Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1931 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 4 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t5 − 2·t4 + 2·t3 + 1 |
| (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-3,-5,-4. They were obtained using the first, the second, the second power of the third, and the fourth filter regular parameter of the Benson test.
Ring generators
The cohomology ring has 10 minimal generators of maximal degree 4:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_1_3, an element of degree 1
- b_3_10, an element of degree 3
- b_3_11, an element of degree 3
- b_3_12, an element of degree 3
- b_3_13, an element of degree 3
- c_4_22, a Duflot regular element of degree 4
- c_4_23, a Duflot regular element of degree 4
Ring relations
There are 19 minimal relations of maximal degree 6:
- b_1_0·b_1_2
- b_1_1·b_1_2 + b_1_0·b_1_3 + b_1_0·b_1_1
- b_1_0·b_1_32 + b_1_0·b_1_1·b_1_3
- b_1_1·b_1_32 + b_1_12·b_1_3
- b_1_2·b_3_10
- b_1_0·b_3_11
- b_1_3·b_3_10 + b_1_1·b_3_11 + b_1_1·b_3_10
- b_1_3·b_3_10 + b_1_2·b_3_12 + b_1_2·b_3_11 + b_1_1·b_3_10
- b_1_3·b_3_10 + b_1_1·b_3_10 + b_1_0·b_3_13 + b_1_0·b_3_10
- b_1_3·b_3_12 + b_1_3·b_3_11 + b_1_3·b_3_10 + b_1_1·b_3_13 + b_1_1·b_3_12
- b_1_1·b_1_3·b_3_13 + b_1_12·b_3_10 + b_1_0·b_1_1·b_3_13 + b_1_0·b_1_1·b_3_10
- b_3_10·b_3_11
- b_3_11·b_3_12 + b_3_112 + b_3_10·b_3_13 + b_3_102
- b_3_112 + b_1_2·b_1_32·b_3_11 + c_4_22·b_1_22
- b_3_102 + b_1_0·b_1_12·b_3_10 + b_1_02·b_1_1·b_3_10 + b_1_05·b_1_1
+ c_4_22·b_1_02
- b_3_11·b_3_12 + b_3_112 + c_4_22·b_1_0·b_1_3 + c_4_22·b_1_0·b_1_1
- b_3_12·b_3_13 + b_3_11·b_3_13 + b_3_10·b_3_12 + c_4_22·b_1_1·b_1_3 + c_4_22·b_1_12
- b_3_132 + b_3_12·b_3_13 + b_3_11·b_3_13 + b_3_112 + b_3_10·b_3_12 + b_3_102
+ b_1_33·b_3_11 + b_1_2·b_1_32·b_3_13 + b_1_2·b_1_32·b_3_11 + c_4_23·b_1_22 + c_4_22·b_1_32 + c_4_22·b_1_1·b_1_3
- b_3_12·b_3_13 + b_3_122 + b_3_11·b_3_13 + b_3_112 + b_3_10·b_3_12 + b_3_102
+ b_1_0·b_1_12·b_3_13 + b_1_0·b_1_12·b_3_12 + b_1_0·b_1_14·b_1_3 + b_1_02·b_1_14 + b_1_03·b_3_10 + b_1_05·b_1_1 + c_4_23·b_1_02 + c_4_22·b_1_1·b_1_3
Data used for Benson′s test
- Benson′s completion test succeeded in degree 8.
- However, the last relation was already found in degree 6 and the last generator in degree 4.
- The following is a filter regular homogeneous system of parameters:
- c_4_22, a Duflot regular element of degree 4
- c_4_23, a Duflot regular element of degree 4
- b_1_32 + b_1_2·b_1_3 + b_1_22 + b_1_1·b_1_3 + b_1_12 + b_1_0·b_1_1 + b_1_02, an element of degree 2
- b_1_2·b_1_32 + b_1_22·b_1_3 + b_1_0·b_1_1·b_1_3 + b_1_02·b_1_1, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, 5, 5, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
- We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 2 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_3_10 → 0, an element of degree 3
- b_3_11 → 0, an element of degree 3
- b_3_12 → 0, an element of degree 3
- b_3_13 → 0, an element of degree 3
- c_4_22 → c_1_04, an element of degree 4
- c_4_23 → c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_3_10 → 0, an element of degree 3
- b_3_11 → 0, an element of degree 3
- b_3_12 → c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_3_13 → c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- c_4_22 → c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_23 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- b_3_10 → c_1_22·c_1_3 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_3_11 → 0, an element of degree 3
- b_3_12 → c_1_22·c_1_3 + c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_32 + c_1_0·c_1_22
+ c_1_02·c_1_3 + c_1_02·c_1_2, an element of degree 3
- b_3_13 → c_1_22·c_1_3 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- c_4_22 → c_1_2·c_1_33 + c_1_23·c_1_3 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3
+ c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_23 → c_1_34 + c_1_2·c_1_33 + c_1_1·c_1_2·c_1_32 + c_1_12·c_1_32 + c_1_12·c_1_22
+ c_1_14 + c_1_0·c_1_33 + c_1_0·c_1_23 + c_1_02·c_1_32 + c_1_02·c_1_22, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- b_3_10 → 0, an element of degree 3
- b_3_11 → c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_3_12 → c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_3_13 → c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_32 + c_1_0·c_1_22 + c_1_02·c_1_3
+ c_1_02·c_1_2, an element of degree 3
- c_4_22 → c_1_0·c_1_2·c_1_32 + c_1_02·c_1_32 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_23 → c_1_1·c_1_2·c_1_32 + c_1_12·c_1_32 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_33
+ c_1_02·c_1_32, an element of degree 4
|