Cohomology of group number 1932 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 4 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 2.
  • It has 3 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3 and 4, respectively.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t8  −  2·t7  +  2·t6  −  2·t5  +  t4  −  t3  −  1)

    (t  −  1)4 · (t2  +  1)2 · (t4  +  1)
  • The a-invariants are -∞,-∞,-5,-4,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 14 minimal generators of maximal degree 8:

  1. a_1_0, a nilpotent element of degree 1
  2. b_1_1, an element of degree 1
  3. b_1_2, an element of degree 1
  4. b_1_3, an element of degree 1
  5. a_3_10, a nilpotent element of degree 3
  6. b_3_11, an element of degree 3
  7. b_3_12, an element of degree 3
  8. c_4_19, a Duflot regular element of degree 4
  9. b_5_27, an element of degree 5
  10. b_5_28, an element of degree 5
  11. b_5_29, an element of degree 5
  12. b_7_53, an element of degree 7
  13. b_7_54, an element of degree 7
  14. c_8_71, a Duflot regular element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 53 minimal relations of maximal degree 14:

  1. a_1_0·b_1_2
  2. b_1_1·b_1_2 + a_1_0·b_1_3 + a_1_0·b_1_1
  3. a_1_0·b_1_32 + a_1_0·b_1_1·b_1_3
  4. b_1_1·b_1_32 + b_1_12·b_1_3 + a_1_03
  5. b_1_2·a_3_10
  6. a_1_0·b_3_11
  7. b_1_1·b_3_11 + b_1_3·a_3_10 + b_1_1·a_3_10
  8. b_1_3·a_3_10 + b_1_1·a_3_10 + a_1_0·b_3_12
  9. a_1_03·b_1_12
  10. b_1_1·b_1_3·b_3_12 + a_1_02·a_3_10
  11. a_3_10·b_3_11
  12. b_3_112 + b_1_2·b_1_32·b_3_11 + b_1_22·b_1_3·b_3_12 + b_1_23·b_3_12
       + c_4_19·b_1_22
  13. a_3_102 + a_1_0·b_1_12·a_3_10 + a_1_02·b_1_14 + a_1_02·b_1_1·a_3_10
       + c_4_19·a_1_02
  14. a_3_10·b_3_12 + a_1_03·a_3_10 + c_4_19·a_1_0·b_1_3 + c_4_19·a_1_0·b_1_1
  15. b_3_112 + b_1_2·b_5_27 + b_1_2·b_1_32·b_3_12 + b_1_2·b_1_32·b_3_11
       + b_1_22·b_1_3·b_3_12 + b_1_23·b_3_12 + b_1_23·b_3_11 + a_3_10·b_3_12
       + a_1_0·b_1_14·b_1_3 + a_1_0·b_1_15
  16. b_3_122 + b_1_33·b_3_12 + b_1_33·b_3_11 + b_1_2·b_5_28 + b_1_2·b_1_32·b_3_11
       + b_1_22·b_1_3·b_3_12 + b_1_22·b_1_3·b_3_11 + b_1_23·b_3_11 + a_3_10·b_3_12
       + a_1_02·b_1_1·a_3_10 + a_1_03·a_3_10 + c_4_19·b_1_32 + c_4_19·b_1_12
  17. a_1_0·b_5_28 + a_1_0·b_5_27 + a_1_0·b_1_12·b_3_12 + a_1_0·b_1_14·b_1_3
       + a_1_0·b_1_15
  18. b_1_3·b_5_27 + b_1_33·b_3_12 + b_1_22·b_1_3·b_3_11 + b_1_1·b_5_28 + b_1_13·b_3_12
       + a_3_10·b_3_12 + a_1_0·b_1_12·b_3_12 + a_1_0·b_1_14·b_1_3 + a_1_0·b_1_15
       + a_1_03·a_3_10 + c_4_19·b_1_2·b_1_3 + c_4_19·b_1_1·b_1_3 + c_4_19·b_1_12
  19. b_3_122 + b_3_112 + b_1_3·b_5_28 + b_1_33·b_3_12 + b_1_2·b_5_29
       + b_1_2·b_1_32·b_3_11 + b_1_22·b_1_3·b_3_12 + b_1_1·b_5_27 + b_1_15·b_1_3 + b_1_16
       + a_3_10·b_3_12 + a_1_0·b_1_14·b_1_3 + a_1_0·b_1_15 + a_1_02·b_1_1·a_3_10
       + a_1_03·a_3_10 + c_4_19·b_1_32 + c_4_19·b_1_1·b_1_3
  20. b_1_3·b_5_27 + b_1_33·b_3_12 + b_1_22·b_1_3·b_3_11 + b_1_1·b_5_27 + b_1_15·b_1_3
       + b_1_16 + a_1_0·b_5_29 + a_1_0·b_5_27 + a_1_0·b_1_12·b_3_12 + a_1_0·b_1_14·b_1_3
       + a_1_0·b_1_12·a_3_10 + a_1_03·a_3_10 + c_4_19·b_1_2·b_1_3 + c_4_19·b_1_1·b_1_3
       + c_4_19·b_1_12
  21. a_1_0·b_1_3·b_5_29 + a_1_0·b_1_1·b_5_27 + a_1_0·b_1_16 + a_1_0·b_1_13·a_3_10
       + a_1_02·b_1_12·a_3_10 + a_1_03·b_1_1·a_3_10 + c_4_19·a_1_0·b_1_1·b_1_3
       + c_4_19·a_1_0·b_1_12
  22. b_1_1·b_1_3·b_5_29 + b_1_12·b_5_27 + b_1_17 + b_1_14·a_3_10 + a_1_0·b_1_1·b_5_29
       + a_1_0·b_1_1·b_5_27 + a_1_0·b_1_15·b_1_3 + a_1_02·b_5_27 + a_1_02·b_1_15
       + c_4_19·b_1_12·b_1_3 + c_4_19·b_1_13 + c_4_19·a_1_02·b_1_1 + c_4_19·a_1_03
  23. b_3_11·b_5_27 + b_1_32·b_3_11·b_3_12 + b_1_23·b_1_32·b_3_11 + b_1_24·b_1_3·b_3_12
       + b_1_25·b_3_12 + a_1_0·b_1_14·b_3_12 + c_4_19·b_1_2·b_3_11 + c_4_19·b_1_24
       + c_4_19·a_1_0·b_3_12
  24. a_3_10·b_5_28 + a_3_10·b_5_27 + a_1_0·b_1_14·b_3_12 + c_4_19·a_1_0·b_1_12·b_1_3
       + c_4_19·a_1_0·b_1_13
  25. b_3_12·b_5_27 + b_1_35·b_3_12 + b_1_35·b_3_11 + b_1_22·b_3_11·b_3_12
       + b_1_22·b_1_3·b_5_29 + b_1_22·b_1_33·b_3_12 + b_1_22·b_1_33·b_3_11
       + b_1_23·b_5_29 + b_1_23·b_5_28 + b_1_23·b_1_32·b_3_12 + b_1_23·b_1_32·b_3_11
       + b_1_25·b_3_12 + b_1_25·b_3_11 + b_1_15·b_3_12 + a_3_10·b_5_29 + a_3_10·b_5_27
       + b_1_15·a_3_10 + a_1_0·b_1_14·b_3_12 + a_1_0·b_1_14·a_3_10 + a_1_02·b_1_16
       + a_1_02·b_1_13·a_3_10 + c_4_19·b_1_34 + c_4_19·b_1_2·b_3_12 + c_4_19·b_1_23·b_1_3
       + c_4_19·b_1_24 + c_4_19·b_1_1·b_3_12 + c_4_19·b_1_13·b_1_3 + c_4_19·a_1_0·b_3_12
       + c_4_19·a_1_0·b_1_12·b_1_3 + c_4_19·a_1_0·b_1_13 + c_4_19·a_1_02·b_1_12
  26. b_3_12·b_5_27 + b_3_11·b_5_29 + b_3_11·b_5_28 + b_1_3·b_7_53 + b_1_32·b_3_11·b_3_12
       + b_1_35·b_3_12 + b_1_35·b_3_11 + b_1_2·b_1_34·b_3_11 + b_1_22·b_1_3·b_5_29
       + b_1_22·b_1_33·b_3_11 + b_1_23·b_5_29 + b_1_23·b_5_28 + b_1_23·b_1_32·b_3_12
       + b_1_23·b_1_32·b_3_11 + b_1_25·b_3_11 + b_1_15·b_3_12 + b_1_15·a_3_10
       + a_1_0·b_1_14·a_3_10 + a_1_02·b_1_1·b_5_27 + c_4_19·b_1_3·b_3_12
       + c_4_19·b_1_2·b_3_12 + c_4_19·b_1_2·b_3_11 + c_4_19·b_1_2·b_1_33
       + c_4_19·b_1_22·b_1_32 + c_4_19·b_1_23·b_1_3 + c_4_19·b_1_1·b_3_12
       + c_4_19·b_1_1·a_3_10 + c_4_19·a_1_0·b_1_12·b_1_3 + c_4_19·a_1_02·b_1_12
  27. b_3_11·b_5_28 + b_1_2·b_7_53 + b_1_2·b_1_3·b_3_11·b_3_12 + b_1_2·b_1_34·b_3_11
       + b_1_22·b_3_11·b_3_12 + b_1_22·b_1_33·b_3_12 + b_1_23·b_1_32·b_3_12
       + b_1_23·b_1_32·b_3_11 + b_1_24·b_1_3·b_3_11 + a_1_0·b_1_16·b_1_3 + a_1_0·b_1_17
       + c_4_19·b_1_2·b_3_12 + c_4_19·b_1_2·b_1_33 + c_4_19·b_1_24 + c_4_19·a_1_0·b_3_12
       + c_4_19·a_1_0·b_1_12·b_1_3 + c_4_19·a_1_0·b_1_13
  28. a_1_0·b_7_53 + a_1_0·b_1_16·b_1_3 + a_1_0·b_1_17 + a_1_0·b_1_14·a_3_10
       + a_1_02·b_1_13·a_3_10 + c_4_19·a_1_0·b_3_12 + c_4_19·a_1_0·a_3_10
       + c_4_19·a_1_02·b_1_12
  29. b_3_12·b_5_27 + b_1_35·b_3_12 + b_1_35·b_3_11 + b_1_22·b_3_11·b_3_12
       + b_1_22·b_1_3·b_5_29 + b_1_22·b_1_33·b_3_12 + b_1_22·b_1_33·b_3_11
       + b_1_23·b_5_29 + b_1_23·b_5_28 + b_1_23·b_1_32·b_3_12 + b_1_23·b_1_32·b_3_11
       + b_1_25·b_3_12 + b_1_25·b_3_11 + b_1_1·b_7_53 + b_1_15·b_3_12 + b_1_17·b_1_3
       + b_1_18 + b_1_15·a_3_10 + a_1_0·b_1_16·b_1_3 + a_1_0·b_1_17 + a_1_0·b_1_14·a_3_10
       + a_1_02·b_1_1·b_5_27 + c_4_19·b_1_34 + c_4_19·b_1_2·b_3_12 + c_4_19·b_1_23·b_1_3
       + c_4_19·b_1_24 + c_4_19·b_1_13·b_1_3 + c_4_19·b_1_1·a_3_10 + c_4_19·a_1_0·b_3_12
       + c_4_19·a_1_0·b_1_12·b_1_3 + c_4_19·a_1_02·b_1_12 + c_4_19·a_1_03·b_1_1
  30. b_3_12·b_5_28 + b_3_12·b_5_27 + b_1_32·b_3_11·b_3_12 + b_1_35·b_3_12 + b_1_35·b_3_11
       + b_1_2·b_7_54 + b_1_2·b_1_3·b_3_11·b_3_12 + b_1_2·b_1_32·b_5_29
       + b_1_22·b_3_11·b_3_12 + b_1_23·b_5_28 + b_1_23·b_1_32·b_3_11 + b_1_25·b_3_12
       + b_1_25·b_3_11 + b_1_15·b_3_12 + a_1_0·b_1_12·b_5_29 + a_1_0·b_1_12·b_5_27
       + a_1_0·b_1_16·b_1_3 + a_1_0·b_1_14·a_3_10 + a_1_02·b_1_13·a_3_10 + c_4_19·b_1_34
       + c_4_19·b_1_24 + c_4_19·b_1_14
  31. b_3_12·b_5_27 + b_1_35·b_3_12 + b_1_35·b_3_11 + b_1_22·b_3_11·b_3_12
       + b_1_22·b_1_3·b_5_29 + b_1_22·b_1_33·b_3_12 + b_1_22·b_1_33·b_3_11
       + b_1_23·b_5_29 + b_1_23·b_5_28 + b_1_23·b_1_32·b_3_12 + b_1_23·b_1_32·b_3_11
       + b_1_25·b_3_12 + b_1_25·b_3_11 + b_1_15·b_3_12 + a_1_0·b_7_54 + a_1_0·b_1_12·b_5_29
       + a_1_0·b_1_16·b_1_3 + a_1_0·b_1_17 + a_1_02·b_1_1·b_5_27 + a_1_02·b_1_16
       + c_4_19·b_1_34 + c_4_19·b_1_2·b_3_12 + c_4_19·b_1_23·b_1_3 + c_4_19·b_1_24
       + c_4_19·b_1_1·b_3_12 + c_4_19·b_1_13·b_1_3 + c_4_19·a_1_0·b_1_12·b_1_3
       + c_4_19·a_1_0·a_3_10
  32. b_3_12·b_5_29 + b_3_12·b_5_28 + b_1_3·b_7_54 + b_1_33·b_5_29
       + b_1_2·b_1_3·b_3_11·b_3_12 + b_1_2·b_1_32·b_5_29 + b_1_22·b_3_11·b_3_12
       + b_1_22·b_1_3·b_5_29 + b_1_22·b_1_33·b_3_11 + b_1_23·b_5_29
       + b_1_23·b_1_32·b_3_12 + b_1_23·b_1_32·b_3_11 + b_1_24·b_1_3·b_3_11
       + b_1_25·b_3_12 + b_1_1·b_7_54 + b_1_13·b_5_29 + b_1_15·b_3_12 + b_1_17·b_1_3
       + b_1_18 + a_1_0·b_1_12·b_5_29 + a_1_0·b_1_12·b_5_27 + a_1_0·b_1_14·b_3_12
       + a_1_0·b_1_16·b_1_3 + a_1_0·b_1_14·a_3_10 + a_1_02·b_1_13·a_3_10
       + c_4_19·b_1_3·b_3_12 + c_4_19·b_1_2·b_3_12 + c_4_19·b_1_2·b_1_33 + c_4_19·b_1_24
       + c_4_19·b_1_1·b_3_12 + c_4_19·a_1_0·b_3_12 + c_4_19·a_1_03·b_1_1
  33. b_1_1·b_1_3·b_7_54 + b_1_14·b_5_27 + b_1_19 + b_1_16·a_3_10 + a_1_0·b_1_13·b_5_29
       + a_1_0·b_1_17·b_1_3 + a_1_0·b_1_18 + a_1_0·a_3_10·b_5_27 + a_1_02·b_1_12·b_5_27
       + a_1_02·b_1_17 + c_4_19·b_1_15 + c_4_19·b_1_12·a_3_10
       + c_4_19·a_1_0·b_1_1·b_3_12 + c_4_19·a_1_0·b_1_13·b_1_3 + c_4_19·a_1_0·b_1_14
       + c_4_19·a_1_0·b_1_1·a_3_10
  34. a_3_10·b_7_53 + a_1_0·b_1_16·b_3_12 + a_1_0·b_1_16·a_3_10 + a_1_02·b_1_18
       + a_1_02·a_3_10·b_5_27 + c_4_192·a_1_0·b_1_3 + c_4_192·a_1_0·b_1_1
       + c_4_192·a_1_02
  35. b_3_11·b_7_53 + b_1_2·b_1_32·b_7_53 + b_1_22·b_1_3·b_7_54
       + b_1_22·b_1_32·b_3_11·b_3_12 + b_1_22·b_1_33·b_5_29 + b_1_22·b_1_35·b_3_12
       + b_1_22·b_1_35·b_3_11 + b_1_23·b_7_54 + b_1_23·b_1_3·b_3_11·b_3_12
       + b_1_23·b_1_34·b_3_12 + b_1_23·b_1_34·b_3_11 + b_1_24·b_1_3·b_5_29
       + b_1_24·b_1_33·b_3_12 + b_1_24·b_1_33·b_3_11 + b_1_26·b_1_3·b_3_11
       + b_1_27·b_3_12 + a_1_0·b_1_16·b_3_12 + c_4_19·b_3_11·b_3_12 + c_4_19·b_1_33·b_3_11
       + c_4_19·b_1_2·b_5_28 + c_4_19·b_1_2·b_1_32·b_3_12 + c_4_19·b_1_2·b_1_35
       + c_4_19·b_1_23·b_3_11 + c_4_19·b_1_25·b_1_3 + c_4_19·b_1_26
       + c_4_19·a_1_0·b_1_12·b_3_12 + c_4_19·a_1_03·a_3_10 + c_4_192·a_1_0·b_1_3
       + c_4_192·a_1_0·b_1_1
  36. b_5_27·b_5_28 + b_5_272 + b_1_34·b_3_11·b_3_12 + b_1_37·b_3_12 + b_1_37·b_3_11
       + b_1_2·b_1_32·b_7_54 + b_1_2·b_1_33·b_3_11·b_3_12 + b_1_2·b_1_34·b_5_29
       + b_1_23·b_7_53 + b_1_23·b_1_3·b_3_11·b_3_12 + b_1_23·b_1_34·b_3_11
       + b_1_24·b_3_11·b_3_12 + b_1_24·b_1_3·b_5_29 + b_1_24·b_1_33·b_3_12
       + b_1_25·b_5_29 + b_1_25·b_5_28 + b_1_25·b_1_32·b_3_12 + b_1_25·b_1_32·b_3_11
       + b_1_26·b_1_3·b_3_12 + b_1_26·b_1_3·b_3_11 + b_1_27·b_3_11 + b_1_17·b_3_12
       + b_1_19·b_1_3 + b_1_110 + a_1_0·b_1_12·b_7_54 + a_1_0·b_1_14·b_5_29
       + a_1_0·b_1_16·b_3_12 + a_1_02·b_1_13·b_5_27 + a_1_02·b_1_18
       + a_1_02·a_3_10·b_5_27 + c_4_19·b_1_36 + c_4_19·b_1_2·b_5_28
       + c_4_19·b_1_2·b_1_32·b_3_12 + c_4_19·b_1_23·b_3_12 + c_4_19·b_1_23·b_1_33
       + c_4_19·b_1_24·b_1_32 + c_4_19·b_1_25·b_1_3 + c_4_19·b_1_26
       + c_4_19·b_1_13·b_3_12 + c_4_19·b_1_16 + c_4_19·a_1_0·b_5_29 + c_4_19·a_1_0·b_5_27
       + c_4_19·a_1_02·b_1_1·a_3_10 + c_4_192·b_1_22
  37. b_5_282 + b_5_272 + b_3_12·b_7_54 + b_3_11·b_7_53 + b_1_33·b_7_53 + b_1_37·b_3_12
       + b_1_37·b_3_11 + b_1_2·b_1_32·b_7_53 + b_1_2·b_1_33·b_3_11·b_3_12
       + b_1_22·b_1_32·b_3_11·b_3_12 + b_1_22·b_1_33·b_5_29 + b_1_22·b_1_35·b_3_12
       + b_1_23·b_7_53 + b_1_23·b_1_3·b_3_11·b_3_12 + b_1_23·b_1_32·b_5_29
       + b_1_23·b_1_34·b_3_12 + b_1_24·b_1_3·b_5_29 + b_1_24·b_1_33·b_3_11
       + b_1_25·b_5_29 + b_1_25·b_5_28 + b_1_25·b_1_32·b_3_11 + b_1_26·b_1_3·b_3_12
       + b_1_26·b_1_3·b_3_11 + b_1_27·b_3_11 + b_1_13·b_7_54 + b_1_15·b_5_29
       + b_1_17·a_3_10 + a_1_0·b_1_14·b_5_29 + a_1_0·b_1_18·b_1_3 + a_1_0·b_1_19
       + a_1_0·b_1_1·a_3_10·b_5_27 + a_1_02·b_1_13·b_5_27 + a_1_02·b_1_15·a_3_10
       + c_4_19·b_3_11·b_3_12 + c_4_19·b_1_3·b_5_29 + c_4_19·b_1_33·b_3_11
       + c_4_19·b_1_2·b_5_29 + c_4_19·b_1_2·b_5_28 + c_4_19·b_1_2·b_1_32·b_3_12
       + c_4_19·b_1_2·b_1_32·b_3_11 + c_4_19·b_1_22·b_1_3·b_3_11 + c_4_19·b_1_22·b_1_34
       + c_4_19·b_1_23·b_3_11 + c_4_19·b_1_23·b_1_33 + c_4_19·b_1_24·b_1_32
       + c_4_19·b_1_25·b_1_3 + c_4_19·b_1_26 + c_4_19·b_1_1·b_5_29 + c_4_19·b_1_13·b_3_12
       + c_4_19·b_1_16 + c_4_19·a_1_0·b_5_29 + c_4_19·a_1_0·b_5_27
       + c_4_19·a_1_02·b_1_1·a_3_10 + c_4_192·b_1_32 + c_4_192·b_1_2·b_1_3
       + c_4_192·b_1_1·b_1_3 + c_4_192·a_1_0·b_1_3 + c_4_192·a_1_0·b_1_1
  38. b_5_27·b_5_28 + b_5_272 + b_3_12·b_7_53 + b_3_11·b_7_54 + b_1_33·b_7_53
       + b_1_34·b_3_11·b_3_12 + b_1_37·b_3_12 + b_1_37·b_3_11 + b_1_2·b_1_32·b_7_54
       + b_1_2·b_1_34·b_5_29 + b_1_2·b_1_36·b_3_11 + b_1_22·b_1_3·b_7_53
       + b_1_22·b_1_35·b_3_11 + b_1_23·b_7_53 + b_1_23·b_1_34·b_3_12 + b_1_25·b_5_29
       + b_1_25·b_5_28 + b_1_25·b_1_32·b_3_11 + b_1_26·b_1_3·b_3_11 + b_1_27·b_3_11
       + b_1_19·b_1_3 + b_1_110 + b_1_17·a_3_10 + a_1_0·b_1_16·b_3_12 + a_1_0·b_1_18·b_1_3
       + a_1_0·b_1_19 + a_1_0·b_1_16·a_3_10 + a_1_02·b_1_13·b_5_27
       + a_1_02·a_3_10·b_5_27 + a_1_02·b_1_15·a_3_10 + c_4_19·b_3_11·b_3_12
       + c_4_19·b_1_33·b_3_12 + c_4_19·b_1_2·b_1_32·b_3_11 + c_4_19·b_1_2·b_1_35
       + c_4_19·b_1_22·b_1_3·b_3_12 + c_4_19·b_1_22·b_1_3·b_3_11 + c_4_19·b_1_22·b_1_34
       + c_4_19·b_1_23·b_1_33 + c_4_19·b_1_25·b_1_3 + c_4_19·b_1_26
       + c_4_19·b_1_13·b_3_12 + c_4_19·b_1_15·b_1_3 + c_4_19·b_1_16
       + c_4_19·b_1_13·a_3_10 + c_4_19·a_1_0·b_5_29 + c_4_19·a_1_0·b_5_27
       + c_4_19·a_1_0·b_1_12·b_3_12 + c_4_19·a_1_0·b_1_12·a_3_10 + c_4_19·a_1_02·b_1_14
       + c_4_19·a_1_02·b_1_1·a_3_10 + c_4_192·b_1_32 + c_4_192·b_1_22
       + c_4_192·b_1_12
  39. b_5_27·b_5_28 + b_5_272 + b_1_34·b_3_11·b_3_12 + b_1_37·b_3_12 + b_1_37·b_3_11
       + b_1_2·b_1_32·b_7_54 + b_1_2·b_1_33·b_3_11·b_3_12 + b_1_2·b_1_34·b_5_29
       + b_1_23·b_7_53 + b_1_23·b_1_3·b_3_11·b_3_12 + b_1_23·b_1_34·b_3_11
       + b_1_24·b_3_11·b_3_12 + b_1_24·b_1_3·b_5_29 + b_1_24·b_1_33·b_3_12
       + b_1_25·b_5_29 + b_1_25·b_5_28 + b_1_25·b_1_32·b_3_12 + b_1_25·b_1_32·b_3_11
       + b_1_26·b_1_3·b_3_12 + b_1_26·b_1_3·b_3_11 + b_1_27·b_3_11 + b_1_17·b_3_12
       + b_1_19·b_1_3 + b_1_110 + a_3_10·b_7_54 + b_1_12·a_3_10·b_5_27 + b_1_17·a_3_10
       + a_1_0·b_1_16·b_3_12 + a_1_0·b_1_18·b_1_3 + a_1_0·b_1_19
       + a_1_0·b_1_1·a_3_10·b_5_27 + a_1_02·b_1_18 + a_1_02·b_1_15·a_3_10
       + c_4_19·b_1_36 + c_4_19·b_1_2·b_5_28 + c_4_19·b_1_2·b_1_32·b_3_12
       + c_4_19·b_1_23·b_3_12 + c_4_19·b_1_23·b_1_33 + c_4_19·b_1_24·b_1_32
       + c_4_19·b_1_25·b_1_3 + c_4_19·b_1_26 + c_4_19·b_1_13·b_3_12 + c_4_19·b_1_16
       + c_4_19·b_1_13·a_3_10 + c_4_19·a_1_0·b_1_12·b_3_12 + c_4_19·a_1_0·b_1_14·b_1_3
       + c_4_19·a_1_0·b_1_15 + c_4_19·a_1_0·b_1_12·a_3_10 + c_4_19·a_1_02·b_1_1·a_3_10
       + c_4_19·a_1_03·a_3_10 + c_4_192·b_1_22 + c_4_192·a_1_0·b_1_3
       + c_4_192·a_1_0·b_1_1 + c_4_192·a_1_02
  40. b_5_28·b_5_29 + b_5_282 + b_5_27·b_5_28 + b_5_272 + b_3_11·b_7_53 + b_1_33·b_7_53
       + b_1_37·b_3_12 + b_1_37·b_3_11 + b_1_2·b_1_36·b_3_12 + b_1_22·b_1_3·b_7_53
       + b_1_22·b_1_33·b_5_29 + b_1_22·b_1_35·b_3_12 + b_1_23·b_1_3·b_3_11·b_3_12
       + b_1_23·b_1_34·b_3_11 + b_1_24·b_1_33·b_3_12 + b_1_25·b_5_29
       + b_1_25·b_1_32·b_3_12 + b_1_13·b_7_54 + b_1_15·b_5_29 + b_1_15·b_5_27
       + b_1_19·b_1_3 + b_1_110 + b_1_12·a_3_10·b_5_27 + b_1_17·a_3_10
       + a_1_0·b_1_14·b_5_29 + a_1_0·b_1_18·b_1_3 + a_1_0·b_1_19 + c_8_71·b_1_2·b_1_3
       + c_4_19·b_3_11·b_3_12 + c_4_19·b_1_33·b_3_12 + c_4_19·b_1_33·b_3_11
       + c_4_19·b_1_2·b_5_28 + c_4_19·b_1_2·b_1_35 + c_4_19·b_1_22·b_1_3·b_3_11
       + c_4_19·b_1_22·b_1_34 + c_4_19·b_1_23·b_3_12 + c_4_19·b_1_23·b_3_11
       + c_4_19·b_1_24·b_1_32 + c_4_19·b_1_1·b_5_29 + c_4_19·b_1_1·b_5_27
       + c_4_19·b_1_13·b_3_12 + c_4_19·b_1_15·b_1_3 + c_4_19·b_1_16
       + c_4_19·b_1_13·a_3_10 + c_4_19·a_1_0·b_5_29 + c_4_19·a_1_0·b_5_27
       + c_4_19·a_1_0·b_1_14·b_1_3 + c_4_19·a_1_0·b_1_15 + c_4_19·a_1_0·b_1_12·a_3_10
       + c_4_19·a_1_03·a_3_10 + c_4_192·b_1_22 + c_4_192·a_1_0·b_1_3
       + c_4_192·a_1_0·b_1_1
  41. b_5_282 + b_5_272 + b_3_11·b_7_53 + b_1_37·b_3_12 + b_1_37·b_3_11
       + b_1_2·b_1_32·b_7_53 + b_1_2·b_1_36·b_3_11 + b_1_22·b_1_32·b_3_11·b_3_12
       + b_1_22·b_1_33·b_5_29 + b_1_22·b_1_35·b_3_11 + b_1_23·b_7_54
       + b_1_24·b_1_33·b_3_12 + b_1_25·b_5_29 + b_1_25·b_1_32·b_3_12
       + b_1_25·b_1_32·b_3_11 + b_1_26·b_1_3·b_3_12 + b_1_26·b_1_3·b_3_11 + b_1_27·b_3_12
       + b_1_27·b_3_11 + b_1_19·b_1_3 + b_1_110 + a_1_02·b_1_15·a_3_10 + c_8_71·b_1_22
       + c_4_19·b_3_11·b_3_12 + c_4_19·b_1_33·b_3_11 + c_4_19·b_1_36 + c_4_19·b_1_2·b_5_28
       + c_4_19·b_1_2·b_1_32·b_3_12 + c_4_19·b_1_2·b_1_35 + c_4_19·b_1_22·b_1_3·b_3_12
       + c_4_19·b_1_22·b_1_34 + c_4_19·b_1_23·b_1_33 + c_4_19·b_1_26 + c_4_19·b_1_16
       + c_4_19·a_1_0·b_1_12·b_3_12 + c_4_19·a_1_03·a_3_10 + c_4_192·b_1_22
       + c_4_192·a_1_0·b_1_3 + c_4_192·a_1_0·b_1_1
  42. b_5_272 + b_1_37·b_3_12 + b_1_37·b_3_11 + b_1_22·b_1_33·b_5_29
       + b_1_22·b_1_35·b_3_12 + b_1_22·b_1_35·b_3_11 + b_1_23·b_1_32·b_5_29
       + b_1_23·b_1_34·b_3_12 + b_1_24·b_1_3·b_5_29 + b_1_25·b_5_29 + b_1_25·b_5_28
       + b_1_26·b_1_3·b_3_12 + b_1_27·b_3_11 + b_1_19·b_1_3 + b_1_110
       + a_1_0·b_1_14·b_5_27 + a_1_0·b_1_19 + a_1_02·b_1_18 + a_1_02·a_3_10·b_5_27
       + c_4_19·b_1_36 + c_4_19·b_1_23·b_1_33 + c_4_19·b_1_24·b_1_32
       + c_4_19·b_1_25·b_1_3 + c_4_19·a_1_0·b_1_15 + c_8_71·a_1_02
       + c_4_19·a_1_02·b_1_1·a_3_10 + c_4_192·b_1_22 + c_4_192·b_1_12
       + c_4_192·a_1_02
  43. b_5_27·b_5_29 + b_5_272 + b_1_33·b_7_54 + b_1_34·b_3_11·b_3_12 + b_1_35·b_5_29
       + b_1_37·b_3_12 + b_1_37·b_3_11 + b_1_2·b_1_32·b_7_54 + b_1_22·b_1_3·b_7_53
       + b_1_22·b_1_33·b_5_29 + b_1_22·b_1_35·b_3_11 + b_1_23·b_7_53
       + b_1_23·b_1_3·b_3_11·b_3_12 + b_1_23·b_1_32·b_5_29 + b_1_23·b_1_34·b_3_12
       + b_1_23·b_1_34·b_3_11 + b_1_24·b_1_3·b_5_29 + b_1_24·b_1_33·b_3_11
       + b_1_25·b_5_29 + b_1_25·b_5_28 + b_1_25·b_1_32·b_3_11 + b_1_26·b_1_3·b_3_12
       + b_1_26·b_1_3·b_3_11 + b_1_27·b_3_12 + b_1_27·b_3_11 + b_1_15·b_5_29 + b_1_110
       + b_1_12·a_3_10·b_5_27 + b_1_17·a_3_10 + a_1_0·b_1_14·b_5_27 + a_1_0·b_1_19
       + a_1_0·b_1_16·a_3_10 + a_1_02·b_1_18 + a_1_02·a_3_10·b_5_27
       + c_4_19·b_1_33·b_3_12 + c_4_19·b_1_36 + c_4_19·b_1_2·b_5_29 + c_4_19·b_1_2·b_1_35
       + c_4_19·b_1_22·b_1_3·b_3_12 + c_4_19·b_1_22·b_1_34 + c_4_19·b_1_23·b_3_12
       + c_4_19·b_1_23·b_3_11 + c_4_19·b_1_24·b_1_32 + c_4_19·b_1_25·b_1_3
       + c_4_19·b_1_1·b_5_29 + c_4_19·b_1_1·b_5_27 + c_4_19·b_1_16 + c_8_71·a_1_0·b_1_3
       + c_8_71·a_1_0·b_1_1 + c_4_19·a_1_0·b_5_29 + c_4_19·a_1_0·b_5_27
       + c_4_19·a_1_0·b_1_14·b_1_3 + c_4_19·a_1_0·b_1_12·a_3_10
       + c_4_19·a_1_02·b_1_1·a_3_10 + c_4_19·a_1_03·a_3_10 + c_4_192·b_1_22
       + c_4_192·a_1_0·b_1_3 + c_4_192·a_1_0·b_1_1
  44. b_5_292 + b_5_282 + b_1_33·b_7_54 + b_1_35·b_5_29 + b_1_37·b_3_12 + b_1_37·b_3_11
       + b_1_2·b_1_33·b_3_11·b_3_12 + b_1_2·b_1_34·b_5_29 + b_1_2·b_1_36·b_3_12
       + b_1_23·b_1_34·b_3_11 + b_1_24·b_1_33·b_3_12 + b_1_25·b_5_28
       + b_1_25·b_1_32·b_3_12 + b_1_25·b_1_32·b_3_11 + b_1_26·b_1_3·b_3_11
       + b_1_27·b_3_12 + b_1_27·b_3_11 + b_1_13·b_7_54 + b_1_15·b_5_27 + b_1_17·b_3_12
       + b_1_17·a_3_10 + a_1_0·b_1_14·b_5_29 + a_1_0·b_1_14·b_5_27 + a_1_0·b_1_18·b_1_3
       + a_1_0·b_1_16·a_3_10 + a_1_02·b_1_13·b_5_27 + a_1_02·b_1_15·a_3_10
       + c_8_71·b_1_32 + c_8_71·b_1_12 + c_4_19·b_1_33·b_3_12
       + c_4_19·b_1_2·b_1_32·b_3_11 + c_4_19·b_1_22·b_1_34 + c_4_19·b_1_26
       + c_4_19·a_1_0·b_1_12·b_3_12 + c_4_19·a_1_02·b_1_1·a_3_10 + c_4_192·b_1_22
  45. b_5_27·b_7_53 + b_1_32·b_3_11·b_7_54 + b_1_35·b_7_53 + b_1_2·b_1_35·b_3_11·b_3_12
       + b_1_2·b_1_38·b_3_11 + b_1_22·b_1_33·b_7_53 + b_1_22·b_1_37·b_3_11
       + b_1_23·b_1_32·b_7_53 + b_1_23·b_1_33·b_3_11·b_3_12 + b_1_23·b_1_36·b_3_12
       + b_1_23·b_1_36·b_3_11 + b_1_24·b_1_3·b_7_54 + b_1_24·b_1_35·b_3_11
       + b_1_25·b_7_54 + b_1_25·b_1_3·b_3_11·b_3_12 + b_1_25·b_1_34·b_3_11
       + b_1_26·b_1_3·b_5_29 + b_1_26·b_1_33·b_3_11 + b_1_28·b_1_3·b_3_11 + b_1_29·b_3_12
       + b_1_111·b_1_3 + b_1_112 + b_1_14·a_3_10·b_5_27 + b_1_19·a_3_10
       + a_1_0·b_1_14·b_7_54 + a_1_0·b_1_16·b_5_27 + a_1_0·b_1_110·b_1_3
       + a_1_0·b_1_13·a_3_10·b_5_27 + a_1_02·b_1_110 + a_1_02·b_1_17·a_3_10
       + c_4_19·b_1_32·b_3_11·b_3_12 + c_4_19·b_1_35·b_3_12 + c_4_19·b_1_38
       + c_4_19·b_1_2·b_7_53 + c_4_19·b_1_2·b_1_34·b_3_12 + c_4_19·b_1_2·b_1_37
       + c_4_19·b_1_22·b_3_11·b_3_12 + c_4_19·b_1_22·b_1_3·b_5_29
       + c_4_19·b_1_22·b_1_33·b_3_12 + c_4_19·b_1_22·b_1_36 + c_4_19·b_1_23·b_5_29
       + c_4_19·b_1_23·b_1_32·b_3_12 + c_4_19·b_1_23·b_1_35 + c_4_19·b_1_24·b_1_34
       + c_4_19·b_1_25·b_3_12 + c_4_19·b_1_27·b_1_3 + c_4_19·b_1_28
       + c_4_19·b_1_15·b_3_12 + c_4_19·b_1_18 + c_4_19·a_3_10·b_5_27
       + c_4_19·b_1_15·a_3_10 + c_4_19·a_1_0·b_1_12·b_5_27 + c_4_19·a_1_0·b_1_16·b_1_3
       + c_4_19·a_1_0·b_1_17 + c_4_19·a_1_0·b_1_14·a_3_10 + c_4_19·a_1_02·b_1_1·b_5_27
       + c_4_192·b_1_34 + c_4_192·b_1_23·b_1_3 + c_4_192·b_1_24
       + c_4_192·b_1_1·b_3_12 + c_4_192·b_1_13·b_1_3 + c_4_192·a_1_0·b_3_12
       + c_4_192·a_1_0·b_1_12·b_1_3 + c_4_192·a_1_0·b_1_13 + c_4_192·a_1_02·b_1_12
       + c_4_192·a_1_03·b_1_1
  46. b_5_28·b_7_54 + b_5_27·b_7_54 + b_5_27·b_7_53 + b_1_2·b_1_3·b_3_11·b_7_54
       + b_1_2·b_1_35·b_3_11·b_3_12 + b_1_22·b_3_11·b_7_54 + b_1_22·b_1_33·b_7_53
       + b_1_22·b_1_34·b_3_11·b_3_12 + b_1_22·b_1_37·b_3_12 + b_1_22·b_1_37·b_3_11
       + b_1_23·b_1_32·b_7_54 + b_1_23·b_1_34·b_5_29 + b_1_23·b_1_36·b_3_11
       + b_1_24·b_1_3·b_7_54 + b_1_24·b_1_3·b_7_53 + b_1_24·b_1_32·b_3_11·b_3_12
       + b_1_24·b_1_35·b_3_12 + b_1_24·b_1_35·b_3_11 + b_1_25·b_7_54 + b_1_25·b_7_53
       + b_1_25·b_1_32·b_5_29 + b_1_25·b_1_34·b_3_12 + b_1_26·b_3_11·b_3_12
       + b_1_26·b_1_33·b_3_12 + b_1_26·b_1_33·b_3_11 + b_1_27·b_5_28
       + b_1_27·b_1_32·b_3_12 + b_1_27·b_1_32·b_3_11 + b_1_28·b_1_3·b_3_11
       + b_1_29·b_3_12 + b_1_17·b_5_29 + b_1_17·b_5_27 + b_1_112 + b_1_14·a_3_10·b_5_27
       + b_1_19·a_3_10 + a_1_0·b_1_16·b_5_29 + a_1_0·b_1_16·b_5_27 + a_1_0·b_1_18·b_3_12
       + a_1_0·b_1_111 + a_1_0·b_1_13·a_3_10·b_5_27 + a_1_02·b_1_15·b_5_27
       + a_1_02·b_1_110 + c_8_71·b_1_2·b_3_12 + c_8_71·b_1_2·b_1_33
       + c_8_71·b_1_22·b_1_32 + c_8_71·b_1_23·b_1_3 + c_8_71·b_1_24
       + c_4_19·b_1_32·b_3_11·b_3_12 + c_4_19·b_1_33·b_5_29 + c_4_19·b_1_35·b_3_12
       + c_4_19·b_1_2·b_7_53 + c_4_19·b_1_2·b_1_32·b_5_29 + c_4_19·b_1_2·b_1_34·b_3_12
       + c_4_19·b_1_2·b_1_37 + c_4_19·b_1_22·b_1_36 + c_4_19·b_1_23·b_5_28
       + c_4_19·b_1_23·b_1_32·b_3_11 + c_4_19·b_1_25·b_3_11 + c_4_19·b_1_26·b_1_32
       + c_4_19·b_1_13·b_5_29 + c_8_71·a_1_0·b_1_12·b_1_3 + c_8_71·a_1_0·b_1_13
       + c_4_19·a_3_10·b_5_27 + c_4_19·a_1_0·b_1_12·b_5_27 + c_4_19·a_1_0·b_1_14·b_3_12
       + c_4_19·a_1_0·b_1_16·b_1_3 + c_4_19·a_1_0·b_1_17 + c_4_19·a_1_02·b_1_1·b_5_27
       + c_4_192·b_1_2·b_3_12 + c_4_192·b_1_2·b_1_33 + c_4_192·b_1_24
       + c_4_192·b_1_1·b_3_12 + c_4_192·a_1_0·b_3_12 + c_4_192·a_1_0·b_1_12·b_1_3
       + c_4_192·a_1_0·b_1_13 + c_4_192·a_1_02·b_1_12 + c_4_192·a_1_03·b_1_1
  47. b_5_27·b_7_54 + b_1_35·b_7_53 + b_1_2·b_1_35·b_3_11·b_3_12 + b_1_2·b_1_38·b_3_11
       + b_1_22·b_3_11·b_7_54 + b_1_22·b_1_37·b_3_12 + b_1_22·b_1_37·b_3_11
       + b_1_23·b_1_32·b_7_54 + b_1_23·b_1_32·b_7_53 + b_1_23·b_1_33·b_3_11·b_3_12
       + b_1_23·b_1_34·b_5_29 + b_1_23·b_1_36·b_3_12 + b_1_24·b_1_33·b_5_29
       + b_1_24·b_1_35·b_3_12 + b_1_24·b_1_35·b_3_11 + b_1_25·b_1_34·b_3_12
       + b_1_25·b_1_34·b_3_11 + b_1_26·b_1_3·b_5_29 + b_1_27·b_5_29 + b_1_27·b_5_28
       + b_1_29·b_3_12 + b_1_29·b_3_11 + b_1_15·b_7_54 + b_1_111·b_1_3
       + b_1_14·a_3_10·b_5_27 + a_1_0·b_1_14·b_7_54 + a_1_0·b_1_110·b_1_3
       + a_1_0·b_1_18·a_3_10 + a_1_02·b_1_15·b_5_27 + a_1_02·b_1_12·a_3_10·b_5_27
       + c_8_71·b_1_22·b_1_32 + c_4_19·b_1_33·b_5_29 + c_4_19·b_1_38
       + c_4_19·b_1_2·b_7_54 + c_4_19·b_1_2·b_1_32·b_5_29 + c_4_19·b_1_2·b_1_34·b_3_11
       + c_4_19·b_1_2·b_1_37 + c_4_19·b_1_22·b_1_33·b_3_12
       + c_4_19·b_1_22·b_1_33·b_3_11 + c_4_19·b_1_23·b_1_32·b_3_11
       + c_4_19·b_1_24·b_1_34 + c_4_19·b_1_25·b_1_33 + c_4_19·b_1_27·b_1_3
       + c_4_19·b_1_28 + c_4_19·b_1_1·b_7_54 + c_4_19·b_1_13·b_5_27 + c_4_19·b_1_18
       + c_8_71·a_1_0·b_3_12 + c_8_71·a_1_0·b_1_12·b_1_3 + c_8_71·a_1_0·b_1_13
       + c_4_19·a_3_10·b_5_27 + c_4_19·a_1_0·b_1_12·b_5_27 + c_4_19·a_1_0·b_1_14·b_3_12
       + c_4_19·a_1_0·b_1_16·b_1_3 + c_8_71·a_1_02·b_1_12 + c_4_19·a_1_0·b_1_14·a_3_10
       + c_4_19·a_1_02·b_1_16 + c_8_71·a_1_03·b_1_1 + c_4_19·a_1_02·b_1_13·a_3_10
       + c_4_192·b_1_34 + c_4_192·b_1_2·b_1_33 + c_4_192·b_1_22·b_1_32
       + c_4_192·b_1_14 + c_4_192·b_1_1·a_3_10 + c_4_192·a_1_0·b_3_12
       + c_4_192·a_1_0·b_1_13 + c_4_192·a_1_02·b_1_12 + c_4_192·a_1_03·b_1_1
  48. b_5_29·b_7_54 + b_5_28·b_7_54 + b_1_36·b_3_11·b_3_12 + b_1_2·b_1_3·b_3_11·b_7_54
       + b_1_2·b_1_34·b_7_53 + b_1_2·b_1_35·b_3_11·b_3_12 + b_1_2·b_1_38·b_3_11
       + b_1_22·b_3_11·b_7_54 + b_1_22·b_1_33·b_7_53 + b_1_22·b_1_34·b_3_11·b_3_12
       + b_1_22·b_1_37·b_3_11 + b_1_23·b_1_32·b_7_53 + b_1_23·b_1_34·b_5_29
       + b_1_23·b_1_36·b_3_12 + b_1_23·b_1_36·b_3_11 + b_1_24·b_1_3·b_7_54
       + b_1_24·b_1_35·b_3_11 + b_1_25·b_7_54 + b_1_25·b_7_53 + b_1_25·b_1_34·b_3_12
       + b_1_25·b_1_34·b_3_11 + b_1_26·b_1_33·b_3_12 + b_1_26·b_1_33·b_3_11
       + b_1_27·b_5_29 + b_1_27·b_1_32·b_3_12 + b_1_27·b_1_32·b_3_11
       + b_1_28·b_1_3·b_3_12 + b_1_29·b_3_11 + b_1_17·b_5_27 + b_1_19·b_3_12 + b_1_112
       + b_1_14·a_3_10·b_5_27 + a_1_0·b_1_16·b_5_29 + a_1_0·b_1_18·b_3_12
       + a_1_0·b_1_110·b_1_3 + a_1_0·b_1_111 + a_1_0·b_1_13·a_3_10·b_5_27
       + a_1_0·b_1_18·a_3_10 + a_1_02·b_1_15·b_5_27 + a_1_02·b_1_110
       + a_1_02·b_1_12·a_3_10·b_5_27 + c_8_71·b_1_3·b_3_12 + c_8_71·b_1_34
       + c_8_71·b_1_22·b_1_32 + c_8_71·b_1_24 + c_8_71·b_1_1·b_3_12 + c_8_71·b_1_14
       + c_4_19·b_1_3·b_7_54 + c_4_19·b_1_35·b_3_11 + c_4_19·b_1_38 + c_4_19·b_1_2·b_7_54
       + c_4_19·b_1_2·b_1_3·b_3_11·b_3_12 + c_4_19·b_1_2·b_1_34·b_3_11
       + c_4_19·b_1_2·b_1_37 + c_4_19·b_1_22·b_1_3·b_5_29 + c_4_19·b_1_22·b_1_33·b_3_12
       + c_4_19·b_1_22·b_1_36 + c_4_19·b_1_23·b_5_28 + c_4_19·b_1_23·b_1_32·b_3_12
       + c_4_19·b_1_23·b_1_32·b_3_11 + c_4_19·b_1_23·b_1_35
       + c_4_19·b_1_24·b_1_3·b_3_12 + c_4_19·b_1_24·b_1_34 + c_4_19·b_1_25·b_3_12
       + c_4_19·b_1_27·b_1_3 + c_4_19·b_1_28 + c_4_19·b_1_1·b_7_54 + c_4_19·b_1_13·b_5_29
       + c_4_19·b_1_13·b_5_27 + c_4_19·b_1_17·b_1_3 + c_8_71·a_1_0·b_1_12·b_1_3
       + c_8_71·a_1_0·b_1_13 + c_4_19·b_1_15·a_3_10 + c_4_19·a_1_0·b_7_54
       + c_4_19·a_1_0·b_1_12·b_5_29 + c_4_19·a_1_0·b_1_14·b_3_12
       + c_4_19·a_1_0·b_1_16·b_1_3 + c_4_19·a_1_0·b_1_17 + c_4_19·a_1_02·b_1_16
       + c_4_19·a_1_02·b_1_13·a_3_10 + c_4_192·b_1_3·b_3_12 + c_4_192·b_1_22·b_1_32
       + c_4_192·b_1_1·b_3_12 + c_4_192·a_1_0·b_1_12·b_1_3 + c_4_192·a_1_0·a_3_10
       + c_4_192·a_1_03·b_1_1
  49. b_5_29·b_7_53 + b_5_28·b_7_53 + b_5_27·b_7_54 + b_1_35·b_7_53 + b_1_36·b_3_11·b_3_12
       + b_1_2·b_1_34·b_7_53 + b_1_2·b_1_35·b_3_11·b_3_12 + b_1_22·b_1_33·b_7_54
       + b_1_22·b_1_35·b_5_29 + b_1_23·b_1_32·b_7_54 + b_1_23·b_1_32·b_7_53
       + b_1_23·b_1_33·b_3_11·b_3_12 + b_1_23·b_1_36·b_3_12 + b_1_23·b_1_36·b_3_11
       + b_1_24·b_1_3·b_7_53 + b_1_24·b_1_35·b_3_12 + b_1_24·b_1_35·b_3_11
       + b_1_25·b_7_54 + b_1_25·b_1_34·b_3_12 + b_1_26·b_3_11·b_3_12
       + b_1_26·b_1_3·b_5_29 + b_1_26·b_1_33·b_3_11 + b_1_27·b_5_29 + b_1_27·b_5_28
       + b_1_27·b_1_32·b_3_12 + b_1_27·b_1_32·b_3_11 + b_1_28·b_1_3·b_3_12
       + b_1_28·b_1_3·b_3_11 + b_1_29·b_3_11 + b_1_15·b_7_54 + b_1_17·b_5_29
       + b_1_17·b_5_27 + b_1_19·b_3_12 + b_1_111·b_1_3 + b_1_112 + b_1_14·a_3_10·b_5_27
       + a_1_0·b_1_16·b_5_29 + a_1_0·b_1_111 + a_1_02·b_1_110
       + a_1_02·b_1_12·a_3_10·b_5_27 + c_8_71·b_1_3·b_3_11 + c_8_71·b_1_22·b_1_32
       + c_4_19·b_1_3·b_7_54 + c_4_19·b_1_33·b_5_29 + c_4_19·b_1_35·b_3_11 + c_4_19·b_1_38
       + c_4_19·b_1_2·b_7_54 + c_4_19·b_1_2·b_7_53 + c_4_19·b_1_2·b_1_3·b_3_11·b_3_12
       + c_4_19·b_1_2·b_1_34·b_3_12 + c_4_19·b_1_2·b_1_34·b_3_11
       + c_4_19·b_1_22·b_1_33·b_3_12 + c_4_19·b_1_23·b_1_32·b_3_12
       + c_4_19·b_1_25·b_3_12 + c_4_19·b_1_25·b_3_11 + c_4_19·b_1_25·b_1_33
       + c_4_19·b_1_13·b_5_29 + c_4_19·b_1_15·b_3_12 + c_4_19·b_1_17·b_1_3
       + c_4_19·b_1_18 + c_8_71·a_1_0·b_1_12·b_1_3 + c_8_71·a_1_0·b_1_13
       + c_4_19·a_3_10·b_5_27 + c_4_19·a_1_0·b_7_54 + c_4_19·a_1_0·b_1_16·b_1_3
       + c_4_19·a_1_0·b_1_17 + c_8_71·a_1_02·b_1_12 + c_4_19·a_1_02·b_1_16
       + c_8_71·a_1_03·b_1_1 + c_4_19·a_1_02·b_1_13·a_3_10 + c_4_192·b_1_3·b_3_12
       + c_4_192·b_1_34 + c_4_192·b_1_2·b_1_33 + c_4_192·b_1_22·b_1_32
       + c_4_192·b_1_1·b_3_12 + c_4_192·b_1_13·b_1_3 + c_4_192·b_1_1·a_3_10
       + c_4_192·a_1_0·b_3_12 + c_4_192·a_1_0·a_3_10 + c_4_192·a_1_02·b_1_12
       + c_4_192·a_1_03·b_1_1
  50. b_5_28·b_7_53 + b_1_2·b_1_34·b_7_53 + b_1_2·b_1_35·b_3_11·b_3_12
       + b_1_22·b_3_11·b_7_54 + b_1_22·b_1_33·b_7_54 + b_1_22·b_1_33·b_7_53
       + b_1_22·b_1_34·b_3_11·b_3_12 + b_1_22·b_1_35·b_5_29 + b_1_22·b_1_37·b_3_12
       + b_1_23·b_1_32·b_7_54 + b_1_23·b_1_33·b_3_11·b_3_12 + b_1_23·b_1_36·b_3_12
       + b_1_24·b_1_32·b_3_11·b_3_12 + b_1_24·b_1_33·b_5_29 + b_1_24·b_1_35·b_3_12
       + b_1_25·b_1_3·b_3_11·b_3_12 + b_1_25·b_1_32·b_5_29 + b_1_25·b_1_34·b_3_11
       + b_1_26·b_3_11·b_3_12 + b_1_26·b_1_33·b_3_11 + b_1_27·b_1_32·b_3_11
       + b_1_29·b_3_12 + b_1_19·b_3_12 + b_1_14·a_3_10·b_5_27 + a_1_0·b_1_18·b_3_12
       + a_1_0·b_1_110·b_1_3 + a_1_0·b_1_111 + a_1_0·b_1_13·a_3_10·b_5_27
       + a_1_02·b_1_17·a_3_10 + c_8_71·b_1_2·b_3_11 + c_4_19·b_1_32·b_3_11·b_3_12
       + c_4_19·b_1_35·b_3_11 + c_4_19·b_1_2·b_7_54 + c_4_19·b_1_2·b_1_3·b_3_11·b_3_12
       + c_4_19·b_1_2·b_1_34·b_3_12 + c_4_19·b_1_2·b_1_34·b_3_11 + c_4_19·b_1_2·b_1_37
       + c_4_19·b_1_22·b_3_11·b_3_12 + c_4_19·b_1_22·b_1_33·b_3_12
       + c_4_19·b_1_22·b_1_36 + c_4_19·b_1_23·b_1_32·b_3_11 + c_4_19·b_1_23·b_1_35
       + c_4_19·b_1_24·b_1_3·b_3_12 + c_4_19·b_1_24·b_1_3·b_3_11 + c_4_19·b_1_24·b_1_34
       + c_4_19·b_1_25·b_1_33 + c_4_19·b_1_26·b_1_32 + c_4_19·b_1_27·b_1_3
       + c_4_19·b_1_28 + c_4_19·b_1_17·b_1_3 + c_4_19·b_1_18 + c_4_19·a_3_10·b_5_27
       + c_4_19·a_1_0·b_1_12·b_5_27 + c_4_19·a_1_02·b_1_1·b_5_27 + c_4_19·a_1_02·b_1_16
       + c_4_19·a_1_02·b_1_13·a_3_10 + c_4_192·b_1_2·b_3_12 + c_4_192·b_1_22·b_1_32
       + c_4_192·b_1_1·b_3_12 + c_4_192·b_1_13·b_1_3 + c_4_192·b_1_14
       + c_4_192·a_1_0·b_3_12 + c_4_192·a_1_02·b_1_12 + c_4_192·a_1_03·b_1_1
  51. b_7_53·b_7_54 + b_7_532 + b_1_22·b_1_32·b_3_11·b_7_54 + b_1_22·b_1_35·b_7_53
       + b_1_23·b_1_34·b_7_54 + b_1_23·b_1_36·b_5_29 + b_1_23·b_1_38·b_3_11
       + b_1_24·b_3_11·b_7_54 + b_1_24·b_1_33·b_7_54 + b_1_24·b_1_33·b_7_53
       + b_1_24·b_1_37·b_3_12 + b_1_24·b_1_37·b_3_11 + b_1_25·b_1_32·b_7_53
       + b_1_25·b_1_33·b_3_11·b_3_12 + b_1_25·b_1_36·b_3_11 + b_1_26·b_1_35·b_3_12
       + b_1_27·b_1_3·b_3_11·b_3_12 + b_1_27·b_1_34·b_3_12 + b_1_27·b_1_34·b_3_11
       + b_1_28·b_1_3·b_5_29 + b_1_29·b_5_29 + b_1_210·b_1_3·b_3_11 + b_1_211·b_3_12
       + b_1_17·b_7_54 + b_1_19·b_5_27 + b_1_113·b_1_3 + b_1_16·a_3_10·b_5_27
       + a_1_0·b_1_16·b_7_54 + a_1_0·b_1_18·b_5_29 + a_1_0·b_1_18·b_5_27
       + a_1_0·b_1_112·b_1_3 + a_1_0·b_1_15·a_3_10·b_5_27 + a_1_0·b_1_110·a_3_10
       + a_1_02·b_1_17·b_5_27 + a_1_02·b_1_19·a_3_10 + c_8_71·b_3_11·b_3_12
       + c_8_71·b_1_33·b_3_11 + c_8_71·b_1_2·b_1_32·b_3_11 + c_8_71·b_1_22·b_1_3·b_3_12
       + c_8_71·b_1_23·b_3_12 + c_4_19·b_3_11·b_7_54 + c_4_19·b_1_33·b_7_54
       + c_4_19·b_1_37·b_3_11 + c_4_19·b_1_2·b_1_32·b_7_54
       + c_4_19·b_1_2·b_1_33·b_3_11·b_3_12 + c_4_19·b_1_2·b_1_36·b_3_11
       + c_4_19·b_1_22·b_1_3·b_7_53 + c_4_19·b_1_22·b_1_35·b_3_12
       + c_4_19·b_1_22·b_1_38 + c_4_19·b_1_23·b_1_3·b_3_11·b_3_12
       + c_4_19·b_1_23·b_1_37 + c_4_19·b_1_24·b_3_11·b_3_12
       + c_4_19·b_1_24·b_1_3·b_5_29 + c_4_19·b_1_24·b_1_33·b_3_11
       + c_4_19·b_1_24·b_1_36 + c_4_19·b_1_25·b_1_32·b_3_12
       + c_4_19·b_1_25·b_1_32·b_3_11 + c_4_19·b_1_25·b_1_35
       + c_4_19·b_1_26·b_1_3·b_3_12 + c_4_19·b_1_26·b_1_3·b_3_11 + c_4_19·b_1_26·b_1_34
       + c_4_19·b_1_27·b_3_11 + c_4_19·b_1_27·b_1_33 + c_4_19·b_1_210
       + c_4_19·b_1_13·b_7_54 + c_4_19·b_1_15·b_5_29 + c_4_19·b_1_15·b_5_27
       + c_4_19·b_1_19·b_1_3 + c_4_19·b_1_110 + c_8_71·a_1_0·b_1_12·b_3_12
       + c_4_19·b_1_12·a_3_10·b_5_27 + c_4_19·a_1_0·b_1_14·b_5_27
       + c_4_19·a_1_0·b_1_16·b_3_12 + c_4_19·a_1_0·b_1_1·a_3_10·b_5_27
       + c_4_19·a_1_02·a_3_10·b_5_27 + c_4_19·a_1_02·b_1_15·a_3_10
       + c_4_192·b_3_11·b_3_12 + c_4_192·b_1_3·b_5_29 + c_4_192·b_1_36
       + c_4_192·b_1_2·b_5_29 + c_4_192·b_1_2·b_5_28 + c_4_192·b_1_22·b_1_34
       + c_4_192·b_1_23·b_1_33 + c_4_192·b_1_24·b_1_32 + c_4_192·b_1_25·b_1_3
       + c_4_192·b_1_1·b_5_29 + c_4_192·b_1_13·b_3_12 + c_4_192·b_1_16
       + c_4_192·b_1_13·a_3_10 + c_4_192·a_1_0·b_1_12·b_3_12
       + c_4_192·a_1_0·b_1_14·b_1_3 + c_4_192·a_1_0·b_1_12·a_3_10
       + c_4_192·a_1_02·b_1_1·a_3_10 + c_4_193·b_1_2·b_1_3 + c_4_193·b_1_22
       + c_4_193·b_1_1·b_1_3 + c_4_193·b_1_12
  52. b_7_53·b_7_54 + b_1_2·b_1_33·b_3_11·b_7_54 + b_1_2·b_1_36·b_7_53
       + b_1_2·b_1_37·b_3_11·b_3_12 + b_1_22·b_1_32·b_3_11·b_7_54
       + b_1_22·b_1_35·b_7_54 + b_1_22·b_1_37·b_5_29 + b_1_23·b_1_34·b_7_53
       + b_1_23·b_1_36·b_5_29 + b_1_23·b_1_38·b_3_12 + b_1_24·b_3_11·b_7_54
       + b_1_24·b_1_33·b_7_54 + b_1_24·b_1_33·b_7_53 + b_1_24·b_1_34·b_3_11·b_3_12
       + b_1_24·b_1_37·b_3_12 + b_1_25·b_1_32·b_7_54 + b_1_25·b_1_32·b_7_53
       + b_1_25·b_1_36·b_3_11 + b_1_26·b_1_3·b_7_54 + b_1_26·b_1_32·b_3_11·b_3_12
       + b_1_26·b_1_33·b_5_29 + b_1_26·b_1_35·b_3_12 + b_1_26·b_1_35·b_3_11
       + b_1_27·b_1_32·b_5_29 + b_1_28·b_3_11·b_3_12 + b_1_28·b_1_3·b_5_29
       + b_1_28·b_1_33·b_3_12 + b_1_28·b_1_33·b_3_11 + b_1_29·b_5_29
       + b_1_29·b_1_32·b_3_12 + b_1_29·b_1_32·b_3_11 + b_1_211·b_3_12 + b_1_17·b_7_54
       + b_1_19·b_5_27 + b_1_114 + b_1_16·a_3_10·b_5_27 + a_1_0·b_1_16·b_7_54
       + a_1_0·b_1_18·b_5_29 + a_1_0·b_1_18·b_5_27 + a_1_0·b_1_112·b_1_3
       + a_1_0·b_1_15·a_3_10·b_5_27 + a_1_02·b_1_17·b_5_27 + a_1_02·b_1_112
       + c_8_71·b_3_11·b_3_12 + c_8_71·b_1_33·b_3_11 + c_8_71·b_1_24·b_1_32
       + c_8_71·b_1_25·b_1_3 + c_4_19·b_3_11·b_7_54 + c_4_19·b_1_33·b_7_54
       + c_4_19·b_1_37·b_3_11 + c_4_19·b_1_2·b_1_32·b_7_54 + c_4_19·b_1_2·b_1_36·b_3_12
       + c_4_19·b_1_2·b_1_39 + c_4_19·b_1_22·b_1_3·b_7_54 + c_4_19·b_1_22·b_1_3·b_7_53
       + c_4_19·b_1_22·b_1_38 + c_4_19·b_1_23·b_1_3·b_3_11·b_3_12
       + c_4_19·b_1_23·b_1_32·b_5_29 + c_4_19·b_1_23·b_1_34·b_3_12
       + c_4_19·b_1_23·b_1_37 + c_4_19·b_1_24·b_1_36 + c_4_19·b_1_25·b_5_29
       + c_4_19·b_1_25·b_5_28 + c_4_19·b_1_25·b_1_32·b_3_12
       + c_4_19·b_1_25·b_1_32·b_3_11 + c_4_19·b_1_26·b_1_3·b_3_11
       + c_4_19·b_1_26·b_1_34 + c_4_19·b_1_27·b_3_12 + c_4_19·b_1_27·b_3_11
       + c_4_19·b_1_210 + c_4_19·b_1_13·b_7_54 + c_4_19·b_1_15·b_5_29
       + c_4_19·b_1_15·b_5_27 + c_4_19·b_1_19·b_1_3 + c_4_19·b_1_110
       + c_8_71·a_1_0·b_1_12·b_3_12 + c_4_19·b_1_12·a_3_10·b_5_27
       + c_4_19·a_1_0·b_1_14·b_5_27 + c_4_19·a_1_0·b_1_16·b_3_12
       + c_4_19·a_1_0·b_1_1·a_3_10·b_5_27 + c_4_19·a_1_02·b_1_18
       + c_4_19·a_1_02·a_3_10·b_5_27 + c_4_19·a_1_02·b_1_15·a_3_10
       + c_4_19·c_8_71·b_1_22 + c_4_192·b_3_11·b_3_12 + c_4_192·b_1_3·b_5_29
       + c_4_192·b_1_33·b_3_12 + c_4_192·b_1_33·b_3_11 + c_4_192·b_1_2·b_5_29
       + c_4_192·b_1_2·b_1_32·b_3_11 + c_4_192·b_1_22·b_1_3·b_3_11
       + c_4_192·b_1_22·b_1_34 + c_4_192·b_1_1·b_5_29 + c_4_192·b_1_13·b_3_12
       + c_4_192·b_1_15·b_1_3 + c_4_192·b_1_16 + c_4_192·b_1_13·a_3_10
       + c_4_192·a_1_0·b_1_12·b_3_12 + c_4_192·a_1_0·b_1_14·b_1_3
       + c_4_192·a_1_02·b_1_1·a_3_10 + c_4_193·b_1_32 + c_4_193·b_1_2·b_1_3
       + c_4_193·b_1_22 + c_4_193·b_1_1·b_1_3 + c_4_193·a_1_0·b_1_3
       + c_4_193·a_1_0·b_1_1 + c_4_193·a_1_02
  53. b_7_542 + b_7_53·b_7_54 + b_7_532 + b_1_34·b_3_11·b_7_54
       + b_1_2·b_1_37·b_3_11·b_3_12 + b_1_22·b_1_32·b_3_11·b_7_54
       + b_1_22·b_1_35·b_7_53 + b_1_22·b_1_39·b_3_12 + b_1_22·b_1_39·b_3_11
       + b_1_23·b_1_34·b_7_53 + b_1_23·b_1_35·b_3_11·b_3_12 + b_1_23·b_1_36·b_5_29
       + b_1_24·b_3_11·b_7_54 + b_1_24·b_1_33·b_7_54 + b_1_25·b_1_33·b_3_11·b_3_12
       + b_1_25·b_1_34·b_5_29 + b_1_25·b_1_36·b_3_11 + b_1_26·b_1_3·b_7_54
       + b_1_26·b_1_3·b_7_53 + b_1_26·b_1_35·b_3_11 + b_1_27·b_7_53
       + b_1_27·b_1_34·b_3_11 + b_1_28·b_3_11·b_3_12 + b_1_28·b_1_33·b_3_11
       + b_1_29·b_5_29 + b_1_29·b_5_28 + b_1_210·b_1_3·b_3_12 + b_1_211·b_3_11
       + b_1_111·b_3_12 + b_1_114 + b_1_16·a_3_10·b_5_27 + b_1_111·a_3_10
       + a_1_0·b_1_18·b_5_29 + a_1_0·b_1_110·b_3_12 + a_1_0·b_1_112·b_1_3 + a_1_0·b_1_113
       + a_1_02·b_1_17·b_5_27 + a_1_02·b_1_112 + c_8_71·b_3_11·b_3_12
       + c_8_71·b_1_33·b_3_12 + c_8_71·b_1_36 + c_8_71·b_1_2·b_5_28
       + c_8_71·b_1_22·b_1_3·b_3_12 + c_8_71·b_1_22·b_1_3·b_3_11 + c_8_71·b_1_22·b_1_34
       + c_8_71·b_1_23·b_3_12 + c_8_71·b_1_23·b_3_11 + c_8_71·b_1_24·b_1_32
       + c_8_71·b_1_25·b_1_3 + c_8_71·b_1_16 + c_4_19·b_3_11·b_7_54
       + c_4_19·b_1_34·b_3_11·b_3_12 + c_4_19·b_1_37·b_3_12 + c_4_19·b_1_37·b_3_11
       + c_4_19·b_1_310 + c_4_19·b_1_2·b_1_32·b_7_54 + c_4_19·b_1_2·b_1_33·b_3_11·b_3_12
       + c_4_19·b_1_2·b_1_36·b_3_11 + c_4_19·b_1_22·b_1_3·b_7_53
       + c_4_19·b_1_22·b_1_33·b_5_29 + c_4_19·b_1_22·b_1_35·b_3_12
       + c_4_19·b_1_22·b_1_35·b_3_11 + c_4_19·b_1_22·b_1_38 + c_4_19·b_1_23·b_7_53
       + c_4_19·b_1_23·b_1_32·b_5_29 + c_4_19·b_1_23·b_1_34·b_3_12
       + c_4_19·b_1_23·b_1_34·b_3_11 + c_4_19·b_1_23·b_1_37
       + c_4_19·b_1_24·b_1_33·b_3_11 + c_4_19·b_1_25·b_1_32·b_3_12
       + c_4_19·b_1_25·b_1_35 + c_4_19·b_1_26·b_1_3·b_3_12 + c_4_19·b_1_26·b_1_3·b_3_11
       + c_4_19·b_1_27·b_3_11 + c_4_19·b_1_27·b_1_33 + c_4_19·b_1_210
       + c_4_19·b_1_15·b_5_29 + c_4_19·b_1_15·b_5_27 + c_4_19·b_1_17·b_3_12
       + c_4_19·b_1_19·b_1_3 + c_8_71·a_1_0·b_1_12·b_3_12 + c_4_19·b_1_12·a_3_10·b_5_27
       + c_4_19·b_1_17·a_3_10 + c_4_19·a_1_0·b_1_14·b_5_29 + c_4_19·a_1_0·b_1_16·b_3_12
       + c_4_19·a_1_0·b_1_18·b_1_3 + c_8_71·a_1_02·b_1_14
       + c_4_19·a_1_0·b_1_1·a_3_10·b_5_27 + c_4_19·a_1_0·b_1_16·a_3_10
       + c_8_71·a_1_02·b_1_1·a_3_10 + c_4_19·a_1_02·a_3_10·b_5_27 + c_4_19·c_8_71·b_1_32
       + c_4_19·c_8_71·b_1_12 + c_4_192·b_3_11·b_3_12 + c_4_192·b_1_3·b_5_29
       + c_4_192·b_1_33·b_3_11 + c_4_192·b_1_36 + c_4_192·b_1_2·b_5_29
       + c_4_192·b_1_2·b_1_35 + c_4_192·b_1_22·b_1_3·b_3_12
       + c_4_192·b_1_22·b_1_3·b_3_11 + c_4_192·b_1_22·b_1_34 + c_4_192·b_1_23·b_3_12
       + c_4_192·b_1_23·b_3_11 + c_4_192·b_1_24·b_1_32 + c_4_192·b_1_25·b_1_3
       + c_4_192·b_1_26 + c_4_192·b_1_1·b_5_29 + c_4_192·b_1_13·b_3_12
       + c_4_192·b_1_16 + c_4_19·c_8_71·a_1_0·b_1_3 + c_4_19·c_8_71·a_1_0·b_1_1
       + c_4_192·b_1_13·a_3_10 + c_4_192·a_1_0·b_1_15 + c_4_192·a_1_02·b_1_14
       + c_4_193·b_1_32 + c_4_193·b_1_2·b_1_3 + c_4_193·b_1_22 + c_4_193·b_1_1·b_1_3
       + c_4_193·a_1_0·b_1_3 + c_4_193·a_1_0·b_1_1 + c_4_193·a_1_02


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 14.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_4_19, a Duflot regular element of degree 4
    2. c_8_71, a Duflot regular element of degree 8
    3. b_1_32 + b_1_2·b_1_3 + b_1_22 + b_1_1·b_1_3 + b_1_12, an element of degree 2
    4. b_1_32, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 7, 10, 12].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_30, an element of degree 1
  5. a_3_100, an element of degree 3
  6. b_3_110, an element of degree 3
  7. b_3_120, an element of degree 3
  8. c_4_19c_1_04, an element of degree 4
  9. b_5_270, an element of degree 5
  10. b_5_280, an element of degree 5
  11. b_5_290, an element of degree 5
  12. b_7_530, an element of degree 7
  13. b_7_540, an element of degree 7
  14. c_8_71c_1_18 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. b_1_1c_1_2, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_3c_1_2, an element of degree 1
  5. a_3_100, an element of degree 3
  6. b_3_110, an element of degree 3
  7. b_3_120, an element of degree 3
  8. c_4_19c_1_02·c_1_22 + c_1_04, an element of degree 4
  9. b_5_27c_1_0·c_1_24 + c_1_04·c_1_2, an element of degree 5
  10. b_5_28c_1_0·c_1_24 + c_1_04·c_1_2, an element of degree 5
  11. b_5_29c_1_25 + c_1_0·c_1_24 + c_1_04·c_1_2, an element of degree 5
  12. b_7_530, an element of degree 7
  13. b_7_54c_1_27 + c_1_0·c_1_26 + c_1_02·c_1_25, an element of degree 7
  14. c_8_71c_1_28 + c_1_14·c_1_24 + c_1_18 + c_1_04·c_1_24 + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. b_1_1c_1_2, an element of degree 1
  3. b_1_20, an element of degree 1
  4. b_1_30, an element of degree 1
  5. a_3_100, an element of degree 3
  6. b_3_110, an element of degree 3
  7. b_3_12c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
  8. c_4_19c_1_02·c_1_22 + c_1_04, an element of degree 4
  9. b_5_27c_1_25 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
  10. b_5_28c_1_0·c_1_24 + c_1_04·c_1_2, an element of degree 5
  11. b_5_29c_1_25 + c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
  12. b_7_53c_1_27 + c_1_03·c_1_24 + c_1_04·c_1_23 + c_1_05·c_1_22 + c_1_06·c_1_2, an element of degree 7
  13. b_7_54c_1_12·c_1_25 + c_1_14·c_1_23 + c_1_0·c_1_12·c_1_24 + c_1_0·c_1_14·c_1_22
       + c_1_02·c_1_25 + c_1_02·c_1_12·c_1_23 + c_1_02·c_1_14·c_1_2
       + c_1_04·c_1_23, an element of degree 7
  14. c_8_71c_1_12·c_1_26 + c_1_18 + c_1_0·c_1_27 + c_1_0·c_1_12·c_1_25
       + c_1_0·c_1_14·c_1_23 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_22
       + c_1_08, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. b_1_10, an element of degree 1
  3. b_1_2c_1_2, an element of degree 1
  4. b_1_3c_1_3, an element of degree 1
  5. a_3_100, an element of degree 3
  6. b_3_11c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
  7. b_3_12c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_32 + c_1_0·c_1_22 + c_1_02·c_1_3
       + c_1_02·c_1_2, an element of degree 3
  8. c_4_19c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22
       + c_1_0·c_1_33 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_04, an element of degree 4
  9. b_5_27c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3 + c_1_1·c_1_24 + c_1_12·c_1_2·c_1_32
       + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_0·c_1_34 + c_1_0·c_1_2·c_1_33
       + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_23·c_1_3 + c_1_02·c_1_33
       + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
  10. b_5_28c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_2·c_1_32
       + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_0·c_1_24
       + c_1_04·c_1_2, an element of degree 5
  11. b_5_29c_1_1·c_1_2·c_1_33 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_33 + c_1_12·c_1_23
       + c_1_14·c_1_3 + c_1_14·c_1_2 + c_1_0·c_1_2·c_1_33 + c_1_02·c_1_33
       + c_1_02·c_1_22·c_1_3 + c_1_04·c_1_3, an element of degree 5
  12. b_7_53c_1_1·c_1_22·c_1_34 + c_1_1·c_1_24·c_1_32 + c_1_1·c_1_25·c_1_3 + c_1_1·c_1_26
       + c_1_12·c_1_2·c_1_34 + c_1_12·c_1_23·c_1_32 + c_1_14·c_1_22·c_1_3
       + c_1_14·c_1_23 + c_1_0·c_1_36 + c_1_0·c_1_2·c_1_35 + c_1_0·c_1_22·c_1_34
       + c_1_0·c_1_23·c_1_33 + c_1_0·c_1_26 + c_1_0·c_1_1·c_1_25
       + c_1_0·c_1_14·c_1_22 + c_1_02·c_1_35 + c_1_02·c_1_22·c_1_33
       + c_1_02·c_1_24·c_1_3 + c_1_02·c_1_25 + c_1_02·c_1_12·c_1_23
       + c_1_02·c_1_14·c_1_2 + c_1_03·c_1_34 + c_1_03·c_1_22·c_1_32
       + c_1_03·c_1_23·c_1_3 + c_1_04·c_1_33 + c_1_04·c_1_2·c_1_32
       + c_1_04·c_1_1·c_1_22 + c_1_04·c_1_12·c_1_2 + c_1_05·c_1_32 + c_1_06·c_1_3, an element of degree 7
  13. b_7_54c_1_1·c_1_2·c_1_35 + c_1_1·c_1_22·c_1_34 + c_1_1·c_1_23·c_1_33
       + c_1_1·c_1_24·c_1_32 + c_1_12·c_1_35 + c_1_12·c_1_2·c_1_34 + c_1_13·c_1_24
       + c_1_14·c_1_33 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_23 + c_1_15·c_1_22
       + c_1_16·c_1_2 + c_1_0·c_1_22·c_1_34 + c_1_0·c_1_23·c_1_33 + c_1_0·c_1_25·c_1_3
       + c_1_0·c_1_1·c_1_2·c_1_34 + c_1_0·c_1_1·c_1_22·c_1_33
       + c_1_0·c_1_1·c_1_23·c_1_32 + c_1_0·c_1_1·c_1_25 + c_1_0·c_1_12·c_1_34
       + c_1_0·c_1_12·c_1_2·c_1_33 + c_1_0·c_1_14·c_1_32 + c_1_0·c_1_14·c_1_22
       + c_1_02·c_1_2·c_1_34 + c_1_02·c_1_23·c_1_32 + c_1_02·c_1_24·c_1_3
       + c_1_02·c_1_1·c_1_2·c_1_33 + c_1_02·c_1_1·c_1_24 + c_1_02·c_1_12·c_1_33
       + c_1_02·c_1_12·c_1_22·c_1_3 + c_1_02·c_1_14·c_1_3 + c_1_02·c_1_14·c_1_2
       + c_1_03·c_1_2·c_1_33 + c_1_03·c_1_23·c_1_3 + c_1_04·c_1_2·c_1_32
       + c_1_04·c_1_22·c_1_3, an element of degree 7
  14. c_8_71c_1_1·c_1_22·c_1_35 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_24·c_1_33
       + c_1_1·c_1_25·c_1_32 + c_1_1·c_1_26·c_1_3 + c_1_12·c_1_2·c_1_35
       + c_1_12·c_1_26 + c_1_13·c_1_24·c_1_3 + c_1_14·c_1_34 + c_1_14·c_1_2·c_1_33
       + c_1_14·c_1_22·c_1_32 + c_1_15·c_1_22·c_1_3 + c_1_16·c_1_2·c_1_3 + c_1_18
       + c_1_0·c_1_37 + c_1_0·c_1_22·c_1_35 + c_1_0·c_1_27 + c_1_0·c_1_1·c_1_2·c_1_35
       + c_1_0·c_1_1·c_1_22·c_1_34 + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_1·c_1_26
       + c_1_0·c_1_12·c_1_35 + c_1_0·c_1_12·c_1_2·c_1_34
       + c_1_0·c_1_12·c_1_22·c_1_33 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_14·c_1_33
       + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_02·c_1_36 + c_1_02·c_1_2·c_1_35
       + c_1_02·c_1_23·c_1_33 + c_1_02·c_1_25·c_1_3 + c_1_02·c_1_1·c_1_2·c_1_34
       + c_1_02·c_1_1·c_1_22·c_1_33 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_34
       + c_1_02·c_1_12·c_1_2·c_1_33 + c_1_02·c_1_12·c_1_22·c_1_32
       + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_12·c_1_24 + c_1_02·c_1_14·c_1_32
       + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_03·c_1_35 + c_1_03·c_1_22·c_1_33
       + c_1_03·c_1_25 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_23·c_1_3
       + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_22·c_1_3 + c_1_04·c_1_12·c_1_2·c_1_3
       + c_1_05·c_1_33 + c_1_05·c_1_22·c_1_3 + c_1_05·c_1_23 + c_1_06·c_1_32
       + c_1_06·c_1_2·c_1_3 + c_1_06·c_1_22 + c_1_08, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009