Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 188 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 5.
- Its center has rank 3.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 5.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 5 and depth 3.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t2 − t + 1) |
| (t + 1) · (t − 1)5 · (t2 + 1) |
- The a-invariants are -∞,-∞,-∞,-6,-5,-5. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 5:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- c_1_2, a Duflot regular element of degree 1
- a_2_4, a nilpotent element of degree 2
- b_2_5, an element of degree 2
- c_2_6, a Duflot regular element of degree 2
- a_3_12, a nilpotent element of degree 3
- b_3_11, an element of degree 3
- b_3_13, an element of degree 3
- b_4_23, an element of degree 4
- c_4_24, a Duflot regular element of degree 4
- b_5_43, an element of degree 5
Ring relations
There are 33 minimal relations of maximal degree 10:
- a_1_02
- a_1_0·b_1_1
- a_2_4·a_1_0
- a_2_4·b_1_1
- b_2_5·a_1_0
- a_2_42
- a_1_0·a_3_12
- b_1_1·a_3_12
- a_1_0·b_3_11
- a_1_0·b_3_13
- a_2_4·a_3_12
- a_2_4·b_3_11
- b_2_5·a_3_12 + a_2_4·b_3_13
- b_4_23·a_1_0
- b_4_23·b_1_1 + b_2_5·b_3_11 + b_2_5·a_3_12
- a_3_122
- b_3_112 + c_2_6·b_1_14
- a_3_12·b_3_11
- a_3_12·b_3_13 + a_2_4·b_2_52
- b_3_132 + b_2_5·b_1_1·b_3_13 + b_2_5·b_1_1·b_3_11 + b_2_53 + c_4_24·b_1_12
+ b_2_5·c_2_6·b_1_12
- a_2_4·b_4_23
- a_1_0·b_5_43
- b_3_11·b_3_13 + b_1_1·b_5_43 + b_2_5·b_1_1·b_3_13 + b_2_5·b_1_1·b_3_11 + a_2_4·b_2_52
+ c_2_6·b_1_1·b_3_11 + c_2_6·b_1_14
- b_4_23·b_3_11 + b_2_5·c_2_6·b_1_13
- b_4_23·a_3_12
- b_4_23·b_3_13 + b_2_5·b_5_43 + b_2_52·b_3_13 + b_2_52·b_3_11 + a_2_4·b_2_5·b_3_13
+ b_2_5·c_2_6·b_3_11 + b_2_5·c_2_6·b_1_13 + a_2_4·c_2_6·b_3_13
- a_2_4·b_5_43 + a_2_4·b_2_5·b_3_13
- b_4_232 + b_2_52·c_2_6·b_1_12
- b_3_11·b_5_43 + b_2_5·b_1_1·b_5_43 + b_2_52·b_1_1·b_3_13 + b_2_52·b_1_1·b_3_11
+ a_2_4·b_2_53 + c_2_6·b_1_13·b_3_13 + c_2_6·b_1_13·b_3_11 + b_2_5·c_2_6·b_1_1·b_3_11 + c_2_62·b_1_14
- a_3_12·b_5_43 + a_2_4·b_2_53
- b_3_13·b_5_43 + b_2_52·b_1_1·b_3_13 + b_2_52·b_1_1·b_3_11 + b_2_52·b_4_23 + b_2_54
+ c_4_24·b_1_1·b_3_11 + c_2_6·b_1_1·b_5_43 + c_2_6·b_1_13·b_3_13 + b_2_5·c_4_24·b_1_12 + b_2_5·c_2_6·b_1_1·b_3_13 + b_2_5·c_2_6·b_1_14 + b_2_52·c_2_6·b_1_12 + c_2_62·b_1_1·b_3_11 + c_2_62·b_1_14
- b_4_23·b_5_43 + b_2_52·b_5_43 + b_2_53·b_3_13 + b_2_53·b_3_11 + a_2_4·b_2_52·b_3_13
+ b_2_5·c_2_6·b_1_12·b_3_13 + b_2_5·c_2_6·b_1_12·b_3_11 + b_2_52·c_2_6·b_3_11 + a_2_4·b_2_5·c_2_6·b_3_13 + b_2_5·c_2_62·b_1_13
- b_5_432 + b_2_53·b_1_1·b_3_13 + b_2_53·b_1_1·b_3_11 + b_2_55
+ b_2_5·c_2_6·b_1_13·b_3_13 + b_2_5·c_2_6·b_1_13·b_3_11 + b_2_52·c_4_24·b_1_12 + b_2_52·c_2_6·b_1_14 + c_2_6·c_4_24·b_1_14 + c_2_62·b_1_16 + b_2_5·c_2_62·b_1_14 + c_2_63·b_1_14
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_1_2, a Duflot regular element of degree 1
- c_2_6, a Duflot regular element of degree 2
- c_4_24, a Duflot regular element of degree 4
- b_1_12 + b_2_5, an element of degree 2
- b_1_12, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 1, 4, 6].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -5, -5].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- c_1_2 → c_1_0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- c_2_6 → c_1_22, an element of degree 2
- a_3_12 → 0, an element of degree 3
- b_3_11 → 0, an element of degree 3
- b_3_13 → 0, an element of degree 3
- b_4_23 → 0, an element of degree 4
- c_4_24 → c_1_14, an element of degree 4
- b_5_43 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 5
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- c_1_2 → c_1_0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_42 + c_1_3·c_1_4, an element of degree 2
- c_2_6 → c_1_22, an element of degree 2
- a_3_12 → 0, an element of degree 3
- b_3_11 → c_1_2·c_1_32, an element of degree 3
- b_3_13 → c_1_43 + c_1_32·c_1_4 + c_1_2·c_1_32 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
- b_4_23 → c_1_2·c_1_3·c_1_42 + c_1_2·c_1_32·c_1_4, an element of degree 4
- c_4_24 → c_1_22·c_1_42 + c_1_22·c_1_3·c_1_4 + c_1_22·c_1_32 + c_1_1·c_1_3·c_1_42
+ c_1_1·c_1_32·c_1_4 + c_1_12·c_1_42 + c_1_12·c_1_3·c_1_4 + c_1_12·c_1_32 + c_1_14, an element of degree 4
- b_5_43 → c_1_45 + c_1_3·c_1_44 + c_1_32·c_1_43 + c_1_33·c_1_42 + c_1_2·c_1_3·c_1_43
+ c_1_2·c_1_33·c_1_4 + c_1_23·c_1_32 + c_1_1·c_1_32·c_1_42 + c_1_1·c_1_33·c_1_4 + c_1_1·c_1_2·c_1_33 + c_1_12·c_1_3·c_1_42 + c_1_12·c_1_32·c_1_4 + c_1_12·c_1_2·c_1_32, an element of degree 5
|