Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1898 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 2) · (t5 + 1/2·t4 − 1/2·t3 + 1/2·t2 + 1/2·t + 1/2) |
| (t − 1)3 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 14 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_3, an element of degree 1
- a_4_8, a nilpotent element of degree 4
- a_4_9, a nilpotent element of degree 4
- c_4_10, a Duflot regular element of degree 4
- a_5_13, a nilpotent element of degree 5
- a_5_12, a nilpotent element of degree 5
- a_5_15, a nilpotent element of degree 5
- a_5_16, a nilpotent element of degree 5
- a_8_28, a nilpotent element of degree 8
- a_8_29, a nilpotent element of degree 8
- c_8_31, a Duflot regular element of degree 8
Ring relations
There are 61 minimal relations of maximal degree 16:
- a_1_12 + a_1_0·a_1_1 + a_1_02
- a_1_22 + a_1_0·a_1_2
- a_1_03
- a_1_2·b_1_32 + a_1_02·a_1_2 + a_1_02·a_1_1
- a_1_02·a_1_1·b_1_32
- a_4_8·a_1_2
- a_4_9·a_1_1 + a_4_8·a_1_0
- a_4_9·a_1_0 + a_4_8·a_1_1 + a_4_8·a_1_0
- a_4_9·a_1_2
- a_4_8·a_1_02
- a_1_1·a_5_12 + a_1_1·a_5_13 + a_1_0·a_5_13 + a_4_8·a_1_1·b_1_3 + a_4_8·a_1_0·a_1_1
+ c_4_10·a_1_0·a_1_1 + c_4_10·a_1_02
- a_1_1·a_5_13 + a_1_0·a_5_12 + a_4_8·a_1_0·b_1_3 + a_4_8·a_1_0·a_1_1 + c_4_10·a_1_0·a_1_1
- a_4_9·b_1_32 + a_4_8·b_1_32 + a_1_2·a_5_12 + a_1_1·a_5_15 + a_4_8·a_1_0·b_1_3
+ a_4_8·a_1_0·a_1_1 + c_4_10·a_1_1·a_1_2 + c_4_10·a_1_0·a_1_2 + c_4_10·a_1_0·a_1_1
- a_4_8·b_1_32 + a_1_2·a_5_13 + a_1_0·a_5_15 + a_4_8·a_1_1·b_1_3 + a_4_8·a_1_0·b_1_3
+ a_4_8·a_1_0·a_1_1 + c_4_10·a_1_1·a_1_2 + c_4_10·a_1_0·a_1_2 + c_4_10·a_1_02
- a_1_2·a_5_15 + a_1_2·a_5_13 + c_4_10·a_1_1·a_1_2
- a_4_9·b_1_32 + a_4_8·b_1_32 + a_1_1·a_5_16 + a_4_8·a_1_1·b_1_3 + a_4_8·a_1_0·a_1_1
- a_4_8·b_1_32 + a_1_0·a_5_16 + a_4_8·a_1_0·b_1_3
- a_1_2·a_5_16 + a_4_8·a_1_0·a_1_1
- a_1_02·a_5_13 + c_4_10·a_1_02·a_1_1
- b_1_32·a_5_16 + b_1_32·a_5_15 + a_1_1·b_1_3·a_5_16 + a_1_0·a_1_1·b_1_35
+ a_1_02·a_5_15 + a_1_02·a_5_12 + c_4_10·a_1_0·b_1_32 + c_4_10·a_1_02·a_1_1
- a_4_82
- a_4_8·a_4_9
- a_4_92
- a_4_9·a_5_13 + a_4_8·a_5_12 + a_4_8·a_5_13 + a_4_8·c_4_10·a_1_1
- a_4_9·a_5_12 + a_4_8·a_5_13 + a_4_8·c_4_10·a_1_0
- a_4_9·a_5_15 + a_1_0·a_1_1·b_1_32·a_5_15 + a_1_02·b_1_32·a_5_15
+ a_1_02·b_1_32·a_5_12 + a_4_8·c_4_10·a_1_1 + a_4_8·c_4_10·a_1_0
- a_4_8·a_5_16 + a_4_8·a_5_15 + a_4_8·c_4_10·a_1_0
- a_4_9·a_5_16 + a_4_9·a_5_15 + a_4_8·c_4_10·a_1_1 + a_4_8·c_4_10·a_1_0
- a_4_9·a_5_15 + a_4_8·a_5_15 + a_1_0·a_1_1·b_1_32·a_5_15 + a_1_02·b_1_32·a_5_12
+ a_1_02·a_1_1·b_1_3·a_5_16 + a_4_8·c_4_10·a_1_1
- a_1_1·b_1_33·a_5_15 + a_1_0·b_1_33·a_5_12 + a_8_28·a_1_1 + a_4_9·a_5_15 + a_4_9·a_5_13
+ a_4_8·a_5_13 + a_1_0·a_1_1·b_1_32·a_5_15 + c_4_10·a_1_02·b_1_33 + a_4_8·c_4_10·a_1_0
- a_1_0·b_1_33·a_5_15 + a_1_0·b_1_33·a_5_13 + a_8_28·a_1_0 + a_4_8·a_5_13
+ a_1_02·b_1_32·a_5_12 + c_4_10·a_1_0·a_1_1·b_1_33 + a_4_8·c_4_10·a_1_0
- a_8_28·a_1_2
- a_1_0·b_1_33·a_5_13 + a_8_29·a_1_1 + a_4_9·a_5_15 + a_4_8·a_5_15 + a_4_8·a_5_13
+ a_1_0·a_1_1·b_1_32·a_5_15 + a_4_8·c_4_10·a_1_1 + a_4_8·c_4_10·a_1_0
- a_1_0·b_1_33·a_5_12 + a_1_0·b_1_33·a_5_13 + a_8_29·a_1_0 + a_4_9·a_5_15 + a_4_9·a_5_13
+ a_1_0·a_1_1·b_1_32·a_5_15 + c_4_10·a_1_0·a_1_1·b_1_33
- a_8_29·a_1_2
- a_4_8·a_1_0·a_5_13 + a_4_8·c_4_10·a_1_0·a_1_1
- a_5_15·a_5_16 + a_5_152 + a_5_13·a_5_16 + a_5_13·a_5_15 + a_4_8·b_1_3·a_5_12
+ c_4_10·a_1_1·a_5_16 + c_4_10·a_1_1·a_5_15 + c_4_10·a_1_0·a_5_15 + c_4_10·a_1_0·a_5_13 + a_4_8·c_4_10·a_1_1·b_1_3 + a_4_8·c_4_10·a_1_0·b_1_3 + c_4_102·a_1_0·a_1_1
- a_5_162 + a_5_152 + a_5_122 + a_5_13·a_5_16 + a_5_13·a_5_15 + a_5_13·a_5_12
+ a_5_132 + a_4_8·b_1_3·a_5_12 + a_4_8·b_1_3·a_5_13 + c_4_10·a_1_1·a_5_16 + c_4_10·a_1_1·a_5_15 + c_4_10·a_1_0·a_5_16 + c_4_10·a_1_0·a_5_15 + c_4_10·a_1_0·a_5_12 + c_4_10·a_1_0·a_5_13 + a_4_8·c_4_10·a_1_1·b_1_3 + a_4_8·c_4_10·a_1_0·a_1_1 + c_4_102·a_1_0·a_1_1 + c_4_102·a_1_02
- a_5_13·a_5_12 + a_4_8·b_1_3·a_5_13 + c_8_31·a_1_0·a_1_1 + c_4_10·a_1_0·a_5_12
+ c_4_10·a_1_02·b_1_34 + a_4_8·c_4_10·a_1_0·b_1_3 + c_4_102·a_1_02
- a_5_132 + c_8_31·a_1_02 + c_4_10·a_1_0·a_1_1·b_1_34 + c_4_10·a_1_02·b_1_34
+ a_4_8·c_4_10·a_1_0·a_1_1 + c_4_102·a_1_0·a_1_1
- a_5_12·a_5_16 + a_5_12·a_5_15 + a_5_122 + a_5_13·a_5_12 + a_5_132 + a_4_8·b_1_3·a_5_12
+ a_4_8·a_1_0·a_5_12 + c_8_31·a_1_1·a_1_2 + c_4_10·a_1_1·a_5_16 + c_4_10·a_1_1·a_5_15 + c_4_10·a_1_0·a_5_16 + c_4_10·a_1_0·a_5_15 + a_4_8·c_4_10·a_1_0·b_1_3 + c_4_102·a_1_0·a_1_1
- a_5_122 + a_5_13·a_5_16 + a_5_13·a_5_15 + a_5_13·a_5_12 + a_5_132 + a_4_8·b_1_3·a_5_12
+ a_4_8·b_1_3·a_5_13 + c_8_31·a_1_0·a_1_2 + c_4_10·a_1_1·a_5_16 + c_4_10·a_1_1·a_5_15 + c_4_10·a_1_0·a_5_16 + c_4_10·a_1_0·a_5_15 + c_4_10·a_1_0·a_5_12 + c_4_10·a_1_0·a_5_13 + a_4_8·c_4_10·a_1_1·b_1_3 + a_4_8·c_4_10·a_1_0·a_1_1 + c_4_102·a_1_0·a_1_1
- a_5_152 + a_5_122 + a_5_13·a_5_16 + a_5_13·a_5_15 + a_5_13·a_5_12 + a_5_132
+ a_1_0·a_1_1·b_1_38 + a_1_02·b_1_38 + a_8_28·a_1_0·b_1_3 + a_4_8·b_1_3·a_5_12 + a_8_28·a_1_0·a_1_1 + a_8_28·a_1_02 + a_4_8·a_1_0·a_5_12 + c_4_10·a_1_1·a_5_16 + c_4_10·a_1_1·a_5_15 + c_4_10·a_1_0·a_5_16 + c_4_10·a_1_0·a_5_15 + c_4_10·a_1_0·a_5_12 + c_4_10·a_1_0·a_5_13 + c_4_10·a_1_0·a_1_1·b_1_34 + a_4_8·c_4_10·a_1_1·b_1_3 + a_4_8·c_4_10·a_1_0·b_1_3 + c_4_102·a_1_0·a_1_1 + c_4_102·a_1_02
- b_1_35·a_5_15 + b_1_35·a_5_12 + a_8_29·b_1_32 + a_8_28·b_1_32 + a_5_12·a_5_16
+ a_1_0·a_1_1·b_1_38 + a_1_02·b_1_38 + a_8_29·a_1_1·b_1_3 + a_8_28·a_1_0·b_1_3 + a_4_8·b_1_3·a_5_12 + a_4_8·a_1_0·a_5_12
- b_1_35·a_5_12 + b_1_35·a_5_13 + a_8_29·b_1_32 + a_5_12·a_5_16 + a_5_122
+ a_5_13·a_5_16 + a_5_13·a_5_12 + a_5_132 + a_1_0·a_1_1·b_1_38 + a_8_29·a_1_0·b_1_3 + a_8_28·a_1_0·b_1_3 + c_4_10·a_1_1·b_1_35 + c_4_10·a_1_0·a_5_16 + c_4_10·a_1_0·a_5_12 + c_4_10·a_1_0·a_1_1·b_1_34 + c_4_10·a_1_02·b_1_34 + a_4_8·c_4_10·a_1_0·a_1_1 + c_4_102·a_1_02
- a_5_122 + a_5_13·a_5_12 + a_5_132 + a_4_8·b_1_3·a_5_13 + a_8_29·a_1_02
+ c_4_10·a_1_0·a_5_12 + a_4_8·c_4_10·a_1_0·b_1_3 + a_4_8·c_4_10·a_1_0·a_1_1 + c_4_102·a_1_02
- a_4_9·a_8_28 + a_4_8·a_8_28 + a_1_0·b_1_3·a_5_12·a_5_15 + a_8_28·a_1_0·a_1_1·b_1_32
+ a_1_02·a_5_12·a_5_15 + c_8_31·a_1_0·a_1_1·a_1_2·b_1_3 + c_4_10·a_1_0·a_1_1·b_1_3·a_5_15 + c_4_10·a_1_02·b_1_3·a_5_15 + c_4_10·a_1_02·b_1_3·a_5_12 + c_4_10·a_1_02·a_1_1·a_5_16 + c_4_102·a_1_02·a_1_1·b_1_3
- a_4_8·a_8_28 + a_1_0·b_1_3·a_5_13·a_5_15 + a_8_28·a_1_02·b_1_32
+ c_8_31·a_1_02·a_1_2·b_1_3 + c_4_10·a_1_0·a_1_1·b_1_3·a_5_15 + c_4_10·a_1_02·b_1_3·a_5_15 + c_4_10·a_1_02·a_1_1·a_5_16
- a_4_8·a_8_29 + a_1_0·b_1_3·a_5_12·a_5_15 + a_1_0·b_1_3·a_5_13·a_5_15
+ a_1_02·a_5_12·a_5_15 + c_8_31·a_1_0·a_1_1·a_1_2·b_1_3 + c_8_31·a_1_02·a_1_2·b_1_3 + c_4_10·a_1_0·a_1_1·b_1_3·a_5_16 + c_4_10·a_1_02·b_1_3·a_5_12 + c_4_10·a_1_02·a_1_1·a_5_16 + c_4_102·a_1_02·a_1_1·b_1_3
- a_4_9·a_8_29 + a_1_0·b_1_3·a_5_12·a_5_15 + a_1_02·a_5_12·a_5_15
+ c_8_31·a_1_0·a_1_1·a_1_2·b_1_3 + c_4_10·a_1_0·a_1_1·b_1_3·a_5_15 + c_4_10·a_1_02·b_1_3·a_5_16 + c_4_10·a_1_02·b_1_3·a_5_15 + c_4_10·a_1_02·b_1_3·a_5_12 + c_4_102·a_1_02·a_1_1·b_1_3
- a_8_28·a_5_16 + a_8_28·a_5_15 + a_1_0·b_1_32·a_5_12·a_5_15
+ a_1_02·b_1_3·a_5_12·a_5_15 + c_4_10·a_8_28·a_1_0 + c_4_10·a_1_0·a_1_1·b_1_32·a_5_15 + c_4_10·a_1_02·b_1_32·a_5_15 + c_4_10·a_1_02·b_1_32·a_5_12 + c_4_10·a_1_02·a_1_1·b_1_3·a_5_16
- b_1_33·a_5_12·a_5_15 + a_1_0·a_1_1·b_1_311 + a_1_02·b_1_311 + a_8_28·a_5_15
+ a_8_28·a_5_12 + a_8_28·a_5_13 + a_8_28·a_1_0·b_1_34 + a_1_0·b_1_32·a_5_12·a_5_15 + a_1_0·b_1_32·a_5_13·a_5_15 + a_8_28·a_1_0·a_1_1·b_1_33 + c_8_31·a_1_0·a_1_1·b_1_33 + c_8_31·a_1_02·b_1_33 + c_4_10·a_8_29·a_1_1 + c_4_10·a_8_28·a_1_1 + a_4_8·c_8_31·a_1_1 + a_4_8·c_8_31·a_1_0 + a_4_8·c_4_10·a_5_12 + a_4_8·c_4_10·a_5_13 + c_4_10·a_1_02·b_1_32·a_5_15 + a_4_8·c_4_102·a_1_1 + a_4_8·c_4_102·a_1_0
- b_1_33·a_5_12·a_5_15 + b_1_33·a_5_13·a_5_15 + a_1_0·a_1_1·b_1_311
+ a_1_02·b_1_311 + a_8_28·a_5_15 + a_8_28·a_5_12 + a_8_28·a_1_0·b_1_34 + a_1_0·b_1_32·a_5_12·a_5_15 + a_1_0·b_1_32·a_5_13·a_5_15 + a_8_28·a_1_0·a_1_1·b_1_33 + c_8_31·a_1_0·a_1_1·b_1_33 + c_4_10·a_1_0·a_1_1·b_1_37 + c_4_10·a_1_02·b_1_37 + c_4_10·a_8_29·a_1_0 + c_4_10·a_8_28·a_1_1 + a_4_8·c_8_31·a_1_1 + c_4_10·a_1_0·a_1_1·b_1_32·a_5_15 + c_4_10·a_1_02·b_1_32·a_5_12 + c_4_102·a_1_0·a_1_1·b_1_33 + a_4_8·c_4_102·a_1_0
- a_1_0·a_1_1·b_1_311 + a_1_02·b_1_311 + a_8_28·a_5_15 + a_8_28·a_5_13
+ a_8_28·a_1_0·b_1_34 + a_1_0·b_1_32·a_5_12·a_5_15 + a_8_29·a_1_02·b_1_33 + a_8_28·a_1_0·a_1_1·b_1_33 + a_1_02·b_1_3·a_5_12·a_5_15 + c_8_31·a_1_02·b_1_33 + c_4_10·a_1_02·b_1_37 + c_4_10·a_8_28·a_1_1 + a_4_8·c_8_31·a_1_0 + a_4_8·c_4_10·a_5_12 + c_4_10·a_1_0·a_1_1·b_1_32·a_5_15 + a_4_8·c_4_102·a_1_1 + a_4_8·c_4_102·a_1_0
- a_1_0·a_1_1·b_1_311 + a_1_02·b_1_311 + a_8_29·a_5_13 + a_8_28·a_5_15
+ a_8_28·a_5_13 + a_8_28·a_1_0·b_1_34 + a_1_0·b_1_32·a_5_12·a_5_15 + a_8_28·a_1_0·a_1_1·b_1_33 + a_1_02·b_1_3·a_5_12·a_5_15 + c_8_31·a_1_0·a_1_1·b_1_33 + c_4_10·a_1_0·a_1_1·b_1_37 + c_4_10·a_1_02·b_1_37 + c_4_10·a_8_28·a_1_1 + a_4_8·c_8_31·a_1_1 + a_4_8·c_4_10·a_5_13 + c_4_10·a_1_02·a_1_1·b_1_3·a_5_16 + c_4_102·a_1_02·b_1_33
- b_1_33·a_5_12·a_5_15 + a_1_0·a_1_1·b_1_311 + a_1_02·b_1_311 + a_8_29·a_5_12
+ a_8_28·a_5_15 + a_8_28·a_5_12 + a_8_28·a_5_13 + a_8_28·a_1_0·b_1_34 + a_8_28·a_1_0·a_1_1·b_1_33 + c_8_31·a_1_0·a_1_1·b_1_33 + c_4_10·a_1_0·a_1_1·b_1_37 + c_4_10·a_1_02·b_1_37 + c_4_10·a_8_28·a_1_1 + a_4_8·c_8_31·a_1_1 + a_4_8·c_4_10·a_5_12 + c_4_10·a_1_02·b_1_32·a_5_12 + c_4_10·a_1_02·a_1_1·b_1_3·a_5_16 + c_4_102·a_1_0·a_1_1·b_1_33 + a_4_8·c_4_102·a_1_0
- b_1_33·a_5_12·a_5_15 + a_8_29·a_5_15 + a_8_28·a_5_13 + a_1_0·b_1_32·a_5_13·a_5_15
+ a_8_28·a_1_0·a_1_1·b_1_33 + a_8_28·a_1_02·b_1_33 + c_8_31·a_1_02·b_1_33 + c_4_10·a_1_0·a_1_1·b_1_37 + c_4_10·a_1_02·b_1_37 + c_4_10·a_8_28·a_1_1 + a_4_8·c_8_31·a_1_0 + c_4_10·a_1_02·b_1_32·a_5_15 + c_4_10·a_1_02·b_1_32·a_5_12 + c_4_102·a_1_02·b_1_33 + a_4_8·c_4_102·a_1_1 + a_4_8·c_4_102·a_1_0
- b_1_33·a_5_13·a_5_15 + a_1_0·a_1_1·b_1_311 + a_1_02·b_1_311 + a_8_29·a_5_16
+ a_8_28·a_5_15 + a_8_28·a_5_12 + a_8_28·a_5_13 + a_8_28·a_1_0·b_1_34 + a_1_0·b_1_32·a_5_12·a_5_15 + a_1_0·b_1_32·a_5_13·a_5_15 + a_8_28·a_1_02·b_1_33 + a_1_02·b_1_3·a_5_12·a_5_15 + c_8_31·a_1_0·a_1_1·b_1_33 + c_8_31·a_1_02·b_1_33 + a_4_8·c_8_31·a_1_1 + a_4_8·c_8_31·a_1_0 + c_4_10·a_1_0·a_1_1·b_1_32·a_5_15 + c_4_10·a_1_02·b_1_32·a_5_15 + c_4_10·a_1_02·a_1_1·b_1_3·a_5_16 + c_4_102·a_1_0·a_1_1·b_1_33 + c_4_102·a_1_02·b_1_33 + a_4_8·c_4_102·a_1_1
- a_8_28·b_1_33·a_5_15 + a_8_28·b_1_33·a_5_13 + a_8_282 + a_8_29·a_1_02·b_1_36
+ a_8_28·a_1_0·b_1_32·a_5_12 + a_8_28·a_1_0·b_1_32·a_5_13 + a_8_28·a_1_02·b_1_36 + a_8_28·a_1_02·b_1_3·a_5_12 + c_4_10·a_8_28·a_1_1·b_1_33 + c_8_31·a_1_02·b_1_3·a_5_16 + c_4_10·a_1_0·b_1_3·a_5_12·a_5_15 + c_4_10·a_8_28·a_1_0·a_1_1·b_1_32 + c_4_10·a_8_28·a_1_02·b_1_32 + c_8_31·a_1_02·a_1_1·a_5_16 + c_4_10·a_1_02·a_5_12·a_5_15 + c_4_10·c_8_31·a_1_0·a_1_1·a_1_2·b_1_3 + c_4_102·a_1_0·a_1_1·b_1_3·a_5_15 + c_4_102·a_1_02·b_1_3·a_5_15 + c_4_102·a_1_02·b_1_3·a_5_12 + c_4_103·a_1_02·a_1_1·b_1_3
- a_8_292 + a_8_28·b_1_33·a_5_15 + a_8_28·b_1_33·a_5_13 + a_8_282
+ a_8_28·a_1_0·b_1_32·a_5_12 + a_8_28·a_1_0·b_1_32·a_5_13 + a_8_28·a_1_02·b_1_36 + a_8_28·a_1_02·b_1_3·a_5_12 + c_8_31·a_1_0·a_1_1·b_1_36 + c_4_10·a_1_02·b_1_310 + c_4_10·a_8_28·a_1_1·b_1_33 + c_8_31·a_1_02·b_1_3·a_5_16 + c_4_10·a_1_0·b_1_3·a_5_12·a_5_15 + c_4_10·a_8_28·a_1_0·a_1_1·b_1_32 + c_4_10·a_8_28·a_1_02·b_1_32 + c_8_31·a_1_02·a_1_1·a_5_16 + c_4_10·a_1_02·a_5_12·a_5_15 + c_4_102·a_1_0·a_1_1·b_1_36 + c_4_102·a_1_02·b_1_36 + c_4_10·c_8_31·a_1_0·a_1_1·a_1_2·b_1_3 + c_4_102·a_1_0·a_1_1·b_1_3·a_5_15 + c_4_102·a_1_02·b_1_3·a_5_15 + c_4_102·a_1_02·b_1_3·a_5_12 + c_4_103·a_1_02·a_1_1·b_1_3
- a_8_28·b_1_33·a_5_15 + a_8_28·b_1_33·a_5_12 + a_8_28·a_8_29 + a_8_282
+ a_8_28·a_1_0·b_1_32·a_5_12 + a_8_28·a_1_0·b_1_32·a_5_13 + a_8_28·a_1_0·a_1_1·b_1_36 + a_8_28·a_1_02·b_1_3·a_5_12 + c_8_31·a_1_0·a_1_1·b_1_3·a_5_16 + c_4_10·a_1_0·b_1_3·a_5_12·a_5_15 + c_4_10·a_1_0·b_1_3·a_5_13·a_5_15 + c_4_10·a_8_29·a_1_02·b_1_32 + c_4_10·a_8_28·a_1_02·b_1_32 + c_8_31·a_1_02·a_1_1·a_5_16 + c_4_10·c_8_31·a_1_0·a_1_1·a_1_2·b_1_3 + c_4_10·c_8_31·a_1_02·a_1_2·b_1_3 + c_4_102·a_1_02·b_1_3·a_5_12 + c_4_102·a_1_02·a_1_1·a_5_16 + c_4_103·a_1_02·a_1_1·b_1_3
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_10, a Duflot regular element of degree 4
- c_8_31, a Duflot regular element of degree 8
- b_1_32, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_4_8 → 0, an element of degree 4
- a_4_9 → 0, an element of degree 4
- c_4_10 → c_1_04, an element of degree 4
- a_5_13 → 0, an element of degree 5
- a_5_12 → 0, an element of degree 5
- a_5_15 → 0, an element of degree 5
- a_5_16 → 0, an element of degree 5
- a_8_28 → 0, an element of degree 8
- a_8_29 → 0, an element of degree 8
- c_8_31 → c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- a_4_8 → 0, an element of degree 4
- a_4_9 → 0, an element of degree 4
- c_4_10 → c_1_04, an element of degree 4
- a_5_13 → 0, an element of degree 5
- a_5_12 → 0, an element of degree 5
- a_5_15 → 0, an element of degree 5
- a_5_16 → 0, an element of degree 5
- a_8_28 → 0, an element of degree 8
- a_8_29 → 0, an element of degree 8
- c_8_31 → c_1_14·c_1_24 + c_1_18 + c_1_04·c_1_24, an element of degree 8
|