Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1852 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t7 + 2·t6 + 3·t5 + t3 + 2·t2 + 2·t + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_3, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_3_10, an element of degree 3
- c_4_12, a Duflot regular element of degree 4
- a_5_12, a nilpotent element of degree 5
- a_5_10, a nilpotent element of degree 5
- b_5_16, an element of degree 5
- b_5_18, an element of degree 5
- b_7_33, an element of degree 7
- c_8_37, a Duflot regular element of degree 8
Ring relations
There are 38 minimal relations of maximal degree 14:
- a_1_0·b_1_1 + a_1_32
- a_1_0·b_1_2
- a_1_32·b_1_1 + a_1_0·a_1_32
- b_1_12·b_1_2 + a_1_3·b_1_1·b_1_2 + a_1_3·b_1_12 + a_1_33 + a_1_03
- a_1_0·b_3_10
- a_1_02·a_1_33
- b_3_102 + b_1_16 + a_1_3·b_1_1·b_1_2·b_3_10 + a_1_3·b_1_12·b_3_10 + a_1_3·b_1_15
+ c_4_12·b_1_22
- b_1_2·a_5_12 + a_1_3·b_1_22·b_3_10
- a_1_3·a_5_12 + a_1_0·a_5_10
- b_1_1·a_5_12 + a_1_3·b_1_1·b_1_2·b_3_10 + a_1_3·b_1_15 + a_1_3·a_5_10
- b_1_1·a_5_12 + a_1_3·b_1_1·b_1_2·b_3_10 + a_1_3·b_1_12·b_3_10 + a_1_0·b_5_16
+ c_4_12·a_1_02
- b_1_13·b_3_10 + b_1_16 + b_1_1·a_5_10 + a_1_3·b_5_16 + c_4_12·a_1_3·b_1_2
+ c_4_12·a_1_0·a_1_3
- a_1_0·b_5_18 + a_1_3·a_5_12 + a_1_0·a_5_12 + c_4_12·a_1_32 + c_4_12·a_1_02
- b_1_2·a_5_10 + b_1_1·a_5_12 + a_1_3·b_5_18 + a_1_3·b_1_15 + a_1_3·a_5_12
+ c_4_12·a_1_3·b_1_1 + c_4_12·a_1_0·a_1_3
- b_3_102 + b_1_2·b_5_16 + b_1_1·b_5_18 + b_1_13·b_3_10 + b_1_1·a_5_10 + b_1_1·a_5_12
+ a_1_3·b_1_22·b_3_10 + a_1_3·b_1_1·b_1_2·b_3_10 + a_1_3·b_1_12·b_3_10 + c_4_12·b_1_12 + c_4_12·a_1_32
- a_1_32·b_5_16 + a_1_0·a_1_3·a_5_10 + c_4_12·a_1_0·a_1_32
- b_1_12·b_5_18 + a_1_3·b_1_1·b_5_18 + a_1_3·b_1_1·a_5_10 + a_1_0·a_1_3·a_5_10
+ a_1_02·a_5_12 + c_4_12·b_1_13 + c_4_12·a_1_3·b_1_12 + c_4_12·a_1_33 + c_4_12·a_1_0·a_1_32
- b_3_10·a_5_12 + a_1_3·b_1_17 + c_4_12·a_1_3·b_1_23
- b_3_10·b_5_18 + b_1_2·b_7_33 + b_1_1·b_1_24·b_3_10 + b_3_10·a_5_10 + b_1_13·a_5_10
+ a_1_3·b_1_1·b_1_2·b_5_18 + a_1_3·b_1_12·a_5_10 + a_1_0·a_1_32·a_5_10 + c_4_12·b_1_1·b_3_10 + c_4_12·a_1_3·b_1_1·b_1_22 + c_4_12·a_1_3·b_1_13 + c_4_12·a_1_0·a_1_33 + c_4_12·a_1_02·a_1_32 + c_4_12·a_1_03·a_1_3
- a_1_0·b_7_33
- b_3_10·a_5_10 + b_1_13·a_5_10 + a_1_3·b_7_33 + a_1_3·b_1_1·b_1_23·b_3_10
+ a_1_0·a_1_32·a_5_10 + a_1_03·a_5_10 + c_4_12·a_1_3·b_1_1·b_1_22 + c_4_12·a_1_3·b_1_13 + c_4_12·a_1_0·a_1_33 + c_4_12·a_1_03·a_1_3
- b_3_10·b_5_16 + b_1_1·b_7_33 + b_1_13·b_5_16 + b_1_13·a_5_10
+ a_1_3·b_1_1·b_1_23·b_3_10 + a_1_3·b_1_17 + a_1_0·a_1_32·a_5_10 + a_1_03·a_5_10 + c_4_12·b_1_2·b_3_10 + c_4_12·b_1_14 + c_4_12·a_1_3·b_1_23 + c_4_12·a_1_3·b_1_1·b_1_22 + c_4_12·a_1_3·b_1_13 + c_4_12·a_1_0·a_1_33 + c_4_12·a_1_02·a_1_32 + c_4_12·a_1_03·a_1_3
- a_5_12·b_5_18 + a_1_3·b_1_22·b_7_33 + a_1_3·b_1_1·b_1_25·b_3_10 + a_5_12·a_5_10
+ a_5_122 + a_1_3·b_1_14·a_5_10 + c_4_12·a_1_3·b_1_1·b_1_2·b_3_10 + c_4_12·a_1_3·b_1_15 + c_4_12·a_1_3·a_5_10 + c_4_12·a_1_0·a_5_12
- a_5_12·b_5_16 + a_1_3·b_1_1·b_1_2·b_7_33 + a_1_3·b_1_12·b_7_33 + a_1_3·b_1_14·b_5_16
+ a_5_102 + c_4_12·a_1_3·b_1_22·b_3_10 + c_4_12·a_1_3·b_1_15 + c_4_12·a_1_0·a_5_12
- b_3_10·b_7_33 + b_1_13·b_7_33 + c_4_12·b_1_2·b_5_18 + c_4_12·b_1_1·b_1_25
+ c_4_12·b_1_1·a_5_10 + c_4_12·a_1_3·b_5_18 + c_4_12·a_1_3·b_5_16 + c_4_12·a_1_0·b_5_16 + c_4_12·a_1_0·a_5_10 + c_4_122·b_1_1·b_1_2 + c_4_122·a_1_3·b_1_2 + c_4_122·a_1_3·b_1_1 + c_4_122·a_1_02
- b_5_182 + b_1_23·b_7_33 + b_1_27·b_3_10 + b_1_1·b_1_26·b_3_10
+ a_1_3·b_1_1·b_1_23·b_5_18 + a_5_102 + a_5_122 + a_1_3·b_1_14·a_5_10 + c_8_37·b_1_22 + c_4_12·b_1_23·b_3_10 + c_4_12·b_1_1·b_1_22·b_3_10 + c_4_12·b_1_1·b_1_25 + c_4_12·a_1_3·b_1_22·b_3_10 + c_4_12·a_1_3·b_1_25 + c_4_122·b_1_12 + c_4_122·a_1_02
- a_5_10·b_5_18 + a_5_12·b_5_18 + a_1_3·b_1_26·b_3_10 + a_1_3·b_1_1·b_1_2·b_7_33
+ a_5_102 + a_5_122 + a_1_3·b_1_14·a_5_10 + c_8_37·a_1_3·b_1_2 + c_4_12·b_1_1·a_5_10 + c_4_12·a_1_3·b_1_22·b_3_10 + c_4_12·a_1_3·b_1_1·b_1_24 + c_4_12·a_1_3·b_1_15 + c_4_12·a_1_3·a_5_10 + c_4_12·a_1_0·a_5_10 + c_4_12·a_1_0·a_5_12
- b_5_16·b_5_18 + b_3_10·b_7_33 + b_1_1·b_1_22·b_7_33 + b_1_1·b_1_26·b_3_10
+ a_5_10·b_5_16 + a_5_12·b_5_18 + a_5_12·b_5_16 + b_1_15·a_5_10 + a_1_3·b_1_1·b_1_25·b_3_10 + a_1_3·b_1_14·b_5_16 + a_1_3·b_1_19 + a_5_12·a_5_10 + a_5_122 + c_8_37·b_1_1·b_1_2 + c_4_12·b_1_1·b_5_16 + c_4_12·b_1_1·b_1_22·b_3_10 + c_4_12·b_1_1·b_1_25 + c_4_12·b_1_16 + c_4_12·b_1_1·a_5_10 + c_4_12·a_1_3·b_5_16 + c_4_12·a_1_3·b_1_22·b_3_10 + c_4_12·a_1_3·b_1_15 + c_4_12·a_1_0·b_5_16 + c_4_12·a_1_3·a_5_10 + c_4_12·a_1_0·a_5_12 + c_4_122·a_1_3·b_1_2 + c_4_122·a_1_0·a_1_3
- a_5_122 + c_8_37·a_1_02
- a_5_12·a_5_10 + a_1_3·b_1_14·a_5_10 + c_8_37·a_1_0·a_1_3
- a_5_102 + a_1_3·b_1_14·a_5_10 + c_8_37·a_1_32
- b_3_10·b_7_33 + a_5_10·b_5_16 + b_1_15·a_5_10 + a_1_3·b_1_1·b_1_2·b_7_33
+ a_1_3·b_1_1·b_1_25·b_3_10 + a_1_3·b_1_19 + a_1_3·b_1_14·a_5_10 + c_4_12·b_1_2·b_5_18 + c_4_12·b_1_1·b_1_25 + c_4_12·b_1_16 + c_8_37·a_1_3·b_1_1 + c_4_12·b_1_1·a_5_10 + c_4_12·a_1_3·b_5_16 + c_4_12·a_1_0·a_5_10 + c_4_122·b_1_1·b_1_2 + c_4_122·a_1_3·b_1_2 + c_4_122·a_1_0·a_1_3
- b_5_162 + a_5_12·b_5_16 + b_1_15·a_5_10 + a_1_3·b_1_1·b_1_25·b_3_10 + a_5_102
+ a_1_3·b_1_14·a_5_10 + c_8_37·b_1_12 + c_4_12·b_1_1·a_5_10 + c_4_12·a_1_3·b_5_16 + c_4_12·a_1_3·b_1_22·b_3_10 + c_4_12·a_1_3·b_1_1·b_1_2·b_3_10 + c_4_12·a_1_3·b_1_15 + c_4_12·a_1_0·a_5_12 + c_4_122·b_1_22 + c_4_122·a_1_3·b_1_2 + c_4_122·a_1_0·a_1_3 + c_4_122·a_1_02
- b_5_18·b_7_33 + b_1_1·b_1_24·b_7_33 + a_5_12·b_7_33 + a_1_3·b_1_1·b_1_23·b_7_33
+ a_1_3·b_1_1·b_1_27·b_3_10 + a_1_3·b_1_1·a_5_10·b_5_16 + a_1_3·b_1_16·a_5_10 + c_8_37·b_1_2·b_3_10 + c_4_12·b_1_23·b_5_18 + c_4_12·b_1_28 + c_4_12·b_1_1·b_7_33 + c_4_12·b_1_1·b_1_24·b_3_10 + c_8_37·a_1_3·b_3_10 + c_8_37·a_1_3·b_1_1·b_1_22 + c_4_12·a_1_3·b_1_22·b_5_18 + c_4_12·a_1_3·b_1_24·b_3_10 + c_4_12·a_1_3·b_1_27 + c_4_12·a_1_3·b_1_1·b_1_23·b_3_10 + c_4_12·a_1_3·b_1_1·b_1_26 + c_4_12·a_1_3·b_1_17 + c_8_37·a_1_03·a_1_3 + c_4_12·a_1_03·a_5_10 + c_4_122·b_1_24
- a_5_12·b_7_33 + a_1_3·b_1_1·a_5_10·b_5_16 + a_1_3·b_1_16·a_5_10
+ c_4_12·a_1_3·b_1_22·b_5_18 + c_4_12·a_1_3·b_1_1·b_1_26 + c_4_12·a_1_3·b_1_17 + c_4_12·a_1_3·b_1_12·a_5_10 + c_8_37·a_1_02·a_1_32 + c_4_122·a_1_3·b_1_1·b_1_22
- b_5_18·b_7_33 + b_1_1·b_1_24·b_7_33 + a_5_10·b_7_33 + a_1_3·b_1_1·b_1_27·b_3_10
+ a_1_3·b_1_1·a_5_10·b_5_16 + c_8_37·b_1_2·b_3_10 + c_4_12·b_1_23·b_5_18 + c_4_12·b_1_28 + c_4_12·b_1_1·b_7_33 + c_4_12·b_1_1·b_1_24·b_3_10 + c_8_37·a_1_3·b_1_1·b_1_22 + c_8_37·a_1_3·b_1_13 + c_4_12·b_1_13·a_5_10 + c_4_12·a_1_3·b_1_22·b_5_18 + c_4_12·a_1_3·b_1_24·b_3_10 + c_4_12·a_1_3·b_1_1·b_1_2·b_5_18 + c_4_12·a_1_3·b_1_12·a_5_10 + c_8_37·a_1_0·a_1_33 + c_4_12·a_1_0·a_1_32·a_5_10 + c_4_12·a_1_02·a_1_3·a_5_10 + c_4_122·b_1_24 + c_4_122·a_1_3·b_1_23 + c_4_122·a_1_3·b_1_1·b_1_22 + c_4_122·a_1_03·a_1_3
- b_5_18·b_7_33 + b_5_16·b_7_33 + b_1_1·b_1_24·b_7_33 + a_5_12·b_7_33
+ b_1_12·a_5_10·b_5_16 + a_1_3·b_1_1·b_1_27·b_3_10 + a_1_3·b_1_16·b_5_16 + a_1_3·b_1_1·a_5_10·b_5_16 + c_8_37·b_1_2·b_3_10 + c_8_37·b_1_1·b_3_10 + c_8_37·b_1_14 + c_4_12·b_1_2·b_7_33 + c_4_12·b_1_23·b_5_18 + c_4_12·b_1_28 + c_4_12·b_1_1·b_7_33 + c_4_12·b_1_1·b_1_22·b_5_18 + c_4_12·b_1_1·b_1_24·b_3_10 + c_4_12·b_1_1·b_1_27 + c_4_12·b_1_13·b_5_16 + c_8_37·a_1_3·b_3_10 + c_8_37·a_1_3·b_1_1·b_1_22 + c_4_12·a_1_3·b_1_24·b_3_10 + c_4_12·a_1_3·b_1_27 + c_4_12·a_1_3·b_1_1·b_1_23·b_3_10 + c_4_12·a_1_3·b_1_17 + c_4_12·a_1_3·b_1_12·a_5_10 + c_8_37·a_1_0·a_1_33 + c_4_12·a_1_0·a_1_32·a_5_10 + c_4_122·b_1_24 + c_4_122·b_1_1·b_1_23 + c_4_122·a_1_3·b_1_13 + c_4_122·a_1_0·a_1_33 + c_4_122·a_1_03·a_1_3
- b_7_332 + a_1_3·b_1_18·a_5_10 + c_4_12·b_1_23·b_7_33 + c_4_12·b_1_27·b_3_10
+ c_4_12·b_1_1·b_1_26·b_3_10 + c_8_37·a_1_3·b_1_1·b_1_2·b_3_10 + c_8_37·a_1_0·b_5_16 + c_8_37·a_1_3·a_5_10 + c_4_12·c_8_37·b_1_22 + c_4_122·b_1_23·b_3_10 + c_4_122·b_1_1·b_1_22·b_3_10 + c_4_122·b_1_1·b_1_25 + c_4_122·b_1_16 + c_4_122·a_1_3·b_1_22·b_3_10 + c_4_122·a_1_3·b_1_25 + c_4_122·a_1_3·b_1_1·b_1_24 + c_4_12·c_8_37·a_1_02
Data used for Benson′s test
- Benson′s completion test succeeded in degree 14.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_12, a Duflot regular element of degree 4
- c_8_37, a Duflot regular element of degree 8
- b_1_22 + b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_3 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_3_10 → 0, an element of degree 3
- c_4_12 → c_1_04, an element of degree 4
- a_5_12 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- b_5_16 → 0, an element of degree 5
- b_5_18 → 0, an element of degree 5
- b_7_33 → 0, an element of degree 7
- c_8_37 → c_1_18 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_3 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_3_10 → c_1_02·c_1_2, an element of degree 3
- c_4_12 → c_1_04, an element of degree 4
- a_5_12 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- b_5_16 → c_1_04·c_1_2, an element of degree 5
- b_5_18 → c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_04·c_1_2, an element of degree 5
- b_7_33 → c_1_02·c_1_12·c_1_23 + c_1_02·c_1_14·c_1_2 + c_1_06·c_1_2, an element of degree 7
- c_8_37 → c_1_14·c_1_24 + c_1_18 + c_1_02·c_1_26 + c_1_02·c_1_12·c_1_24
+ c_1_02·c_1_14·c_1_22 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_3 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_3_10 → c_1_23, an element of degree 3
- c_4_12 → c_1_02·c_1_22 + c_1_04, an element of degree 4
- a_5_12 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- b_5_16 → c_1_25 + c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- b_5_18 → c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- b_7_33 → c_1_02·c_1_25 + c_1_04·c_1_23, an element of degree 7
- c_8_37 → c_1_28 + c_1_14·c_1_24 + c_1_18 + c_1_04·c_1_24 + c_1_08, an element of degree 8
|