Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 203 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
t4 + t3 + t2 + 1 |
| (t + 1) · (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 15 minimal generators of maximal degree 5:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- a_3_4, a nilpotent element of degree 3
- b_3_8, an element of degree 3
- b_3_9, an element of degree 3
- b_3_10, an element of degree 3
- b_4_16, an element of degree 4
- b_4_17, an element of degree 4
- c_4_18, a Duflot regular element of degree 4
- c_4_19, a Duflot regular element of degree 4
- b_5_30, an element of degree 5
- b_5_31, an element of degree 5
Ring relations
There are 65 minimal relations of maximal degree 10:
- a_1_02
- a_1_0·b_1_1
- b_1_1·b_1_22 + b_1_12·b_1_2
- b_2_4·a_1_0
- b_2_4·b_1_1
- b_2_5·a_1_0
- b_2_5·b_1_22 + b_2_5·b_1_1·b_1_2 + b_2_42
- a_1_0·a_3_4
- b_1_1·a_3_4
- a_1_0·b_3_8
- a_1_0·b_3_9
- b_1_1·b_3_9
- a_1_0·b_3_10
- b_1_22·b_3_8 + b_1_1·b_1_2·b_3_8 + b_2_42·b_1_2 + b_2_4·a_3_4
- b_2_4·b_3_8 + b_2_4·b_2_5·b_1_2 + b_2_5·a_3_4
- b_2_4·b_3_9 + b_2_4·b_2_5·b_1_2 + b_2_5·a_3_4
- b_1_22·b_3_10 + b_1_22·b_3_9 + b_1_1·b_1_2·b_3_10 + b_2_4·b_2_5·b_1_2 + b_2_5·a_3_4
- b_2_5·b_3_9 + b_2_4·b_3_10 + b_2_4·b_2_5·b_1_2 + b_2_5·a_3_4
- b_1_22·b_3_9 + b_2_42·b_1_2 + b_4_16·a_1_0 + b_2_4·a_3_4
- b_4_16·b_1_1 + b_2_5·b_1_12·b_1_2
- b_1_22·b_3_9 + b_2_42·b_1_2 + b_4_17·a_1_0 + b_2_4·a_3_4
- b_4_17·b_1_1 + b_2_5·b_3_9 + b_2_5·b_3_8 + b_2_5·b_1_12·b_1_2
- a_3_42
- a_3_4·b_3_8 + b_2_5·b_1_2·a_3_4
- a_3_4·b_3_9 + b_2_5·b_1_2·a_3_4
- b_3_8·b_3_9 + b_2_42·b_2_5
- b_3_92 + b_2_42·b_2_5
- b_2_4·b_1_2·b_3_10 + b_2_42·b_2_5 + b_2_43 + a_3_4·b_3_10
- b_3_9·b_3_10 + b_2_4·b_2_52 + b_2_42·b_2_5
- b_3_102 + b_3_82 + b_2_5·b_1_1·b_3_10 + b_2_5·b_1_13·b_1_2 + b_2_53
+ c_4_18·b_1_12
- b_3_82 + b_2_42·b_2_5 + c_4_19·b_1_12
- b_4_17·b_1_22 + b_4_16·b_1_22 + b_2_5·b_1_2·b_3_8 + b_2_4·b_1_2·b_3_10
+ b_2_4·b_4_16 + b_2_43 + b_2_5·b_1_2·a_3_4
- b_2_5·b_4_16 + b_2_52·b_1_1·b_1_2 + b_2_4·b_4_17 + b_2_4·b_4_16
- a_1_0·b_5_30 + c_4_18·a_1_0·b_1_2
- b_1_1·b_5_30 + c_4_18·b_1_1·b_1_2
- a_1_0·b_5_31 + c_4_18·a_1_0·b_1_2
- b_3_102 + b_3_8·b_3_10 + b_1_1·b_5_31 + b_2_5·b_1_1·b_3_10 + b_2_53 + b_2_4·b_2_52
+ c_4_18·b_1_1·b_1_2
- b_4_16·b_3_9 + b_4_16·b_3_8 + b_2_5·b_1_1·b_1_2·b_3_8 + c_4_19·a_1_0·b_1_22
+ c_4_18·a_1_0·b_1_22
- b_4_16·b_3_8 + b_2_5·b_1_1·b_1_2·b_3_8 + b_2_4·b_4_17·b_1_2 + b_2_4·b_4_16·b_1_2
+ b_4_17·a_3_4 + b_4_16·a_3_4
- b_4_17·b_3_8 + b_4_16·b_3_10 + b_2_5·b_1_1·b_1_2·b_3_10 + b_2_5·b_1_1·b_1_2·b_3_8
+ b_2_5·c_4_19·b_1_1 + c_4_19·a_1_0·b_1_22 + c_4_18·a_1_0·b_1_22
- b_4_17·b_3_9 + b_4_16·b_3_10 + b_2_5·b_1_1·b_1_2·b_3_10
- b_4_16·b_3_10 + b_4_16·b_3_8 + b_2_5·b_5_30 + b_2_5·b_1_1·b_1_2·b_3_10
+ b_2_5·b_1_1·b_1_2·b_3_8 + b_2_42·b_3_10 + b_2_42·b_2_5·b_1_2 + b_2_4·b_2_5·a_3_4 + b_2_5·c_4_18·b_1_2 + c_4_19·a_1_0·b_1_22 + c_4_18·a_1_0·b_1_22
- b_1_22·b_5_30 + b_2_4·b_4_16·b_1_2 + b_2_43·b_1_2 + b_4_16·a_3_4 + b_2_42·a_3_4
+ c_4_18·b_1_23 + c_4_19·a_1_0·b_1_22 + c_4_18·a_1_0·b_1_22
- b_4_16·b_3_8 + b_2_5·b_1_1·b_1_2·b_3_8 + b_2_4·b_5_30 + b_2_42·b_2_5·b_1_2
+ b_2_4·b_2_5·a_3_4 + b_2_4·c_4_18·b_1_2
- b_4_17·b_3_10 + b_4_16·b_3_8 + b_2_5·b_5_31 + b_2_5·b_1_1·b_1_2·b_3_10
+ b_2_5·b_1_1·b_1_2·b_3_8 + b_2_52·b_1_12·b_1_2 + b_2_5·c_4_19·b_1_1 + b_2_5·c_4_18·b_1_2 + b_2_5·c_4_18·b_1_1 + c_4_19·a_1_0·b_1_22 + c_4_18·a_1_0·b_1_22
- b_1_22·b_5_31 + b_1_1·b_1_2·b_5_31 + b_4_16·b_3_8 + b_2_5·b_1_1·b_1_2·b_3_8
+ c_4_18·b_1_23 + c_4_18·b_1_12·b_1_2
- b_4_16·b_3_10 + b_4_16·b_3_8 + b_2_5·b_1_1·b_1_2·b_3_10 + b_2_5·b_1_1·b_1_2·b_3_8
+ b_2_4·b_5_31 + b_2_4·c_4_18·b_1_2 + c_4_19·a_1_0·b_1_22 + c_4_18·a_1_0·b_1_22
- b_4_162 + b_2_52·b_1_13·b_1_2 + b_2_4·b_1_26 + b_2_42·b_4_16 + c_4_19·b_1_24
+ c_4_19·b_1_13·b_1_2 + c_4_18·b_1_24 + c_4_18·b_1_13·b_1_2 + b_2_42·c_4_19
- b_4_172 + b_2_52·b_1_13·b_1_2 + b_2_4·b_1_26 + b_2_4·b_2_5·b_4_17 + b_2_42·b_4_17
+ b_2_43·b_1_22 + c_4_19·b_1_24 + c_4_19·b_1_13·b_1_2 + c_4_18·b_1_24 + c_4_18·b_1_13·b_1_2 + b_2_52·c_4_19 + b_2_42·c_4_18
- b_4_16·b_4_17 + b_2_52·b_1_2·b_3_8 + b_2_52·b_1_13·b_1_2 + b_2_4·b_1_26
+ b_2_42·b_1_24 + b_2_42·b_4_17 + b_2_42·b_2_52 + b_2_5·a_3_4·b_3_10 + b_2_4·a_3_4·b_3_10 + b_2_4·b_2_5·b_1_2·a_3_4 + c_4_19·b_1_24 + c_4_19·b_1_13·b_1_2 + c_4_18·b_1_24 + c_4_18·b_1_13·b_1_2 + b_2_4·c_4_19·b_1_22 + b_2_4·c_4_18·b_1_22 + b_2_4·b_2_5·c_4_19 + b_2_42·c_4_19
- b_3_10·b_5_30 + b_2_4·b_2_5·b_4_17 + b_2_42·b_2_52 + b_2_43·b_2_5
+ c_4_18·b_1_2·b_3_10
- a_3_4·b_5_30 + b_4_17·b_1_2·a_3_4 + b_4_16·b_1_2·a_3_4 + b_2_4·b_2_5·b_1_2·a_3_4
+ c_4_18·b_1_2·a_3_4
- b_3_8·b_5_30 + b_2_42·b_4_17 + b_2_42·b_4_16 + b_2_43·b_2_5 + c_4_18·b_1_2·b_3_8
- b_3_9·b_5_30 + b_2_42·b_4_17 + b_2_42·b_4_16 + b_2_43·b_2_5 + c_4_18·b_1_2·b_3_9
- b_3_10·b_5_31 + b_2_5·b_1_1·b_5_31 + b_2_5·b_1_12·b_1_2·b_3_10
+ b_2_5·b_1_12·b_1_2·b_3_8 + b_2_52·b_1_13·b_1_2 + b_2_52·b_4_17 + b_2_53·b_1_1·b_1_2 + c_4_19·b_1_1·b_3_10 + c_4_19·b_1_1·b_3_8 + c_4_18·b_1_2·b_3_10 + c_4_18·b_1_1·b_3_10 + c_4_18·b_1_1·b_3_8 + b_2_5·c_4_19·b_1_12 + b_2_5·c_4_18·b_1_1·b_1_2 + b_2_5·c_4_18·b_1_12
- b_2_4·b_1_2·b_5_31 + b_2_42·b_4_17 + b_2_42·b_4_16 + a_3_4·b_5_31
+ b_2_4·c_4_18·b_1_22 + c_4_18·b_1_2·a_3_4
- b_3_8·b_5_31 + b_2_5·b_1_12·b_1_2·b_3_8 + b_2_4·b_2_5·b_4_17 + b_2_42·b_4_17
+ b_2_42·b_4_16 + c_4_19·b_1_1·b_3_10 + c_4_19·b_1_1·b_3_8 + c_4_18·b_1_2·b_3_8 + c_4_18·b_1_1·b_3_8
- b_3_9·b_5_31 + b_2_4·b_2_5·b_4_17 + b_2_42·b_4_17 + b_2_42·b_4_16 + c_4_18·b_1_2·b_3_9
- b_4_17·b_5_30 + b_2_42·b_1_25 + b_2_43·b_1_23 + b_2_4·b_1_24·a_3_4
+ b_2_42·b_1_22·a_3_4 + b_4_17·c_4_18·b_1_2 + b_2_4·c_4_19·b_3_10 + b_2_4·c_4_19·b_1_23 + b_2_4·c_4_18·b_1_23 + b_2_42·c_4_19·b_1_2 + b_2_42·c_4_18·b_1_2 + c_4_19·b_1_22·a_3_4 + c_4_18·b_1_22·a_3_4 + b_4_16·c_4_19·a_1_0 + b_4_16·c_4_18·a_1_0 + b_2_4·c_4_19·a_3_4 + b_2_4·c_4_18·a_3_4
- b_4_16·b_5_30 + b_2_42·b_1_25 + b_2_4·b_1_24·a_3_4 + b_4_16·c_4_18·b_1_2
+ b_2_4·c_4_19·b_1_23 + b_2_4·c_4_18·b_1_23 + b_2_4·b_2_5·c_4_19·b_1_2 + c_4_19·b_1_22·a_3_4 + c_4_18·b_1_22·a_3_4 + b_4_16·c_4_19·a_1_0 + b_4_16·c_4_18·a_1_0 + b_2_5·c_4_19·a_3_4
- b_4_17·b_5_31 + b_2_5·b_1_1·b_1_2·b_5_31 + b_2_52·b_1_1·b_1_2·b_3_8
+ b_2_4·b_2_5·b_5_31 + b_2_42·b_5_31 + b_2_43·b_1_23 + b_2_44·b_1_2 + b_2_42·b_1_22·a_3_4 + b_2_43·a_3_4 + b_4_17·c_4_18·b_1_2 + b_2_5·c_4_19·b_3_10 + b_2_5·c_4_19·b_3_8 + b_2_5·c_4_18·b_3_8 + b_2_5·c_4_18·b_1_12·b_1_2 + b_2_4·c_4_19·b_3_10 + b_2_4·c_4_18·b_3_10 + b_2_4·b_2_5·c_4_18·b_1_2 + b_2_42·c_4_19·b_1_2 + b_2_4·c_4_19·a_3_4 + b_2_4·c_4_18·a_3_4
- b_4_16·b_5_31 + b_2_5·b_1_1·b_1_2·b_5_31 + b_2_42·b_5_31 + b_2_43·b_1_23
+ b_2_42·b_1_22·a_3_4 + b_4_16·c_4_18·b_1_2 + b_2_5·c_4_18·b_1_12·b_1_2 + b_2_4·c_4_19·b_3_10 + b_2_4·b_2_5·c_4_19·b_1_2 + b_2_42·c_4_19·b_1_2 + b_2_5·c_4_19·a_3_4 + b_2_4·c_4_19·a_3_4 + b_2_4·c_4_18·a_3_4
- b_5_302 + b_2_43·b_1_24 + b_2_43·b_4_17 + b_2_43·b_4_16 + b_2_44·b_2_5
+ b_2_42·c_4_19·b_1_22 + b_2_42·c_4_18·b_1_22 + b_2_42·b_2_5·c_4_19 + c_4_182·b_1_22
- b_5_312 + b_2_52·b_1_15·b_1_2 + b_2_4·b_2_52·b_4_17 + b_2_42·b_2_5·b_4_17
+ b_2_43·b_4_17 + b_2_43·b_4_16 + b_2_45 + b_2_5·c_4_19·b_1_1·b_3_10 + b_2_5·c_4_19·b_1_13·b_1_2 + b_2_53·c_4_19 + b_2_42·b_2_5·c_4_19 + b_2_42·b_2_5·c_4_18 + c_4_18·c_4_19·b_1_12 + c_4_182·b_1_22 + c_4_182·b_1_12
- b_5_30·b_5_31 + b_2_44·b_1_22 + c_4_18·b_1_2·b_5_31 + c_4_18·b_1_2·b_5_30
+ b_2_4·b_2_52·c_4_19 + b_2_43·c_4_19 + b_2_43·c_4_18 + c_4_182·b_1_22
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_18, a Duflot regular element of degree 4
- c_4_19, a Duflot regular element of degree 4
- b_1_22 + b_1_1·b_1_2 + b_1_12 + b_2_5 + b_2_4, an element of degree 2
- b_3_9 + b_2_5·b_1_1 + b_2_4·b_1_2, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 6, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_4 → 0, an element of degree 3
- b_3_8 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_3_10 → 0, an element of degree 3
- b_4_16 → 0, an element of degree 4
- b_4_17 → 0, an element of degree 4
- c_4_18 → c_1_04, an element of degree 4
- c_4_19 → c_1_14, an element of degree 4
- b_5_30 → 0, an element of degree 5
- b_5_31 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_32 + c_1_2·c_1_3, an element of degree 2
- a_3_4 → 0, an element of degree 3
- b_3_8 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_3_10 → c_1_33 + c_1_22·c_1_3 + c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_4_16 → 0, an element of degree 4
- b_4_17 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3, an element of degree 4
- c_4_18 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_19 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_30 → 0, an element of degree 5
- b_5_31 → c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32 + c_1_12·c_1_33
+ c_1_12·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_23·c_1_3 + c_1_0·c_1_1·c_1_23 + c_1_0·c_1_12·c_1_22 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_23 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_2, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → c_1_2·c_1_3 + c_1_22, an element of degree 2
- a_3_4 → 0, an element of degree 3
- b_3_8 → c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_3_10 → c_1_2·c_1_32 + c_1_23 + c_1_1·c_1_32 + c_1_12·c_1_3 + c_1_0·c_1_32
+ c_1_02·c_1_3, an element of degree 3
- b_4_16 → c_1_2·c_1_33 + c_1_22·c_1_32, an element of degree 4
- b_4_17 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22, an element of degree 4
- c_4_18 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_19 → c_1_12·c_1_32 + c_1_14, an element of degree 4
- b_5_30 → c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32
+ c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_0·c_1_2·c_1_33 + c_1_0·c_1_22·c_1_32 + c_1_02·c_1_33 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_04·c_1_3, an element of degree 5
- b_5_31 → c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_23·c_1_3
+ c_1_12·c_1_2·c_1_32 + c_1_12·c_1_23 + c_1_0·c_1_1·c_1_33 + c_1_0·c_1_12·c_1_32 + c_1_02·c_1_1·c_1_32 + c_1_02·c_1_12·c_1_3, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- b_2_4 → c_1_2·c_1_3, an element of degree 2
- b_2_5 → c_1_22, an element of degree 2
- a_3_4 → 0, an element of degree 3
- b_3_8 → c_1_22·c_1_3, an element of degree 3
- b_3_9 → c_1_22·c_1_3, an element of degree 3
- b_3_10 → c_1_22·c_1_3 + c_1_23, an element of degree 3
- b_4_16 → c_1_34 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_0·c_1_2·c_1_32
+ c_1_02·c_1_32, an element of degree 4
- b_4_17 → c_1_34 + c_1_2·c_1_33 + c_1_12·c_1_32 + c_1_12·c_1_22 + c_1_0·c_1_2·c_1_32
+ c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
- c_4_18 → c_1_23·c_1_3 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_0·c_1_2·c_1_32
+ c_1_02·c_1_32 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_19 → c_1_34 + c_1_2·c_1_33 + c_1_12·c_1_2·c_1_3 + c_1_14 + c_1_0·c_1_2·c_1_32
+ c_1_02·c_1_32, an element of degree 4
- b_5_30 → c_1_2·c_1_34 + c_1_0·c_1_2·c_1_33 + c_1_0·c_1_22·c_1_32 + c_1_02·c_1_33
+ c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_04·c_1_3, an element of degree 5
- b_5_31 → c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_23
+ c_1_0·c_1_2·c_1_33 + c_1_0·c_1_23·c_1_3 + c_1_02·c_1_33 + c_1_04·c_1_3, an element of degree 5
|