 + a_4_10·a_6_24·a_1_0·b_1_32
+ c_4_17·a_1_02·b_1_37 + c_4_17·a_8_40·a_1_2 + c_4_17·a_6_24·a_1_0·b_1_32 + a_4_10·c_4_17·a_1_0·b_1_34 + c_4_17·a_1_02·a_7_34 + c_4_17·a_6_24·a_1_02·b_1_3 + c_4_172·a_1_02·b_1_33
- a_10_67·a_3_8 + a_6_24·a_7_34 + a_4_10·a_1_0·b_1_38 + a_3_62·a_7_31 + a_6_242·a_1_0
+ a_4_10·a_6_24·a_1_0·b_1_32 + c_8_66·a_1_02·b_1_33 + c_4_17·a_1_02·b_1_37 + c_4_17·a_6_24·a_1_0·b_1_32 + a_4_10·c_4_17·a_1_0·b_1_34 + c_4_172·a_1_02·b_1_33
- a_10_67·a_3_6 + a_8_40·b_1_12·a_3_6 + c_8_66·a_1_2·b_1_1·a_3_6
+ c_4_17·a_1_2·b_1_15·a_3_6 + c_4_17·a_8_40·a_1_2 + a_4_10·c_4_17·a_5_15 + c_4_17·a_3_63 + a_4_10·c_4_172·a_1_2
- a_7_312 + a_6_242·b_1_32 + c_8_66·a_3_62
- a_7_342 + c_4_17·a_6_24·a_1_0·b_1_33 + a_4_10·c_4_17·a_1_0·b_1_35
+ a_4_10·c_4_17·a_1_0·a_5_14 + c_4_17·c_8_66·a_1_02 + c_4_172·a_1_02·b_1_34 + a_4_10·c_4_172·a_1_02
- a_7_34·a_7_31 + a_4_10·a_6_24·b_1_34 + a_6_242·a_1_0·b_1_3
+ c_4_17·a_1_02·b_1_38 + c_4_17·a_8_40·a_1_2·b_1_1 + c_4_17·a_6_24·a_1_0·b_1_33 + a_4_10·c_8_66·a_1_0·b_1_3 + a_4_10·c_4_17·a_1_2·b_5_26 + a_4_10·c_4_17·a_6_24 + a_4_10·c_4_17·a_1_0·a_5_14 + c_4_172·a_1_2·b_1_12·a_3_6 + a_4_10·c_4_172·a_1_0·b_1_3
- a_6_24·a_8_40 + c_4_17·a_6_24·a_1_0·b_1_33 + a_4_10·c_4_17·a_1_2·b_5_26
+ c_4_17·b_1_1·a_3_63 + a_4_10·c_4_17·a_1_0·a_5_14 + a_4_10·c_4_172·a_1_2·b_1_1 + a_4_10·c_4_172·a_1_02
- a_4_10·a_10_67 + a_8_40·a_3_62 + c_4_17·a_1_02·b_1_38
+ c_4_17·a_6_24·a_1_0·b_1_33 + a_4_10·c_8_66·a_1_2·b_1_1 + a_4_10·c_8_66·a_1_0·b_1_3 + a_4_10·c_4_17·a_1_2·b_5_26 + a_4_10·c_4_17·a_1_0·b_1_35 + a_4_10·c_4_17·a_6_24 + a_4_10·c_4_172·a_1_2·b_1_1 + a_4_10·c_4_172·a_1_0·b_1_3
- b_4_16·b_1_16·b_1_3·a_3_6 + b_4_16·a_10_67 + b_4_16·a_8_40·b_1_32
+ b_4_16·a_8_40·b_1_12 + a_4_10·b_1_1·b_1_34·b_5_26 + a_4_10·b_1_12·b_1_33·b_5_26 + a_4_10·b_1_13·b_1_32·b_5_26 + a_4_10·b_1_14·b_1_3·b_5_26 + a_4_10·b_1_15·b_1_35 + a_4_10·b_1_19·b_1_3 + a_4_10·b_4_16·b_1_1·b_5_26 + a_4_10·b_4_16·b_1_12·b_1_34 + a_4_10·b_4_16·b_1_13·b_1_33 + a_4_10·b_4_16·b_1_14·b_1_32 + a_4_10·b_4_16·b_1_15·b_1_3 + a_4_10·b_4_16·b_1_16 + a_4_10·b_4_162·b_1_32 + a_4_10·b_4_162·b_1_1·b_1_3 + a_7_312 + a_7_34·a_7_31 + a_6_242·b_1_32 + a_4_10·a_1_0·b_1_39 + a_4_10·a_6_24·b_1_34 + b_1_15·a_3_63 + c_4_17·b_1_13·a_7_31 + c_4_17·a_1_2·b_1_14·b_5_26 + c_4_17·a_1_0·b_1_39 + c_4_17·a_8_40·b_1_32 + c_4_17·a_8_40·b_1_12 + c_4_17·a_6_24·b_1_34 + b_4_16·c_8_66·a_1_0·b_1_3 + b_4_16·c_4_17·b_1_12·b_1_3·a_3_6 + b_4_16·c_4_17·b_1_13·a_3_6 + b_4_16·c_4_17·a_1_0·b_1_35 + b_4_16·c_4_17·a_6_24 + a_4_10·c_4_17·b_1_12·b_1_34 + a_4_10·c_4_17·b_1_13·b_1_33 + a_4_10·c_4_17·b_1_14·b_1_32 + a_4_10·c_4_17·b_1_16 + a_4_10·b_4_16·c_4_17·b_1_32 + a_4_10·b_4_16·c_4_17·b_1_1·b_1_3 + a_4_10·b_4_16·c_4_17·b_1_12 + c_4_17·a_3_6·a_7_31 + c_4_17·b_1_14·a_3_62 + c_4_17·a_1_02·b_1_38 + c_4_17·a_6_24·a_1_0·b_1_33 + a_4_10·c_8_66·a_1_2·b_1_1 + a_4_10·c_8_66·a_1_0·b_1_3 + a_4_10·c_4_17·a_6_24 + c_4_17·b_1_1·a_3_63 + c_4_17·a_6_24·a_1_02·b_1_32 + c_4_172·b_1_12·b_1_3·a_3_6 + c_4_172·b_1_13·a_3_6 + a_4_10·c_4_172·b_1_32 + a_4_10·c_4_172·b_1_1·b_1_3 + a_4_10·c_4_172·b_1_12 + c_4_17·c_8_66·a_1_22 + c_4_172·a_1_2·a_5_15 + c_4_172·a_1_02·b_1_34 + a_4_10·c_4_172·a_1_2·b_1_1 + a_4_10·c_4_172·a_1_0·b_1_3 + c_4_173·a_1_22
- a_8_40·a_7_34 + c_4_17·a_8_40·a_1_2·b_1_12 + a_4_10·c_4_17·a_1_2·b_1_1·b_5_26
+ a_4_10·c_4_17·a_6_24·b_1_3 + c_4_17·a_6_24·a_1_02·b_1_33 + a_4_10·c_8_66·a_1_02·b_1_3 + a_4_10·c_4_17·a_6_24·a_1_0 + c_4_172·a_1_02·b_1_35 + a_4_10·c_4_172·a_1_2·b_1_12 + a_4_10·c_4_172·a_1_0·b_1_32 + c_4_172·a_1_02·a_5_14 + a_4_10·c_4_172·a_1_02·b_1_3
- a_8_40·a_7_31 + a_8_40·a_7_34 + b_1_16·a_3_63 + a_8_40·b_1_1·a_3_62
+ c_8_66·b_1_1·a_3_62 + c_8_66·a_1_2·b_1_13·a_3_6 + c_4_17·a_8_40·a_3_6 + c_4_17·a_6_24·a_1_0·b_1_34 + a_4_10·c_4_17·a_1_2·b_1_1·b_5_26 + a_4_10·c_4_17·a_6_24·b_1_3 + c_4_17·b_1_12·a_3_63 + c_4_17·a_6_24·a_1_02·b_1_33 + a_4_10·c_8_66·a_1_02·b_1_3 + c_4_172·b_1_1·a_3_62 + c_4_172·a_1_2·b_1_13·a_3_6 + c_4_172·a_1_02·b_1_35 + a_4_10·c_4_172·a_1_2·b_1_12 + a_4_10·c_4_172·a_1_0·b_1_32 + c_4_172·a_1_02·a_5_14 + a_4_10·c_4_172·a_1_02·b_1_3
- b_1_18·a_7_31 + a_1_2·b_1_19·b_5_26 + a_10_67·b_5_26 + a_8_40·b_1_17
+ a_6_24·b_1_34·b_5_26 + a_6_24·b_1_39 + b_4_16·a_1_0·b_1_310 + b_4_16·a_8_40·b_1_13 + b_4_16·a_6_24·b_1_35 + a_4_10·b_1_12·b_1_34·b_5_26 + a_4_10·b_1_13·b_1_33·b_5_26 + a_4_10·b_1_16·b_1_35 + a_4_10·b_1_17·b_1_34 + a_4_10·b_1_18·b_1_33 + a_4_10·b_1_19·b_1_32 + a_4_10·b_1_110·b_1_3 + a_4_10·b_1_111 + a_4_10·b_4_16·b_1_32·b_5_26 + a_4_10·b_4_16·b_1_37 + a_4_10·b_4_16·b_1_1·b_1_3·b_5_26 + a_4_10·b_4_16·b_1_1·b_1_36 + a_4_10·b_4_16·b_1_12·b_1_35 + a_4_10·b_4_16·b_1_13·b_1_34 + a_4_10·b_4_16·b_1_14·b_1_33 + a_4_10·b_4_162·b_1_13 + a_6_242·b_1_33 + a_4_10·a_1_0·b_1_310 + a_4_10·a_6_24·b_1_35 + a_8_40·b_1_1·a_3_62 + a_6_242·a_1_0·b_1_32 + a_4_10·a_6_24·a_1_0·b_1_34 + c_8_66·b_1_13·b_1_3·a_3_6 + c_8_66·b_1_14·a_3_6 + c_8_66·a_1_2·b_1_1·b_5_26 + c_8_66·a_1_0·b_1_36 + c_4_17·b_1_14·a_7_31 + c_4_17·b_1_18·a_3_6 + c_4_17·a_1_2·b_1_15·b_5_26 + c_4_17·a_1_0·b_1_310 + c_4_17·a_10_67·b_1_3 + c_4_17·a_6_24·b_5_26 + c_4_17·a_6_24·b_1_35 + b_4_16·c_8_66·a_3_6 + b_4_16·c_4_17·a_1_0·b_1_36 + a_4_10·c_8_66·b_1_1·b_1_32 + a_4_10·c_8_66·b_1_12·b_1_3 + a_4_10·c_4_17·b_1_37 + a_4_10·c_4_17·b_1_1·b_1_36 + a_4_10·c_4_17·b_1_13·b_1_34 + a_4_10·c_4_17·b_1_15·b_1_32 + a_4_10·c_4_17·b_1_16·b_1_3 + a_4_10·b_4_16·c_4_17·b_1_33 + c_8_66·a_1_2·b_1_3·a_5_15 + c_8_66·a_1_02·b_1_35 + c_4_17·a_1_2·b_1_17·a_3_6 + c_4_17·a_1_02·b_1_39 + c_4_17·a_6_24·a_1_0·b_1_34 + a_4_10·c_8_66·a_1_2·b_1_12 + a_4_10·c_4_17·a_6_24·b_1_3 + c_4_17·b_1_12·a_3_63 + c_4_17·c_8_66·a_1_2·b_1_12 + c_4_172·a_1_2·b_1_3·b_5_26 + c_4_172·a_1_2·b_1_1·b_5_26 + c_4_172·a_1_2·b_1_16 + c_4_172·a_1_0·b_1_36 + c_4_172·a_6_24·b_1_3 + c_4_17·c_8_66·a_1_02·b_1_3 + c_4_172·a_1_2·b_1_3·a_5_15 + c_4_172·a_1_2·b_1_13·a_3_6 + c_4_172·a_1_02·b_1_35 + c_4_17·c_8_66·a_1_03 + c_4_173·a_1_2·b_1_1·b_1_3 + c_4_173·a_1_22·b_1_3 + c_4_173·a_1_02·b_1_3 + c_4_173·a_1_03
- a_10_67·a_5_15 + b_1_16·a_3_63 + a_8_40·b_1_1·a_3_62 + c_8_66·a_1_2·b_1_13·a_3_6
+ a_4_10·c_4_17·a_1_2·b_1_1·b_5_26 + c_4_17·b_1_12·a_3_63 + a_4_10·c_8_66·a_1_02·b_1_3 + c_4_17·c_8_66·a_1_22·b_1_3 + c_4_172·a_1_2·b_1_3·a_5_15 + c_4_172·a_1_2·b_1_13·a_3_6 + a_4_10·c_4_172·a_1_2·b_1_12 + c_4_173·a_1_22·b_1_3
- a_10_67·a_5_14 + a_8_40·a_7_34 + a_4_10·a_1_0·b_1_310 + a_4_10·a_6_24·b_1_35
+ a_6_242·a_1_0·b_1_32 + c_8_66·a_1_02·b_1_35 + a_6_24·c_8_66·a_1_0 + c_4_17·a_1_02·b_1_39 + a_4_10·c_4_17·a_1_2·b_1_1·b_5_26 + a_4_10·c_4_17·a_1_0·b_1_36 + a_4_10·c_4_17·a_6_24·b_1_3 + c_4_17·b_1_12·a_3_63 + c_4_17·a_6_24·a_1_02·b_1_33 + a_4_10·c_8_66·a_1_02·b_1_3 + c_4_172·a_1_2·b_1_3·a_5_15 + c_4_172·a_1_02·b_1_35 + a_4_10·c_4_172·a_1_0·b_1_32 + c_4_172·a_1_02·a_5_14 + c_4_173·a_1_22·b_1_3
- a_8_402 + c_8_66·b_1_12·a_3_62 + c_4_172·b_1_12·a_3_62
+ c_4_172·a_1_02·b_1_36
- a_6_24·a_10_67 + a_6_242·a_1_0·b_1_33 + a_4_10·a_6_242
+ a_6_24·c_8_66·a_1_0·b_1_3 + c_4_17·a_1_02·b_1_310 + a_4_10·c_8_66·a_1_2·b_1_13 + a_4_10·c_8_66·a_1_0·b_1_33 + a_4_10·c_4_17·a_1_0·b_1_37 + c_4_17·a_6_24·a_1_02·b_1_34 + a_4_10·c_8_66·a_1_02·b_1_32 + a_4_10·c_4_17·a_6_24·a_1_0·b_1_3 + c_4_17·c_8_66·a_1_02·b_1_32 + c_4_172·a_6_24·a_1_0·b_1_3 + a_4_10·c_4_172·a_1_0·b_1_33 + c_4_173·a_1_02·b_1_32
- a_10_67·a_7_34 + c_4_17·a_8_40·a_1_2·b_1_14 + a_4_10·c_8_66·a_5_14
+ a_4_10·c_8_66·a_1_0·b_1_34 + a_4_10·c_4_17·a_6_24·b_1_33 + c_4_17·a_3_62·a_7_31 + c_4_17·b_1_14·a_3_63 + c_4_17·a_6_242·a_1_0 + a_4_10·c_4_17·a_6_24·a_1_0·b_1_32 + c_4_17·c_8_66·a_1_02·b_1_33 + c_4_172·a_1_02·b_1_37 + a_4_10·c_4_17·c_8_66·a_1_2 + a_4_10·c_4_17·c_8_66·a_1_0 + a_4_10·c_4_172·a_1_0·b_1_34
- a_10_67·a_7_31 + b_1_18·a_3_63 + a_6_242·a_1_0·b_1_34 + c_8_66·b_1_13·a_3_62
+ c_8_66·a_1_2·b_1_15·a_3_6 + a_8_40·c_8_66·a_1_2 + a_6_24·c_8_66·a_1_0·b_1_32 + c_4_17·a_1_02·b_1_311 + c_4_17·a_8_40·b_1_12·a_3_6 + a_4_10·c_8_66·a_1_0·b_1_34 + a_4_10·c_4_17·a_1_0·b_1_38 + c_4_17·c_8_66·a_1_02·b_1_33 + c_4_172·b_1_13·a_3_62 + c_4_172·a_8_40·a_1_2 + c_4_172·a_6_24·a_1_0·b_1_32 + a_4_10·c_4_17·c_8_66·a_1_2 + a_4_10·c_4_172·a_1_0·b_1_34 + c_4_172·a_6_24·a_1_02·b_1_3 + c_4_173·a_1_2·b_1_1·a_3_6 + c_4_173·a_1_02·b_1_33
- a_8_40·a_10_67 + a_4_10·a_6_242·b_1_32 + c_8_66·b_1_14·a_3_62
+ a_8_40·c_8_66·a_1_2·b_1_1 + c_4_17·a_8_40·a_1_2·b_1_15 + a_4_10·c_4_17·a_1_0·b_1_39 + a_4_10·c_4_17·a_6_24·b_1_34 + a_6_24·c_8_66·a_1_02·b_1_32 + c_4_17·a_8_40·a_3_62 + c_4_17·a_6_242·a_1_0·b_1_3 + c_4_17·c_8_66·a_1_2·b_1_12·a_3_6 + c_4_17·c_8_66·a_1_02·b_1_34 + c_4_172·b_1_14·a_3_62 + c_4_172·a_1_02·b_1_38 + c_4_172·a_6_24·a_1_0·b_1_33 + a_4_10·c_4_17·c_8_66·a_1_2·b_1_1 + a_4_10·c_4_172·a_1_2·b_5_26 + a_4_10·c_4_17·c_8_66·a_1_02 + a_4_10·c_4_172·a_1_0·a_5_14 + c_4_173·a_1_2·b_1_12·a_3_6 + c_4_173·a_1_02·b_1_34
- a_10_672 + c_8_66·b_1_16·a_3_62 + c_4_17·a_1_02·b_1_314
+ c_4_17·a_6_242·b_1_34 + c_8_662·a_1_02·b_1_32 + c_4_172·b_1_16·a_3_62 + c_4_172·a_1_02·b_1_310 + c_4_172·a_6_242 + c_4_174·a_1_02·b_1_32
Data used for Benson′s test
- Benson′s completion test succeeded in degree 20.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_17, a Duflot regular element of degree 4
- c_8_66, a Duflot regular element of degree 8
- b_1_32 + b_1_1·b_1_3 + b_1_12, an element of degree 2
- b_1_32, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 8, 10, 12].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_3_8 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_4_10 → 0, an element of degree 4
- b_4_16 → 0, an element of degree 4
- c_4_17 → c_1_04, an element of degree 4
- a_5_14 → 0, an element of degree 5
- a_5_15 → 0, an element of degree 5
- b_5_26 → 0, an element of degree 5
- a_6_24 → 0, an element of degree 6
- a_7_34 → 0, an element of degree 7
- a_7_31 → 0, an element of degree 7
- a_8_40 → 0, an element of degree 8
- c_8_66 → c_1_18 + c_1_08, an element of degree 8
- a_10_67 → 0, an element of degree 10
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- a_3_8 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_4_10 → 0, an element of degree 4
- b_4_16 → c_1_2·c_1_33 + c_1_23·c_1_3 + c_1_0·c_1_2·c_1_32 + c_1_02·c_1_32, an element of degree 4
- c_4_17 → c_1_02·c_1_22 + c_1_04, an element of degree 4
- a_5_14 → 0, an element of degree 5
- a_5_15 → 0, an element of degree 5
- b_5_26 → c_1_35 + c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_24·c_1_3 + c_1_12·c_1_2·c_1_32
+ c_1_14·c_1_2 + c_1_0·c_1_22·c_1_32 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_23 + c_1_04·c_1_3 + c_1_04·c_1_2, an element of degree 5
- a_6_24 → 0, an element of degree 6
- a_7_34 → 0, an element of degree 7
- a_7_31 → 0, an element of degree 7
- a_8_40 → 0, an element of degree 8
- c_8_66 → c_1_38 + c_1_2·c_1_37 + c_1_27·c_1_3 + c_1_12·c_1_2·c_1_35 + c_1_14·c_1_34
+ c_1_14·c_1_2·c_1_33 + c_1_18 + c_1_0·c_1_2·c_1_36 + c_1_0·c_1_24·c_1_33 + c_1_0·c_1_25·c_1_32 + c_1_02·c_1_36 + c_1_02·c_1_23·c_1_33 + c_1_02·c_1_25·c_1_3 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_08, an element of degree 8
- a_10_67 → 0, an element of degree 10
|