Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 200 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
(t2 − t + 1) · (t2 + t + 1) |
| (t + 1) · (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-5,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 15 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- b_2_5, an element of degree 2
- a_3_7, a nilpotent element of degree 3
- b_3_8, an element of degree 3
- b_3_9, an element of degree 3
- b_4_13, an element of degree 4
- b_4_14, an element of degree 4
- c_4_15, a Duflot regular element of degree 4
- c_4_16, a Duflot regular element of degree 4
- b_5_25, an element of degree 5
- b_5_26, an element of degree 5
- b_6_38, an element of degree 6
Ring relations
There are 65 minimal relations of maximal degree 12:
- a_1_02
- a_1_0·b_1_1
- b_1_1·b_1_22 + b_1_12·b_1_2
- b_1_1·b_1_22 + a_2_4·a_1_0
- b_1_1·b_1_22 + a_2_4·b_1_1
- b_1_1·b_1_22 + b_2_5·a_1_0
- b_2_5·b_1_1·b_1_2 + a_2_42
- a_1_0·a_3_7
- b_1_1·a_3_7
- a_1_0·b_3_8
- b_1_1·b_3_8
- a_1_0·b_3_9
- b_1_22·b_3_9 + b_2_5·b_3_8 + b_2_5·a_3_7 + a_2_4·b_3_8
- b_1_1·b_1_2·b_3_9 + a_2_4·a_3_7
- b_2_5·a_3_7 + a_2_4·b_3_9
- b_4_13·b_1_2 + b_2_5·b_3_8 + b_2_52·b_1_2 + b_1_22·a_3_7 + b_2_5·a_3_7 + a_2_4·b_1_23
- b_4_13·a_1_0
- b_1_22·a_3_7 + b_4_14·a_1_0 + a_2_4·b_3_8 + a_2_4·a_3_7
- b_4_14·b_1_1
- a_3_72 + a_2_42·b_2_5
- a_3_7·b_3_8 + a_2_4·b_2_5·b_1_22 + a_2_42·b_2_5
- b_3_82 + b_2_5·b_1_24 + a_2_42·b_2_5
- a_3_7·b_3_9 + a_2_4·b_2_52
- b_3_8·b_3_9 + b_2_52·b_1_22 + a_2_4·b_2_5·b_1_22 + a_2_4·b_2_52 + a_2_42·b_2_5
- a_2_4·b_1_2·b_3_9 + a_2_4·b_4_13 + a_2_4·b_2_52
- b_3_92 + b_4_13·b_1_12 + b_2_5·b_1_1·b_3_9 + b_2_53 + a_2_42·b_2_5
+ c_4_15·b_1_12
- b_1_2·b_5_25 + b_2_5·b_1_2·b_3_9 + b_2_5·b_1_2·b_3_8 + b_4_14·a_1_0·b_1_2
+ a_2_4·b_1_24 + a_2_4·b_4_14 + a_2_4·b_2_5·b_1_22
- a_1_0·b_5_25
- b_1_1·b_5_25 + b_2_5·b_1_2·b_3_9 + b_2_5·b_4_13 + b_2_53 + a_2_4·b_2_5·b_1_22
+ a_2_42·b_2_5
- a_1_0·b_5_26 + c_4_15·a_1_0·b_1_2
- b_1_1·b_5_26 + b_2_5·b_1_1·b_3_9 + c_4_15·b_1_1·b_1_2
- b_4_13·a_3_7 + a_2_4·b_2_5·b_3_9 + a_2_4·b_2_52·b_1_2
- b_4_13·b_3_8 + b_2_52·b_3_8 + b_2_52·b_1_23 + a_2_4·b_1_22·b_3_8
+ a_2_4·b_2_5·b_1_23 + a_2_4·b_2_52·b_1_2
- a_2_4·b_5_25 + a_2_4·b_2_5·b_3_9 + a_2_4·b_2_5·b_3_8
- b_4_14·b_3_9 + b_2_5·b_5_26 + b_2_52·b_3_9 + b_2_52·b_3_8 + b_4_14·a_3_7
+ b_4_14·a_1_0·b_1_22 + a_2_4·b_2_5·b_3_9 + a_2_4·b_2_5·b_1_23 + b_2_5·c_4_15·b_1_2 + c_4_15·a_1_0·b_1_22 + a_2_4·c_4_15·a_1_0
- b_1_22·b_5_26 + b_4_14·b_3_8 + b_2_5·b_1_22·b_3_8 + b_2_52·b_3_8 + b_4_14·a_3_7
+ a_2_4·b_1_25 + a_2_4·b_2_5·b_3_9 + a_2_42·b_3_9 + c_4_15·b_1_23 + c_4_15·a_1_0·b_1_22 + a_2_4·c_4_16·a_1_0
- b_4_14·a_3_7 + b_4_14·a_1_0·b_1_22 + a_2_4·b_5_26 + a_2_4·b_2_5·b_3_9
+ a_2_4·b_2_5·b_3_8 + a_2_42·b_3_9 + c_4_15·a_1_0·b_1_22 + a_2_4·c_4_15·b_1_2 + a_2_4·c_4_15·a_1_0
- b_1_24·b_3_8 + b_6_38·b_1_2 + b_4_14·b_1_23 + b_2_5·b_1_25 + b_2_52·b_3_8
+ b_2_53·b_1_2 + b_4_14·a_3_7 + b_4_14·a_1_0·b_1_22 + a_2_4·b_1_25 + a_2_4·b_2_5·b_3_9 + a_2_4·b_2_5·b_3_8 + a_2_4·b_2_5·b_1_23 + a_2_4·b_2_52·b_1_2 + a_2_42·b_3_9 + c_4_16·b_1_23 + b_2_5·c_4_16·b_1_2 + b_2_5·c_4_15·b_1_2 + a_2_4·c_4_16·a_1_0
- b_6_38·a_1_0 + b_4_14·a_1_0·b_1_22 + c_4_16·a_1_0·b_1_22 + a_2_4·c_4_16·a_1_0
+ a_2_4·c_4_15·a_1_0
- b_6_38·b_1_1 + b_4_13·b_3_9 + b_2_52·b_3_9 + b_2_53·b_1_2 + a_2_4·b_2_5·b_3_8
+ c_4_15·b_1_13 + b_2_5·c_4_16·b_1_1 + b_2_5·c_4_15·b_1_1 + a_2_4·c_4_15·a_1_0
- b_4_132 + b_2_5·b_1_13·b_3_9 + b_2_52·b_1_14 + b_2_53·b_1_22 + b_2_53·b_1_12
+ b_2_54 + c_4_16·b_1_14 + c_4_15·b_1_14
- b_4_14·b_1_24 + b_4_142 + b_2_5·b_1_23·b_3_8 + b_2_5·b_1_26
+ b_4_14·a_1_0·b_1_23 + a_2_4·b_1_23·b_3_8 + a_2_4·b_1_26 + a_2_4·b_4_14·b_1_22 + a_2_4·b_2_5·b_1_2·b_3_8 + c_4_15·b_1_24 + a_2_42·c_4_16
- a_3_7·b_5_25 + a_2_4·b_2_52·b_1_22 + a_2_4·b_2_53 + a_2_42·b_2_52
- a_3_7·b_5_26 + a_2_4·b_2_5·b_4_14 + a_2_4·b_2_52·b_1_22 + a_2_4·b_2_53
+ c_4_15·b_1_2·a_3_7
- b_3_8·b_5_25 + b_4_13·b_4_14 + b_2_5·b_1_2·b_5_26 + b_2_52·b_1_2·b_3_9
+ b_2_52·b_1_2·b_3_8 + b_2_52·b_1_24 + b_2_52·b_4_14 + b_2_53·b_1_22 + b_4_14·a_1_0·b_1_23 + a_2_4·b_1_23·b_3_8 + a_2_4·b_4_14·b_1_22 + a_2_4·b_2_5·b_1_2·b_3_8 + a_2_4·b_2_5·b_1_24 + a_2_4·b_2_5·b_4_13 + a_2_4·b_2_52·b_1_22 + b_2_5·c_4_15·b_1_22 + c_4_15·a_1_0·b_1_23
- b_3_8·b_5_25 + b_2_52·b_1_24 + b_2_53·b_1_22 + a_2_4·b_1_2·b_5_26
+ a_2_4·b_1_23·b_3_8 + a_2_4·b_2_5·b_4_13 + a_2_4·b_2_52·b_1_22 + a_2_4·c_4_15·b_1_22
- b_3_8·b_5_26 + b_2_5·b_4_14·b_1_22 + b_2_52·b_1_24 + b_2_53·b_1_22
+ a_2_4·b_1_23·b_3_8 + a_2_4·b_2_5·b_4_14 + a_2_4·b_2_53 + a_2_42·b_2_52 + c_4_15·b_1_2·b_3_8
- b_3_9·b_5_26 + b_2_5·b_4_13·b_1_12 + b_2_52·b_1_1·b_3_9 + b_2_52·b_4_14
+ b_2_53·b_1_22 + b_2_54 + a_2_4·b_2_5·b_1_2·b_3_8 + a_2_4·b_2_5·b_4_14 + a_2_4·b_2_52·b_1_22 + c_4_15·b_1_2·b_3_9 + b_2_5·c_4_15·b_1_12
- b_3_9·b_5_25 + b_2_5·b_1_23·b_3_8 + b_2_5·b_6_38 + b_2_5·b_4_14·b_1_22
+ b_2_52·b_1_2·b_3_9 + b_2_52·b_1_24 + b_2_53·b_1_22 + a_2_4·b_2_5·b_1_2·b_3_8 + a_2_4·b_2_5·b_1_24 + a_2_4·b_2_5·b_4_13 + a_2_4·b_2_53 + b_2_5·c_4_16·b_1_22 + b_2_5·c_4_15·b_1_12 + b_2_52·c_4_16 + b_2_52·c_4_15 + a_2_42·c_4_16
- a_2_4·b_1_23·b_3_8 + a_2_4·b_6_38 + a_2_4·b_4_14·b_1_22 + a_2_4·b_2_5·b_1_24
+ a_2_4·b_2_5·b_4_13 + a_2_42·b_2_52 + a_2_4·c_4_16·b_1_22 + a_2_4·b_2_5·c_4_16 + a_2_4·b_2_5·c_4_15
- b_4_14·b_5_25 + b_4_13·b_5_25 + b_2_5·b_4_14·b_3_8 + b_2_52·b_5_26 + b_2_52·b_5_25
+ b_2_52·b_1_12·b_3_9 + b_2_53·b_3_9 + b_2_53·b_3_8 + b_2_53·b_1_23 + b_2_53·b_1_13 + b_2_54·b_1_2 + b_2_54·b_1_1 + b_4_142·a_1_0 + a_2_4·b_2_5·b_1_22·b_3_8 + a_2_4·b_2_5·b_1_25 + a_2_4·b_2_5·b_4_14·b_1_2 + a_2_4·b_2_52·b_3_9 + a_2_4·b_2_53·b_1_2 + b_2_5·c_4_16·b_1_13 + b_2_5·c_4_15·b_1_13 + b_2_52·c_4_15·b_1_2 + a_2_4·c_4_15·b_1_23
- b_4_13·b_5_25 + b_2_52·b_5_25 + b_2_52·b_1_12·b_3_9 + b_2_53·b_1_23
+ b_2_53·b_1_13 + b_2_54·b_1_2 + b_2_54·b_1_1 + a_2_4·b_2_5·b_5_26 + a_2_4·b_2_52·b_3_9 + a_2_4·b_2_52·b_3_8 + a_2_4·b_2_52·b_1_23 + a_2_4·b_2_53·b_1_2 + a_2_42·b_2_5·b_3_9 + b_2_5·c_4_16·b_1_13 + b_2_5·c_4_15·b_1_13 + a_2_4·b_2_5·c_4_15·b_1_2
- b_4_14·b_5_25 + b_4_13·b_5_26 + b_4_13·b_5_25 + b_2_5·b_4_14·b_3_8 + b_2_5·b_4_13·b_3_9
+ b_2_52·b_5_25 + b_2_52·b_1_12·b_3_9 + b_2_52·b_4_14·b_1_2 + b_2_53·b_3_8 + b_2_53·b_1_13 + b_2_54·b_1_2 + b_2_54·b_1_1 + b_4_142·a_1_0 + a_2_4·b_4_14·b_3_8 + a_2_4·b_2_5·b_1_22·b_3_8 + a_2_4·b_2_5·b_1_25 + a_2_4·b_2_52·b_3_9 + a_2_4·b_2_52·b_1_23 + a_2_4·b_2_53·b_1_2 + b_2_5·c_4_16·b_1_13 + b_2_5·c_4_15·b_3_8 + b_2_5·c_4_15·b_1_13 + b_2_52·c_4_15·b_1_2 + b_4_14·c_4_15·a_1_0 + a_2_4·c_4_15·b_3_9 + a_2_4·c_4_15·b_3_8 + a_2_4·c_4_15·a_3_7
- b_6_38·a_3_7 + b_4_142·a_1_0 + a_2_4·b_4_14·b_3_8 + a_2_4·b_2_5·b_1_22·b_3_8
+ a_2_4·b_2_5·b_1_25 + a_2_4·b_2_52·b_3_9 + a_2_4·b_2_53·b_1_2 + a_2_42·b_2_5·b_3_9 + b_4_14·c_4_16·a_1_0 + a_2_4·c_4_16·b_3_9 + a_2_4·c_4_16·b_3_8 + a_2_4·c_4_15·b_3_9 + a_2_4·c_4_16·a_3_7
- b_4_14·b_5_26 + b_4_14·b_5_25 + b_4_14·b_1_22·b_3_8 + b_2_5·b_6_38·b_1_2
+ b_2_5·b_4_14·b_1_23 + b_2_53·b_3_8 + b_2_54·b_1_2 + a_2_4·b_6_38·b_1_2 + a_2_4·b_2_5·b_4_14·b_1_2 + a_2_4·b_2_52·b_3_9 + a_2_4·b_2_52·b_1_23 + c_4_15·b_1_22·b_3_8 + b_4_14·c_4_15·b_1_2 + b_2_5·c_4_16·b_1_23 + b_2_52·c_4_16·b_1_2 + b_2_52·c_4_15·b_1_2 + a_2_4·c_4_16·b_1_23 + a_2_4·c_4_15·b_3_8 + a_2_4·c_4_15·b_1_23 + a_2_4·b_2_5·c_4_16·b_1_2 + a_2_4·b_2_5·c_4_15·b_1_2 + a_2_4·c_4_16·a_3_7 + a_2_4·c_4_15·a_3_7
- b_6_38·b_3_8 + b_4_14·b_5_26 + b_4_14·b_5_25 + b_4_13·b_5_25 + b_2_5·b_1_27
+ b_2_52·b_5_25 + b_2_52·b_1_25 + b_2_52·b_1_12·b_3_9 + b_2_53·b_3_8 + b_2_53·b_1_13 + b_2_54·b_1_2 + b_2_54·b_1_1 + a_2_4·b_4_14·b_1_23 + a_2_4·b_2_5·b_1_22·b_3_8 + a_2_4·b_2_52·b_3_8 + c_4_16·b_1_22·b_3_8 + c_4_15·b_1_22·b_3_8 + b_4_14·c_4_15·b_1_2 + b_2_5·c_4_16·b_3_8 + b_2_5·c_4_16·b_1_13 + b_2_5·c_4_15·b_3_8 + b_2_5·c_4_15·b_1_13 + a_2_4·c_4_15·b_3_8 + a_2_4·c_4_15·b_1_23 + a_2_4·c_4_16·a_3_7 + a_2_4·c_4_15·a_3_7
- b_6_38·b_3_9 + b_4_13·b_5_25 + b_2_5·b_1_14·b_3_9 + b_2_5·b_4_14·b_3_8
+ b_2_5·b_4_13·b_3_9 + b_2_52·b_1_22·b_3_8 + b_2_52·b_1_25 + b_2_52·b_1_12·b_3_9 + b_2_52·b_1_15 + b_2_52·b_4_13·b_1_1 + b_2_53·b_3_9 + b_2_53·b_3_8 + b_2_53·b_1_23 + b_2_54·b_1_2 + a_2_4·b_4_14·b_3_8 + a_2_4·b_2_5·b_1_25 + a_2_4·b_2_52·b_3_9 + a_2_4·b_2_52·b_3_8 + a_2_4·b_2_52·b_1_23 + a_2_42·b_2_5·b_3_9 + c_4_16·b_1_15 + c_4_15·b_1_12·b_3_9 + c_4_15·b_1_15 + b_4_13·c_4_15·b_1_1 + b_2_5·c_4_16·b_3_9 + b_2_5·c_4_16·b_3_8 + b_2_5·c_4_16·b_1_13 + b_2_5·c_4_15·b_3_9 + b_2_5·c_4_15·b_1_13 + b_2_52·c_4_15·b_1_1 + a_2_4·c_4_16·b_3_9 + a_2_4·c_4_16·b_3_8 + a_2_4·c_4_16·a_3_7 + a_2_4·c_4_15·a_3_7
- b_5_252 + b_2_53·b_1_24 + b_2_53·b_1_1·b_3_9 + b_2_54·b_1_12 + b_2_55
+ b_2_52·c_4_16·b_1_12 + b_2_52·c_4_15·b_1_12
- b_5_262 + b_2_5·b_4_142 + b_2_52·b_4_13·b_1_12 + b_2_53·b_1_24
+ b_2_53·b_1_1·b_3_9 + b_2_55 + a_2_42·b_2_53 + b_2_52·c_4_15·b_1_12 + c_4_152·b_1_22
- b_5_25·b_5_26 + b_2_52·b_1_23·b_3_8 + b_2_52·b_6_38 + b_2_53·b_1_2·b_3_9
+ b_2_53·b_4_14 + a_2_4·b_2_5·b_6_38 + a_2_4·b_2_5·b_4_14·b_1_22 + a_2_4·b_2_52·b_1_2·b_3_8 + a_2_4·b_2_52·b_1_24 + a_2_4·b_2_54 + b_2_5·c_4_15·b_1_2·b_3_9 + b_2_5·c_4_15·b_1_2·b_3_8 + b_2_52·c_4_16·b_1_22 + b_2_52·c_4_15·b_1_12 + b_2_53·c_4_16 + b_2_53·c_4_15 + b_4_14·c_4_15·a_1_0·b_1_2 + a_2_4·c_4_15·b_1_2·b_3_8 + a_2_4·c_4_15·b_1_24 + a_2_4·b_4_14·c_4_15 + a_2_4·b_2_5·c_4_16·b_1_22 + a_2_4·b_2_5·c_4_15·b_1_22 + a_2_4·b_2_52·c_4_16 + a_2_4·b_2_52·c_4_15 + a_2_42·b_2_5·c_4_16
- b_4_13·b_6_38 + b_2_5·b_4_14·b_1_2·b_3_8 + b_2_5·b_4_13·b_1_14
+ b_2_52·b_1_23·b_3_8 + b_2_52·b_1_26 + b_2_52·b_6_38 + b_2_53·b_1_2·b_3_9 + b_2_53·b_1_1·b_3_9 + b_2_54·b_1_22 + b_2_54·b_1_12 + b_4_142·a_1_0·b_1_2 + a_2_4·b_6_38·b_1_22 + a_2_4·b_4_14·b_1_2·b_3_8 + a_2_4·b_2_5·b_1_2·b_5_26 + a_2_4·b_2_5·b_1_26 + a_2_4·b_2_52·b_1_2·b_3_8 + a_2_4·b_2_52·b_1_24 + a_2_4·b_2_52·b_4_14 + a_2_42·b_2_53 + c_4_16·b_1_13·b_3_9 + c_4_15·b_1_13·b_3_9 + b_4_13·c_4_15·b_1_12 + b_2_5·c_4_16·b_1_2·b_3_8 + b_2_5·c_4_15·b_1_14 + b_2_5·b_4_13·c_4_16 + b_2_5·b_4_13·c_4_15 + b_2_52·c_4_15·b_1_12 + b_2_53·c_4_16 + b_2_53·c_4_15 + b_4_14·c_4_16·a_1_0·b_1_2 + a_2_4·c_4_16·b_1_2·b_3_8 + a_2_4·b_4_13·c_4_16 + a_2_4·b_2_5·c_4_16·b_1_22 + a_2_4·b_2_52·c_4_16
- b_5_25·b_5_26 + b_4_14·b_1_23·b_3_8 + b_4_14·b_6_38 + b_4_142·b_1_22
+ b_2_5·b_4_142 + b_2_52·b_1_2·b_5_26 + b_2_52·b_1_26 + b_2_52·b_6_38 + b_2_53·b_1_2·b_3_8 + a_2_4·b_4_14·b_1_2·b_3_8 + a_2_4·b_4_142 + a_2_4·b_2_5·b_1_2·b_5_26 + a_2_4·b_2_52·b_1_2·b_3_8 + a_2_4·b_2_52·b_4_14 + a_2_4·b_2_52·b_4_13 + a_2_4·b_2_54 + a_2_42·b_2_53 + b_4_14·c_4_16·b_1_22 + b_2_5·c_4_15·b_1_2·b_3_9 + b_2_5·c_4_15·b_1_2·b_3_8 + b_2_5·c_4_15·b_1_24 + b_2_5·b_4_14·c_4_16 + b_2_5·b_4_14·c_4_15 + b_2_52·c_4_16·b_1_22 + b_2_52·c_4_15·b_1_22 + b_2_52·c_4_15·b_1_12 + b_2_53·c_4_16 + b_2_53·c_4_15 + a_2_4·b_4_14·c_4_15
- b_6_38·b_5_26 + b_6_38·b_5_25 + b_4_142·b_3_8 + b_2_5·b_4_14·b_1_22·b_3_8
+ b_2_5·b_4_142·b_1_2 + b_2_52·b_1_27 + b_2_52·b_1_14·b_3_9 + b_2_52·b_6_38·b_1_2 + b_2_52·b_4_14·b_1_23 + b_2_52·b_4_13·b_3_9 + b_2_52·b_4_13·b_1_13 + b_2_53·b_5_26 + b_2_53·b_5_25 + b_2_53·b_1_25 + b_2_53·b_1_15 + b_2_53·b_4_14·b_1_2 + b_2_53·b_4_13·b_1_1 + b_2_54·b_3_9 + b_2_54·b_3_8 + b_2_54·b_1_13 + a_2_4·b_4_14·b_1_22·b_3_8 + a_2_4·b_4_142·b_1_2 + a_2_4·b_2_5·b_1_27 + a_2_4·b_2_5·b_6_38·b_1_2 + a_2_4·b_2_5·b_4_14·b_3_8 + a_2_4·b_2_52·b_5_26 + a_2_4·b_2_52·b_1_22·b_3_8 + a_2_4·b_2_52·b_4_14·b_1_2 + a_2_4·b_2_53·b_3_8 + a_2_4·b_2_53·b_1_23 + a_2_4·b_2_54·b_1_2 + a_2_42·b_2_52·b_3_9 + c_4_15·b_6_38·b_1_2 + b_4_14·c_4_16·b_3_8 + b_2_5·c_4_16·b_5_26 + b_2_5·c_4_16·b_5_25 + b_2_5·c_4_16·b_1_12·b_3_9 + b_2_5·c_4_16·b_1_15 + b_2_5·c_4_15·b_5_26 + b_2_5·c_4_15·b_5_25 + b_2_5·c_4_15·b_1_25 + b_2_5·c_4_15·b_1_15 + b_2_52·c_4_16·b_1_23 + b_2_52·c_4_15·b_1_13 + b_2_53·c_4_16·b_1_2 + a_2_4·c_4_16·b_5_26 + a_2_4·c_4_15·b_1_22·b_3_8 + a_2_4·b_4_14·c_4_16·b_1_2 + a_2_4·b_2_5·c_4_16·b_3_9 + a_2_4·b_2_5·c_4_15·b_1_23 + a_2_4·b_2_52·c_4_16·b_1_2 + b_2_5·c_4_15·c_4_16·b_1_2 + b_2_5·c_4_152·b_1_2 + a_2_4·c_4_15·c_4_16·b_1_2 + a_2_4·c_4_162·a_1_0 + a_2_4·c_4_15·c_4_16·a_1_0
- b_6_38·b_5_26 + b_4_142·b_3_8 + b_2_5·b_4_142·b_1_2 + b_2_52·b_1_14·b_3_9
+ b_2_52·b_4_14·b_3_8 + b_2_52·b_4_13·b_3_9 + b_2_53·b_5_26 + b_2_53·b_5_25 + b_2_53·b_1_22·b_3_8 + b_2_53·b_1_25 + b_2_53·b_1_15 + b_2_53·b_4_14·b_1_2 + b_2_53·b_4_13·b_1_1 + b_2_54·b_3_8 + b_2_54·b_1_23 + b_2_54·b_1_13 + b_2_55·b_1_1 + b_4_142·a_1_0·b_1_22 + a_2_4·b_6_38·b_1_23 + a_2_4·b_2_5·b_1_27 + a_2_4·b_2_5·b_6_38·b_1_2 + a_2_4·b_2_52·b_1_25 + a_2_4·b_2_53·b_3_9 + a_2_4·b_2_53·b_3_8 + a_2_42·b_2_52·b_3_9 + c_4_15·b_6_38·b_1_2 + b_4_14·c_4_16·b_3_8 + b_2_5·c_4_16·b_5_26 + b_2_5·c_4_16·b_1_22·b_3_8 + b_2_5·c_4_16·b_1_15 + b_2_5·c_4_15·b_5_26 + b_2_5·c_4_15·b_1_25 + b_2_5·c_4_15·b_1_12·b_3_9 + b_2_5·c_4_15·b_1_15 + b_2_5·b_4_13·c_4_15·b_1_1 + b_2_52·c_4_16·b_3_8 + b_2_53·c_4_15·b_1_2 + b_2_53·c_4_15·b_1_1 + b_4_14·c_4_16·a_1_0·b_1_22 + a_2_4·c_4_16·b_5_26 + a_2_4·c_4_15·b_1_22·b_3_8 + a_2_4·b_2_5·c_4_16·b_3_8 + a_2_4·b_2_52·c_4_16·b_1_2 + a_2_4·b_2_52·c_4_15·b_1_2 + a_2_42·c_4_16·b_3_9 + a_2_42·c_4_15·b_3_9 + b_2_5·c_4_15·c_4_16·b_1_2 + b_2_5·c_4_152·b_1_2 + a_2_4·c_4_15·c_4_16·b_1_2 + a_2_4·c_4_162·a_1_0 + a_2_4·c_4_15·c_4_16·a_1_0
- b_6_382 + b_4_143 + b_2_5·b_1_210 + b_2_5·b_4_14·b_6_38
+ b_2_5·b_4_13·b_1_13·b_3_9 + b_2_52·b_6_38·b_1_22 + b_2_53·b_1_2·b_5_26 + b_2_53·b_1_26 + b_2_53·b_4_13·b_1_12 + b_2_54·b_1_2·b_3_9 + b_2_54·b_4_14 + b_2_56 + b_4_142·a_1_0·b_1_23 + a_2_4·b_4_14·b_6_38 + a_2_4·b_4_142·b_1_22 + a_2_4·b_2_5·b_4_142 + a_2_4·b_2_52·b_1_2·b_5_26 + a_2_4·b_2_52·b_6_38 + a_2_4·b_2_54·b_1_22 + a_2_4·b_2_55 + b_4_142·c_4_15 + b_4_13·c_4_16·b_1_14 + b_4_13·c_4_15·b_1_14 + b_2_5·c_4_16·b_1_13·b_3_9 + b_2_5·c_4_15·b_1_23·b_3_8 + b_2_5·b_4_14·c_4_16·b_1_22 + b_2_52·c_4_16·b_1_24 + b_2_52·b_4_14·c_4_16 + b_2_52·b_4_14·c_4_15 + b_2_53·c_4_16·b_1_22 + b_2_53·c_4_16·b_1_12 + b_4_14·c_4_15·a_1_0·b_1_23 + a_2_4·c_4_15·b_6_38 + a_2_4·b_4_14·c_4_16·b_1_22 + a_2_4·b_2_5·b_4_14·c_4_16 + a_2_4·b_2_5·b_4_14·c_4_15 + a_2_4·b_2_5·b_4_13·c_4_15 + a_2_4·b_2_52·c_4_16·b_1_22 + a_2_4·b_2_52·c_4_15·b_1_22 + a_2_4·b_2_53·c_4_16 + a_2_4·b_2_53·c_4_15 + a_2_42·b_2_52·c_4_15 + c_4_162·b_1_24 + c_4_15·c_4_16·b_1_14 + c_4_152·b_1_24 + b_2_52·c_4_162 + b_2_52·c_4_152 + a_2_4·c_4_15·c_4_16·b_1_22 + a_2_4·b_2_5·c_4_15·c_4_16 + a_2_4·b_2_5·c_4_152 + a_2_42·c_4_15·c_4_16
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_15, a Duflot regular element of degree 4
- c_4_16, a Duflot regular element of degree 4
- b_1_24 + b_1_14 + b_2_5·b_1_22 + b_2_52, an element of degree 4
- b_3_8 + b_2_5·b_1_2 + b_2_5·b_1_1, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, 3, 8, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_7 → 0, an element of degree 3
- b_3_8 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_4_13 → 0, an element of degree 4
- b_4_14 → 0, an element of degree 4
- c_4_15 → c_1_04, an element of degree 4
- c_4_16 → c_1_14, an element of degree 4
- b_5_25 → 0, an element of degree 5
- b_5_26 → 0, an element of degree 5
- b_6_38 → 0, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_32 + c_1_2·c_1_3, an element of degree 2
- a_3_7 → 0, an element of degree 3
- b_3_8 → 0, an element of degree 3
- b_3_9 → c_1_33 + c_1_22·c_1_3 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_4_13 → c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_23
+ c_1_12·c_1_22 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
- b_4_14 → 0, an element of degree 4
- c_4_15 → c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_1·c_1_23
+ c_1_12·c_1_22 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_04, an element of degree 4
- c_4_16 → c_1_2·c_1_33 + c_1_23·c_1_3 + c_1_1·c_1_23 + c_1_14 + c_1_0·c_1_23
+ c_1_02·c_1_22, an element of degree 4
- b_5_25 → c_1_35 + c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_1·c_1_22·c_1_32
+ c_1_1·c_1_23·c_1_3 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_23·c_1_3 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3, an element of degree 5
- b_5_26 → c_1_35 + c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_0·c_1_22·c_1_32
+ c_1_0·c_1_23·c_1_3 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3, an element of degree 5
- b_6_38 → c_1_2·c_1_35 + c_1_25·c_1_3 + c_1_1·c_1_22·c_1_33 + c_1_1·c_1_24·c_1_3
+ c_1_1·c_1_25 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_14·c_1_32 + c_1_14·c_1_2·c_1_3 + c_1_0·c_1_2·c_1_34 + c_1_0·c_1_24·c_1_3 + c_1_0·c_1_25 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_23 + c_1_02·c_1_34 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_24 + c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_22 + c_1_04·c_1_32 + c_1_04·c_1_2·c_1_3, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_2_5 → c_1_32, an element of degree 2
- a_3_7 → 0, an element of degree 3
- b_3_8 → c_1_22·c_1_3, an element of degree 3
- b_3_9 → c_1_33, an element of degree 3
- b_4_13 → c_1_34 + c_1_2·c_1_33, an element of degree 4
- b_4_14 → c_1_22·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_22, an element of degree 4
- c_4_15 → c_1_34 + c_1_2·c_1_33 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_22
+ c_1_04, an element of degree 4
- c_4_16 → c_1_2·c_1_33 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_25 → c_1_35 + c_1_22·c_1_33, an element of degree 5
- b_5_26 → c_1_35 + c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_0·c_1_22·c_1_32
+ c_1_0·c_1_23·c_1_3 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- b_6_38 → c_1_2·c_1_35 + c_1_23·c_1_33 + c_1_25·c_1_3 + c_1_12·c_1_22·c_1_32
+ c_1_12·c_1_24 + c_1_14·c_1_32 + c_1_14·c_1_22 + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_24·c_1_3 + c_1_02·c_1_34 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_24 + c_1_04·c_1_32, an element of degree 6
|