Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1958 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t6 + t5 + t2 + t + 1) |
| (t − 1)3 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-5,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 8 minimal generators of maximal degree 8:
- a_1_2, a nilpotent element of degree 1
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_3, an element of degree 1
- c_2_8, a Duflot regular element of degree 2
- a_5_27, a nilpotent element of degree 5
- b_5_26, an element of degree 5
- c_8_56, a Duflot regular element of degree 8
Ring relations
There are 10 minimal relations of maximal degree 10:
- a_1_2·b_1_0
- b_1_12 + b_1_0·b_1_3 + b_1_0·b_1_1 + a_1_2·b_1_1 + a_1_22
- b_1_0·b_1_32 + a_1_23
- a_1_23·b_1_32
- b_1_04·b_1_1·b_1_3 + b_1_0·a_5_27
- a_1_2·b_5_26 + c_2_8·a_1_2·b_1_33 + c_2_8·a_1_22·b_1_32 + c_2_8·a_1_23·b_1_1
- b_1_32·b_5_26 + a_1_22·a_5_27 + c_2_8·b_1_35 + c_2_8·a_1_2·b_1_34
+ c_2_8·a_1_22·b_1_1·b_1_32
- b_1_03·b_1_1·b_1_3·b_5_26 + a_5_27·b_5_26 + c_2_8·b_1_33·a_5_27
+ c_2_8·a_1_2·b_1_32·a_5_27 + c_2_8·a_1_22·b_1_1·a_5_27
- b_5_262 + b_1_05·b_5_26 + b_1_09·b_1_3 + b_1_05·a_5_27 + c_8_56·b_1_02
+ c_2_8·b_1_03·b_5_26 + c_2_8·b_1_07·b_1_3 + c_2_82·b_1_36 + c_2_82·a_1_22·b_1_34 + c_2_83·b_1_03·b_1_3
- a_5_272 + a_1_2·b_1_34·a_5_27 + a_1_22·b_1_33·a_5_27 + c_8_56·a_1_22
+ c_2_8·a_1_22·b_1_36 + c_2_8·a_1_22·b_1_1·b_1_35 + c_2_83·a_1_23·b_1_3 + c_2_83·a_1_23·b_1_1
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_8, a Duflot regular element of degree 2
- c_8_56, a Duflot regular element of degree 8
- b_1_32 + b_1_02, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 5, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- c_2_8 → c_1_12, an element of degree 2
- a_5_27 → 0, an element of degree 5
- b_5_26 → 0, an element of degree 5
- c_8_56 → c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_2 → 0, an element of degree 1
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- c_2_8 → c_1_1·c_1_2 + c_1_12, an element of degree 2
- a_5_27 → 0, an element of degree 5
- b_5_26 → c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- c_8_56 → c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_24
+ c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_22 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- c_2_8 → c_1_12, an element of degree 2
- a_5_27 → 0, an element of degree 5
- b_5_26 → c_1_12·c_1_23, an element of degree 5
- c_8_56 → c_1_12·c_1_26 + c_1_04·c_1_24 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_2 → 0, an element of degree 1
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- c_2_8 → c_1_1·c_1_2 + c_1_12, an element of degree 2
- a_5_27 → 0, an element of degree 5
- b_5_26 → c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- c_8_56 → c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_24
+ c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_22 + c_1_08, an element of degree 8
|