Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 1964 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t5 + t4 + 2·t2 + 2·t + 1) |
| (t + 1) · (t − 1)3 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-4,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 16 minimal generators of maximal degree 8:
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_0, an element of degree 1
- b_1_3, an element of degree 1
- a_4_8, a nilpotent element of degree 4
- a_4_9, a nilpotent element of degree 4
- a_4_11, a nilpotent element of degree 4
- b_4_10, an element of degree 4
- c_4_12, a Duflot regular element of degree 4
- a_5_14, a nilpotent element of degree 5
- a_5_20, a nilpotent element of degree 5
- b_5_19, an element of degree 5
- a_8_30, a nilpotent element of degree 8
- a_8_26, a nilpotent element of degree 8
- b_8_36, an element of degree 8
- c_8_38, a Duflot regular element of degree 8
Ring relations
There are 82 minimal relations of maximal degree 16:
- a_1_2·b_1_0
- b_1_0·b_1_3 + a_1_1·b_1_0 + a_1_22 + a_1_1·a_1_2 + a_1_12
- a_1_12·b_1_0 + a_1_12·a_1_2
- a_1_22·b_1_3 + a_1_1·a_1_2·b_1_3 + a_1_12·b_1_3 + a_1_12·a_1_2 + a_1_13
- a_1_13·b_1_32
- a_1_1·b_1_04 + a_4_8·b_1_0
- a_4_9·a_1_1 + a_4_8·a_1_2
- a_1_1·b_1_04 + a_4_9·b_1_0
- a_4_9·a_1_2 + a_4_8·a_1_2 + a_4_8·a_1_1
- a_4_8·b_1_3 + a_4_11·a_1_1
- a_4_9·b_1_3 + a_1_12·b_1_33 + a_4_11·a_1_2 + a_4_8·a_1_2
- a_1_1·b_1_04 + b_4_10·a_1_1 + a_4_11·b_1_0 + a_4_8·a_1_2
- b_4_10·b_1_3 + a_1_1·b_1_04 + a_4_11·b_1_0 + a_4_9·b_1_3 + a_1_12·b_1_33
+ a_4_8·a_1_1
- b_4_10·a_1_2 + a_4_8·a_1_2 + a_4_8·a_1_1
- a_1_2·a_5_14 + a_1_1·a_5_20 + a_4_11·a_1_2·b_1_3 + c_4_12·a_1_22 + c_4_12·a_1_1·a_1_2
+ c_4_12·a_1_12
- b_1_0·a_5_20 + a_4_8·a_1_12 + c_4_12·a_1_1·b_1_0
- b_1_0·a_5_14 + a_1_1·b_5_19 + a_4_11·b_1_02 + a_4_8·b_1_02 + a_1_1·a_5_14
+ a_4_11·a_1_1·a_1_2
- b_1_3·b_5_19 + b_1_3·a_5_14 + b_1_0·a_5_14 + a_4_11·b_1_02 + a_4_8·b_1_02
+ a_1_2·a_5_20 + a_1_2·a_5_14 + a_1_1·a_5_14 + a_4_11·a_1_1·b_1_3 + a_4_11·a_1_1·a_1_2 + a_4_11·a_1_12
- a_1_2·b_5_19 + a_1_2·a_5_14 + a_4_11·a_1_1·a_1_2 + a_4_11·a_1_12 + a_4_8·a_1_12
- a_1_2·b_1_3·a_5_20 + a_1_1·b_1_3·a_5_20 + a_1_1·b_1_3·a_5_14 + a_4_11·a_1_1·b_1_32
+ a_1_12·a_5_20 + a_1_12·a_5_14 + a_4_11·a_1_12·b_1_3 + a_4_11·a_1_13 + c_4_12·a_1_12·a_1_2
- a_1_12·b_5_19 + a_1_12·a_5_20 + a_1_12·a_5_14 + c_4_12·a_1_12·a_1_2
+ c_4_12·a_1_13
- a_4_82
- a_4_92
- a_4_9·a_4_11 + a_4_8·a_4_11 + c_4_12·a_1_13·b_1_3
- a_4_8·a_4_9 + a_4_11·a_1_13·b_1_3
- a_4_11·b_1_04 + a_4_8·b_1_04 + a_4_8·b_4_10
- a_4_11·b_1_04 + a_4_9·b_4_10 + a_4_8·b_1_04
- a_4_8·a_4_11 + a_4_8·a_4_9 + a_1_12·b_1_3·a_5_14 + a_4_11·a_1_1·a_1_2·b_1_32
+ a_4_11·a_1_12·b_1_32
- a_1_1·b_1_32·a_5_20 + a_1_1·b_1_32·a_5_14 + a_1_12·b_1_36 + a_4_11·a_1_2·b_1_33
+ a_4_11·a_1_1·b_1_33 + a_4_112 + a_4_8·a_4_11 + a_4_8·a_4_9 + a_4_11·a_1_1·a_1_2·b_1_32 + a_4_11·a_1_12·b_1_32 + c_4_12·a_1_1·a_1_2·b_1_32 + c_4_12·a_1_12·b_1_32 + c_4_12·a_1_13·b_1_3
- a_1_1·b_1_02·b_5_19 + a_4_11·b_1_04 + a_4_11·b_4_10 + a_4_8·b_1_04 + a_4_8·a_4_11
+ a_4_11·a_1_12·b_1_32 + c_4_12·a_1_13·b_1_3
- b_1_03·b_5_19 + b_4_102 + a_4_11·b_1_04 + a_4_11·b_4_10 + a_4_8·a_4_11
+ a_4_11·a_1_12·b_1_32 + c_4_12·a_1_13·b_1_3
- a_4_9·a_5_14 + a_4_8·a_5_20 + a_4_11·a_1_1·a_1_2·b_1_33
- a_4_9·a_5_20 + a_4_9·a_5_14 + a_4_8·a_5_14 + a_4_11·a_1_1·a_1_2·b_1_33
+ a_4_112·a_1_1
- b_4_10·a_5_20 + a_4_9·a_5_14 + a_4_8·a_5_14 + a_4_11·a_1_1·a_1_2·b_1_33
+ a_4_112·a_1_1 + a_4_11·c_4_12·b_1_0 + a_4_8·c_4_12·b_1_0
- a_4_11·b_4_10·b_1_0 + a_4_8·b_5_19 + a_4_8·b_4_10·b_1_0 + a_4_8·a_5_14
- a_4_11·b_4_10·b_1_0 + a_4_9·b_5_19 + a_4_8·b_4_10·b_1_0 + a_4_9·a_5_14
- b_4_10·a_5_14 + a_4_11·b_5_19 + a_4_11·a_5_14 + a_4_9·a_5_14
+ a_4_11·a_1_1·a_1_2·b_1_33
- a_1_1·b_1_33·a_5_14 + a_8_30·a_1_1 + a_4_11·a_1_1·b_1_34 + a_4_8·a_5_14
+ a_4_11·a_1_1·a_1_2·b_1_33 + a_4_112·a_1_1 + c_4_12·a_1_12·b_1_33 + a_4_11·c_4_12·a_1_1 + a_4_8·c_4_12·a_1_2
- b_1_34·a_5_14 + a_8_30·b_1_3 + a_4_11·b_1_35 + a_1_1·b_1_33·a_5_14
+ a_1_12·b_1_37 + a_4_11·a_5_14 + a_4_11·a_1_1·b_1_34 + a_4_11·a_1_1·a_1_2·b_1_33 + a_4_112·a_1_2 + c_4_12·a_1_1·b_1_34 + a_4_11·c_4_12·b_1_3 + c_4_12·a_1_1·a_1_2·b_1_33 + c_4_12·a_1_12·b_1_33 + a_4_11·c_4_12·a_1_2
- a_8_30·b_1_0 + a_4_11·b_4_10·b_1_0 + a_4_11·c_4_12·b_1_0
- a_1_1·b_1_33·a_5_14 + a_1_12·b_1_37 + a_8_30·a_1_2 + a_4_11·a_1_2·b_1_34
+ a_4_11·a_1_1·b_1_34 + a_4_112·b_1_3 + a_4_9·a_5_14 + c_4_12·a_1_12·b_1_33 + a_4_11·c_4_12·a_1_2 + a_4_8·c_4_12·a_1_2 + a_4_8·c_4_12·a_1_1
- a_1_1·b_1_33·a_5_14 + a_8_26·a_1_1 + a_4_9·a_5_14 + a_4_112·a_1_1
+ c_4_12·a_1_12·b_1_33 + a_4_11·c_4_12·a_1_1 + a_4_8·c_4_12·a_1_2
- b_1_34·a_5_14 + a_8_26·b_1_3 + a_1_1·b_1_33·a_5_14 + a_4_11·a_5_20
+ a_4_11·a_1_1·b_1_34 + a_4_9·a_5_14 + a_4_112·a_1_1 + c_4_12·a_1_1·b_1_34 + a_4_11·c_4_12·b_1_3 + c_4_12·a_1_1·a_1_2·b_1_33 + c_4_12·a_1_12·b_1_33 + a_4_11·c_4_12·a_1_2 + a_4_8·c_4_12·a_1_2 + a_4_8·c_4_12·a_1_1
- a_8_26·b_1_0 + a_4_11·b_4_10·b_1_0 + a_4_8·b_4_10·b_1_0 + a_4_11·c_4_12·b_1_0
+ a_4_8·c_4_12·b_1_0
- a_1_1·b_1_33·a_5_14 + a_1_12·b_1_37 + a_8_26·a_1_2 + a_4_11·a_1_1·b_1_34
+ a_4_112·b_1_3 + a_4_9·a_5_14 + a_4_8·a_5_14 + a_4_112·a_1_2 + a_4_112·a_1_1 + c_4_12·a_1_12·b_1_33 + a_4_11·c_4_12·a_1_2 + a_4_8·c_4_12·a_1_2 + a_4_8·c_4_12·a_1_1
- b_8_36·a_1_1 + b_4_10·a_5_14 + a_4_11·b_4_10·b_1_0 + a_4_8·b_4_10·b_1_0
+ a_1_1·b_1_33·a_5_14 + a_1_12·b_1_37 + a_4_11·a_1_2·b_1_34 + a_4_112·b_1_3 + a_4_8·a_5_14 + a_4_112·a_1_2 + a_4_11·c_4_12·b_1_0 + a_4_8·c_4_12·b_1_0 + c_4_12·a_1_1·a_1_2·b_1_33 + c_4_12·a_1_12·b_1_33 + a_4_11·c_4_12·a_1_1 + a_4_8·c_4_12·a_1_1
- b_8_36·b_1_3 + b_1_34·a_5_20 + b_4_10·a_5_14 + a_4_11·b_1_35 + a_4_11·b_4_10·b_1_0
+ a_4_8·b_4_10·b_1_0 + a_4_11·a_5_20 + a_4_11·a_5_14 + a_4_11·a_1_2·b_1_34 + a_4_11·a_1_1·b_1_34 + a_4_112·b_1_3 + a_4_8·a_5_14 + a_4_11·a_1_1·a_1_2·b_1_33 + a_4_112·a_1_2 + a_4_11·c_4_12·b_1_3 + a_4_11·c_4_12·b_1_0 + a_4_8·c_4_12·b_1_0 + c_4_12·a_1_1·a_1_2·b_1_33 + a_4_11·c_4_12·a_1_1
- b_8_36·b_1_0 + b_4_10·b_5_19 + b_4_10·a_5_14 + a_4_11·b_4_10·b_1_0 + a_4_8·b_1_05
+ a_4_8·b_4_10·b_1_0 + b_4_10·c_4_12·b_1_0 + a_4_11·c_4_12·b_1_0 + a_4_8·c_4_12·b_1_0
- b_8_36·a_1_2 + a_1_12·b_1_37 + a_4_112·b_1_3 + a_4_8·a_5_14 + a_4_112·a_1_1
+ c_4_12·a_1_1·a_1_2·b_1_33 + c_4_12·a_1_12·b_1_33 + a_4_11·c_4_12·a_1_2 + a_4_8·c_4_12·a_1_2
- a_5_20·b_5_19 + a_5_14·a_5_20 + a_4_11·a_1_1·a_5_20 + a_4_11·a_1_1·a_5_14
+ a_4_112·a_1_1·b_1_3 + c_4_12·a_1_1·b_5_19 + c_4_12·a_1_1·a_5_14 + a_4_11·c_4_12·a_1_1·a_1_2 + a_4_8·c_4_12·a_1_12
- a_5_142 + a_4_112·b_1_32 + a_4_112·a_1_1·b_1_3 + a_4_8·a_1_1·a_5_14
+ c_8_38·a_1_12 + c_4_12·a_1_1·a_1_2·b_1_34 + c_4_122·a_1_22
- a_5_14·b_5_19 + a_4_8·b_1_0·b_5_19 + a_5_142 + a_4_11·a_1_1·a_5_20
+ a_4_112·a_1_2·b_1_3 + c_8_38·a_1_1·b_1_0 + a_4_8·c_4_12·a_1_12
- b_5_192 + b_4_10·b_1_0·b_5_19 + b_4_102·b_1_02 + a_4_11·b_1_0·b_5_19
+ a_4_8·b_1_06 + a_4_8·b_4_10·b_1_02 + a_5_142 + c_8_38·b_1_02 + a_4_8·c_4_12·b_1_02
- a_5_14·a_5_20 + a_4_11·b_1_3·a_5_20 + a_4_11·a_1_1·a_1_2·b_1_34
+ a_4_112·a_1_2·b_1_3 + a_4_112·a_1_1·b_1_3 + a_4_8·a_1_1·a_5_14 + c_8_38·a_1_1·a_1_2 + c_4_12·a_1_2·a_5_20 + c_4_12·a_1_1·a_5_20 + c_4_12·a_1_1·a_5_14 + c_4_12·a_1_1·a_1_2·b_1_34 + c_4_12·a_1_12·b_1_34 + a_4_11·c_4_12·a_1_1·b_1_3 + a_4_8·c_4_12·a_1_12 + c_4_122·a_1_12
- a_5_202 + a_4_11·a_1_1·a_1_2·b_1_34 + a_4_112·a_1_2·b_1_3 + c_8_38·a_1_22
+ c_4_12·a_1_12·b_1_34 + a_4_8·c_4_12·a_1_12 + c_4_122·a_1_22 + c_4_122·a_1_12
- a_4_8·a_8_30 + a_4_11·a_1_1·b_1_32·a_5_14 + a_4_112·a_1_1·b_1_33
+ c_4_12·a_1_12·b_1_3·a_5_14 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_32 + a_4_11·c_4_12·a_1_13·b_1_3
- a_4_9·a_8_30 + a_4_11·a_1_1·b_1_32·a_5_14 + a_4_11·a_1_1·a_1_2·b_1_36
+ a_4_112·a_1_1·b_1_33 + a_4_113 + c_4_12·a_1_12·b_1_3·a_5_14 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_32 + a_4_11·c_4_12·a_1_13·b_1_3 + c_4_122·a_1_13·b_1_3
- b_4_10·a_8_30 + a_4_11·b_4_102 + a_4_11·a_1_1·b_1_32·a_5_14 + a_4_113
+ a_4_11·b_4_10·c_4_12 + a_4_11·c_4_12·a_1_12·b_1_32 + a_4_11·c_4_12·a_1_13·b_1_3
- a_4_11·b_1_33·a_5_14 + a_4_11·a_8_30 + a_4_112·b_1_34
+ a_4_11·a_1_1·a_1_2·b_1_36 + a_4_112·a_1_2·b_1_33 + a_4_112·a_1_1·b_1_33 + a_4_11·a_1_12·b_1_3·a_5_14 + a_4_11·c_4_12·a_1_1·b_1_33 + a_4_112·c_4_12 + c_8_38·a_1_13·b_1_3 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_32 + a_4_11·c_4_12·a_1_12·b_1_32 + a_4_11·c_4_12·a_1_13·b_1_3
- a_4_8·a_8_26 + a_4_11·a_1_1·b_1_32·a_5_14 + c_4_12·a_1_12·b_1_3·a_5_14
+ a_4_11·c_4_12·a_1_1·a_1_2·b_1_32
- a_4_9·a_8_26 + a_4_11·a_1_1·b_1_32·a_5_14 + a_4_11·a_1_1·a_1_2·b_1_36 + a_4_113
+ c_4_12·a_1_12·b_1_3·a_5_14 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_32 + c_4_122·a_1_13·b_1_3
- b_4_10·a_8_26 + a_4_11·b_4_102 + a_4_8·b_4_102 + a_4_11·a_1_1·b_1_32·a_5_14
+ a_4_112·a_1_2·b_1_33 + a_4_113 + a_4_11·a_1_12·b_1_3·a_5_14 + a_4_11·b_4_10·c_4_12 + a_4_8·b_4_10·c_4_12 + a_4_11·c_4_12·a_1_12·b_1_32 + a_4_11·c_4_12·a_1_13·b_1_3
- a_4_11·b_1_33·a_5_14 + a_4_11·a_8_26 + a_4_11·a_1_1·b_1_32·a_5_14 + a_4_113
+ a_4_11·c_4_12·a_1_1·b_1_33 + a_4_112·c_4_12 + c_8_38·a_1_13·b_1_3 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_32 + a_4_11·c_4_12·a_1_12·b_1_32 + a_4_11·c_4_12·a_1_13·b_1_3
- a_4_11·b_4_102 + a_4_8·b_8_36 + a_4_8·b_4_102 + a_4_11·a_1_1·b_1_32·a_5_14
+ a_4_112·a_1_1·b_1_33 + a_4_113 + a_4_8·b_4_10·c_4_12 + c_4_12·a_1_12·b_1_3·a_5_14 + a_4_11·c_4_12·a_1_13·b_1_3
- a_4_11·b_4_102 + a_4_9·b_8_36 + a_4_8·b_4_102 + a_4_113 + a_4_8·b_4_10·c_4_12
+ c_4_12·a_1_12·b_1_3·a_5_14 + c_4_122·a_1_13·b_1_3
- b_4_10·b_8_36 + b_4_102·b_1_04 + b_4_103 + a_4_8·b_1_08 + a_4_8·b_4_10·b_1_04
+ a_4_112·a_1_2·b_1_33 + a_4_112·a_1_1·b_1_33 + a_4_113 + a_4_11·a_1_12·b_1_3·a_5_14 + c_8_38·b_1_04 + b_4_102·c_4_12 + a_4_11·b_4_10·c_4_12 + a_4_8·c_4_12·b_1_04 + a_4_8·b_4_10·c_4_12 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_32 + a_4_11·c_4_12·a_1_12·b_1_32
- a_4_11·b_8_36 + a_4_8·b_4_102 + a_4_11·b_1_33·a_5_20 + a_4_112·b_1_34
+ a_4_11·a_1_1·b_1_32·a_5_14 + a_4_11·a_1_1·a_1_2·b_1_36 + a_4_112·a_1_2·b_1_33 + a_4_112·a_1_1·b_1_33 + c_8_38·a_1_1·b_1_03 + a_4_11·b_4_10·c_4_12 + a_4_112·c_4_12 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_32 + a_4_11·c_4_12·a_1_12·b_1_32 + a_4_11·c_4_12·a_1_13·b_1_3 + c_4_122·a_1_13·b_1_3
- a_8_30·a_5_20 + a_4_11·a_8_30·a_1_1 + a_4_112·a_5_14 + a_4_112·a_1_2·b_1_34
+ a_4_113·b_1_3 + a_4_113·a_1_1 + c_8_38·a_1_1·a_1_2·b_1_33 + c_4_12·a_1_1·a_1_2·b_1_37 + c_4_12·a_8_30·a_1_1 + a_4_11·c_4_12·a_5_20 + a_4_11·c_4_12·a_1_2·b_1_34 + a_4_112·c_4_12·b_1_3 + a_4_8·c_8_38·a_1_2 + a_4_8·c_4_12·a_5_20 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_33 + a_4_112·c_4_12·a_1_2 + a_4_112·c_4_12·a_1_1 + c_4_122·a_1_1·a_1_2·b_1_33 + c_4_122·a_1_12·b_1_33 + a_4_11·c_4_122·a_1_1 + a_4_8·c_4_122·a_1_2 + a_4_8·c_4_122·a_1_1
- a_8_30·a_5_20 + a_8_30·a_5_14 + a_4_11·a_8_30·b_1_3 + a_4_112·a_5_14
+ a_4_112·a_1_2·b_1_34 + c_8_38·a_1_1·a_1_2·b_1_33 + c_8_38·a_1_12·b_1_33 + a_4_11·c_4_12·a_5_20 + a_4_11·c_4_12·a_5_14 + a_4_11·c_4_12·a_1_2·b_1_34 + a_4_8·c_8_38·a_1_2 + a_4_8·c_8_38·a_1_1 + a_4_8·c_4_12·a_5_14 + a_4_112·c_4_12·a_1_2 + a_4_112·c_4_12·a_1_1 + c_4_122·a_1_12·b_1_33 + a_4_8·c_4_122·a_1_2
- a_8_30·b_5_19 + a_4_8·b_4_102·b_1_0 + a_4_11·a_8_30·b_1_3 + a_4_112·a_1_1·b_1_34
+ a_4_113·a_1_1 + a_4_11·c_4_12·b_5_19 + a_4_8·c_8_38·b_1_0 + c_8_38·a_1_12·b_1_33 + c_4_12·a_1_1·a_1_2·b_1_37 + c_4_12·a_8_30·a_1_1 + a_4_112·c_4_12·b_1_3 + a_4_8·c_8_38·a_1_1 + a_4_8·c_4_12·a_5_20 + a_4_8·c_4_12·a_5_14 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_33 + a_4_112·c_4_12·a_1_1 + c_4_122·a_1_1·a_1_2·b_1_33 + a_4_11·c_4_122·a_1_1 + a_4_8·c_4_122·a_1_1
- a_8_26·a_5_20 + a_8_30·a_5_20 + a_4_11·b_1_34·a_5_20 + a_4_112·a_1_1·b_1_34
+ a_4_113·b_1_3 + a_4_113·a_1_1 + a_4_8·c_8_38·a_1_1 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_33 + a_4_112·c_4_12·a_1_2 + a_4_8·c_4_122·a_1_2 + a_4_8·c_4_122·a_1_1
- a_8_26·a_5_14 + a_8_30·a_5_20 + a_4_112·b_1_35 + a_4_112·a_5_14
+ a_4_112·a_1_2·b_1_34 + c_8_38·a_1_1·a_1_2·b_1_33 + c_8_38·a_1_12·b_1_33 + a_4_11·c_4_12·a_5_20 + a_4_11·c_4_12·a_5_14 + a_4_11·c_4_12·a_1_2·b_1_34 + a_4_11·c_4_12·a_1_1·b_1_34 + a_4_112·c_4_12·b_1_3 + a_4_8·c_4_12·a_5_14 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_33 + a_4_112·c_4_12·a_1_1 + c_4_122·a_1_12·b_1_33
- a_8_26·b_5_19 + a_4_8·b_4_10·b_5_19 + a_4_8·b_4_102·b_1_0 + a_4_112·b_1_35
+ a_4_112·a_1_2·b_1_34 + a_4_112·a_1_1·b_1_34 + a_4_113·a_1_1 + a_4_11·c_4_12·b_5_19 + a_4_8·c_8_38·b_1_0 + a_4_8·c_4_12·b_5_19 + c_8_38·a_1_12·b_1_33 + c_4_12·a_1_1·a_1_2·b_1_37 + c_4_12·a_8_30·a_1_1 + a_4_11·c_4_12·a_1_1·b_1_34 + a_4_8·c_8_38·a_1_2 + a_4_8·c_4_12·a_5_20 + a_4_112·c_4_12·a_1_2 + a_4_112·c_4_12·a_1_1 + c_4_122·a_1_1·a_1_2·b_1_33 + a_4_11·c_4_122·a_1_1 + a_4_8·c_4_122·a_1_2 + a_4_8·c_4_122·a_1_1
- b_8_36·a_5_20 + a_4_11·b_1_34·a_5_20 + a_4_112·a_5_14 + a_4_112·a_1_2·b_1_34
+ a_4_11·c_4_12·b_5_19 + a_4_8·c_4_12·b_5_19 + c_8_38·a_1_1·a_1_2·b_1_33 + c_8_38·a_1_12·b_1_33 + c_4_12·a_8_30·a_1_2 + c_4_12·a_8_30·a_1_1 + a_4_11·c_4_12·a_5_20 + a_4_11·c_4_12·a_5_14 + a_4_11·c_4_12·a_1_2·b_1_34 + a_4_112·c_4_12·b_1_3 + a_4_8·c_8_38·a_1_1 + a_4_11·c_4_122·b_1_0 + a_4_8·c_4_122·b_1_0 + c_4_122·a_1_1·a_1_2·b_1_33 + a_4_11·c_4_122·a_1_2 + a_4_11·c_4_122·a_1_1 + a_4_8·c_4_122·a_1_2
- b_8_36·a_5_14 + a_4_8·b_4_10·b_5_19 + a_4_11·b_1_34·a_5_20 + a_4_11·a_8_30·b_1_3
+ a_4_112·b_1_35 + a_4_112·a_5_14 + a_4_112·a_1_2·b_1_34 + a_4_112·a_1_1·b_1_34 + a_4_113·b_1_3 + a_4_11·c_8_38·b_1_0 + a_4_11·c_4_12·b_5_19 + a_4_8·c_8_38·b_1_0 + c_8_38·a_1_1·a_1_2·b_1_33 + c_4_12·a_1_1·a_1_2·b_1_37 + c_4_12·a_8_30·a_1_2 + c_4_12·a_8_30·a_1_1 + a_4_11·c_4_12·a_1_2·b_1_34 + a_4_11·c_4_12·a_1_1·b_1_34 + a_4_8·c_8_38·a_1_2 + a_4_8·c_8_38·a_1_1 + a_4_8·c_4_12·a_5_20 + a_4_112·c_4_12·a_1_2 + a_4_112·c_4_12·a_1_1 + c_4_122·a_1_12·b_1_33 + a_4_11·c_4_122·a_1_2 + a_4_11·c_4_122·a_1_1 + a_4_8·c_4_122·a_1_2 + a_4_8·c_4_122·a_1_1
- b_8_36·b_5_19 + b_4_102·b_1_05 + a_4_8·b_1_09 + a_4_8·b_4_10·b_5_19
+ a_4_8·b_4_10·b_1_05 + a_4_8·b_4_102·b_1_0 + a_4_11·b_1_34·a_5_20 + a_4_11·a_8_30·b_1_3 + a_4_112·b_1_35 + a_4_112·a_5_14 + c_8_38·b_1_05 + b_4_10·c_8_38·b_1_0 + b_4_10·c_4_12·b_5_19 + a_4_11·c_8_38·b_1_0 + a_4_11·c_4_12·b_5_19 + a_4_8·c_4_12·b_5_19 + a_4_8·c_4_12·b_1_05 + a_4_8·b_4_10·c_4_12·b_1_0 + c_8_38·a_1_1·a_1_2·b_1_33 + c_4_12·a_1_1·a_1_2·b_1_37 + c_4_12·a_8_30·a_1_2 + c_4_12·a_8_30·a_1_1 + a_4_11·c_4_12·a_1_2·b_1_34 + a_4_11·c_4_12·a_1_1·b_1_34 + a_4_8·c_8_38·a_1_2 + a_4_8·c_8_38·a_1_1 + a_4_8·c_4_12·a_5_14 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_33 + c_4_122·a_1_12·b_1_33 + a_4_11·c_4_122·a_1_2 + a_4_11·c_4_122·a_1_1 + a_4_8·c_4_122·a_1_2 + a_4_8·c_4_122·a_1_1
- a_8_302 + a_4_112·a_1_1·b_1_37 + a_4_113·a_1_1·b_1_33
+ c_8_38·a_1_12·b_1_36 + c_4_12·a_1_1·a_1_2·b_1_310 + c_4_122·a_1_1·a_1_2·b_1_36 + a_4_112·c_4_122
- a_8_30·a_8_26 + a_4_11·a_8_30·b_1_34 + a_4_11·a_8_30·a_1_1·b_1_33
+ a_4_113·b_1_34 + c_8_38·a_1_12·b_1_36 + c_4_12·a_1_1·a_1_2·b_1_310 + a_4_11·c_8_38·a_1_1·a_1_2·b_1_32 + a_4_11·c_8_38·a_1_12·b_1_32 + a_4_11·c_4_12·a_1_1·b_1_32·a_5_14 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_36 + c_4_122·a_1_1·a_1_2·b_1_36 + a_4_112·c_4_122 + a_4_11·c_4_122·a_1_12·b_1_32 + a_4_11·c_4_122·a_1_13·b_1_3
- a_8_262 + a_4_112·b_1_38 + a_4_112·a_1_1·b_1_37 + a_4_113·a_1_1·b_1_33
+ c_8_38·a_1_12·b_1_36 + c_4_12·a_1_1·a_1_2·b_1_310 + c_4_122·a_1_1·a_1_2·b_1_36 + a_4_112·c_4_122
- a_8_30·b_8_36 + a_4_8·b_4_103 + a_4_11·a_8_30·b_1_34
+ a_4_11·a_8_30·a_1_1·b_1_33 + a_4_112·a_1_2·b_1_37 + a_4_112·a_1_1·b_1_37 + a_4_112·a_8_30 + a_4_113·b_1_34 + a_4_113·a_1_1·b_1_33 + a_4_8·c_4_12·b_8_36 + a_4_8·b_4_10·c_8_38 + c_8_38·a_1_1·a_1_2·b_1_36 + c_4_12·a_1_1·a_1_2·b_1_310 + c_4_12·a_8_30·a_1_1·b_1_33 + a_4_11·c_4_12·b_1_33·a_5_20 + a_4_11·c_4_12·a_1_2·b_1_37 + a_4_11·c_4_12·a_8_30 + a_4_112·c_4_12·b_1_34 + a_4_11·c_8_38·a_1_12·b_1_32 + a_4_112·c_4_12·a_1_2·b_1_33 + a_4_112·c_4_12·a_1_1·b_1_33 + a_4_11·c_8_38·a_1_13·b_1_3 + c_4_12·c_8_38·a_1_1·b_1_03 + a_4_11·b_4_10·c_4_122 + a_4_8·b_4_10·c_4_122 + c_4_122·a_1_1·a_1_2·b_1_36 + c_4_122·a_1_12·b_1_36 + a_4_11·c_4_122·a_1_1·b_1_33 + c_4_122·a_1_12·b_1_3·a_5_14 + a_4_11·c_4_122·a_1_1·a_1_2·b_1_32 + a_4_11·c_4_122·a_1_12·b_1_32 + a_4_11·c_4_122·a_1_13·b_1_3 + c_4_123·a_1_13·b_1_3
- b_8_362 + b_4_103·b_1_04 + a_4_8·b_4_10·b_1_08 + a_4_112·b_1_38
+ a_4_11·a_8_30·a_1_1·b_1_33 + a_4_112·a_1_2·b_1_37 + a_4_112·a_8_30 + a_4_113·b_1_34 + b_4_10·c_8_38·b_1_04 + b_4_102·c_8_38 + a_4_8·c_8_38·b_1_04 + a_4_8·b_4_10·c_4_12·b_1_04 + a_4_8·b_4_102·c_4_12 + c_8_38·a_1_1·a_1_2·b_1_36 + c_8_38·a_1_12·b_1_36 + c_4_12·a_8_30·a_1_2·b_1_33 + c_4_12·a_8_30·a_1_1·b_1_33 + a_4_11·c_4_12·a_1_2·b_1_37 + a_4_112·c_4_12·b_1_34 + a_4_11·c_8_38·a_1_13·b_1_3 + a_4_11·c_4_12·a_1_12·b_1_3·a_5_14 + b_4_102·c_4_122 + c_4_122·a_1_1·a_1_2·b_1_36 + a_4_11·c_4_122·a_1_2·b_1_33 + a_4_11·c_4_122·a_1_1·b_1_33 + a_4_112·c_4_122 + a_4_11·c_4_122·a_1_1·a_1_2·b_1_32 + a_4_11·c_4_122·a_1_13·b_1_3
- a_8_26·b_8_36 + a_4_8·b_4_102·b_1_04 + a_4_11·b_1_37·a_5_20
+ a_4_11·a_8_30·b_1_34 + a_4_112·b_1_38 + a_4_11·a_8_30·a_1_1·b_1_33 + a_4_112·a_1_2·b_1_37 + a_4_112·a_8_30 + a_4_113·b_1_34 + a_4_8·c_8_38·b_1_04 + a_4_8·b_4_10·c_8_38 + a_4_8·b_4_102·c_4_12 + c_8_38·a_1_1·a_1_2·b_1_36 + c_4_12·a_1_1·a_1_2·b_1_310 + c_4_12·a_8_30·a_1_1·b_1_33 + a_4_11·c_4_12·b_1_33·a_5_20 + a_4_11·c_4_12·a_1_2·b_1_37 + a_4_11·c_4_12·a_8_30 + a_4_11·c_4_12·a_1_1·a_1_2·b_1_36 + a_4_112·c_4_12·a_1_2·b_1_33 + a_4_11·c_8_38·a_1_13·b_1_3 + c_4_12·c_8_38·a_1_1·b_1_03 + a_4_11·b_4_10·c_4_122 + a_4_8·b_4_10·c_4_122 + c_4_122·a_1_1·a_1_2·b_1_36 + c_4_122·a_1_12·b_1_36 + a_4_11·c_4_122·a_1_1·b_1_33 + a_4_11·c_4_122·a_1_13·b_1_3 + c_4_123·a_1_13·b_1_3
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_12, a Duflot regular element of degree 4
- c_8_38, a Duflot regular element of degree 8
- b_1_32 + b_1_02, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 8, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_4_8 → 0, an element of degree 4
- a_4_9 → 0, an element of degree 4
- a_4_11 → 0, an element of degree 4
- b_4_10 → 0, an element of degree 4
- c_4_12 → c_1_14, an element of degree 4
- a_5_14 → 0, an element of degree 5
- a_5_20 → 0, an element of degree 5
- b_5_19 → 0, an element of degree 5
- a_8_30 → 0, an element of degree 8
- a_8_26 → 0, an element of degree 8
- b_8_36 → 0, an element of degree 8
- c_8_38 → c_1_18 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- a_4_8 → 0, an element of degree 4
- a_4_9 → 0, an element of degree 4
- a_4_11 → 0, an element of degree 4
- b_4_10 → c_1_1·c_1_23 + c_1_12·c_1_22 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
- c_4_12 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- a_5_14 → 0, an element of degree 5
- a_5_20 → 0, an element of degree 5
- b_5_19 → c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- a_8_30 → 0, an element of degree 8
- a_8_26 → 0, an element of degree 8
- b_8_36 → c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_24 + c_1_03·c_1_25
+ c_1_04·c_1_24 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_22 + c_1_05·c_1_23 + c_1_06·c_1_22, an element of degree 8
- c_8_38 → c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_24 + c_1_15·c_1_23
+ c_1_16·c_1_22 + c_1_18 + c_1_0·c_1_12·c_1_25 + c_1_0·c_1_14·c_1_23 + c_1_02·c_1_26 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_14·c_1_22 + c_1_03·c_1_25 + c_1_04·c_1_24 + c_1_04·c_1_1·c_1_23 + c_1_04·c_1_12·c_1_22 + c_1_05·c_1_23 + c_1_06·c_1_22 + c_1_08, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_0 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- a_4_8 → 0, an element of degree 4
- a_4_9 → 0, an element of degree 4
- a_4_11 → 0, an element of degree 4
- b_4_10 → 0, an element of degree 4
- c_4_12 → c_1_14, an element of degree 4
- a_5_14 → 0, an element of degree 5
- a_5_20 → 0, an element of degree 5
- b_5_19 → 0, an element of degree 5
- a_8_30 → 0, an element of degree 8
- a_8_26 → 0, an element of degree 8
- b_8_36 → 0, an element of degree 8
- c_8_38 → c_1_18 + c_1_04·c_1_24 + c_1_08, an element of degree 8
|