Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 2106 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t8 + 2·t7 + 3·t6 + 2·t5 + t4 + 2·t3 + 3·t2 + 2·t + 1 |
| (t − 1)2 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- a_1_3, a nilpotent element of degree 1
- c_4_8, a Duflot regular element of degree 4
- a_5_7, a nilpotent element of degree 5
- a_5_8, a nilpotent element of degree 5
- a_5_9, a nilpotent element of degree 5
- c_8_17, a Duflot regular element of degree 8
Ring relations
There are 17 minimal relations of maximal degree 10:
- a_1_0·a_1_2
- a_1_32 + a_1_1·a_1_3 + a_1_12 + a_1_0·a_1_1
- a_1_13 + a_1_02·a_1_1
- a_1_23 + a_1_12·a_1_2 + a_1_03
- a_1_03·a_1_12
- a_1_2·a_5_7
- a_1_0·a_5_8 + c_4_8·a_1_0·a_1_1 + c_4_8·a_1_02
- a_1_1·a_5_7 + a_1_0·a_5_9 + a_1_0·a_5_7 + c_4_8·a_1_0·a_1_3 + c_4_8·a_1_0·a_1_1
+ c_4_8·a_1_02
- a_1_2·a_5_9 + a_1_2·a_5_8 + a_1_1·a_5_8 + c_4_8·a_1_2·a_1_3 + c_4_8·a_1_22
+ c_4_8·a_1_12 + c_4_8·a_1_0·a_1_1
- a_1_22·a_5_8 + a_1_12·a_5_8 + a_1_02·a_5_7 + c_4_8·a_1_1·a_1_22
+ c_4_8·a_1_0·a_1_12 + c_4_8·a_1_02·a_1_1
- a_1_12·a_5_9 + a_1_12·a_5_8 + a_1_0·a_1_1·a_5_9 + c_4_8·a_1_12·a_1_3
+ c_4_8·a_1_12·a_1_2 + c_4_8·a_1_0·a_1_1·a_1_3 + c_4_8·a_1_0·a_1_12 + c_4_8·a_1_02·a_1_1
- a_5_7·a_5_8 + a_1_03·a_1_1·a_1_3·a_5_9 + c_4_8·a_1_0·a_5_9 + c_4_82·a_1_0·a_1_3
+ c_4_82·a_1_0·a_1_1 + c_4_82·a_1_02
- a_5_92 + a_5_82 + a_5_72 + c_8_17·a_1_12 + c_4_82·a_1_22 + c_4_82·a_1_1·a_1_3
+ c_4_82·a_1_12 + c_4_82·a_1_0·a_1_1
- a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_72 + c_8_17·a_1_0·a_1_1 + c_4_8·a_1_3·a_5_7
- a_5_72 + a_1_03·a_1_1·a_1_3·a_5_9 + c_8_17·a_1_02
- a_5_8·a_5_9 + a_5_82 + a_5_7·a_5_8 + a_1_03·a_1_1·a_1_3·a_5_9 + c_8_17·a_1_1·a_1_2
+ c_4_8·a_1_3·a_5_8 + c_4_8·a_1_2·a_5_8 + c_4_8·a_1_1·a_5_9 + c_4_8·a_1_1·a_5_8 + c_4_82·a_1_1·a_1_3 + c_4_82·a_1_1·a_1_2
- a_5_82 + c_8_17·a_1_22 + c_4_82·a_1_12 + c_4_82·a_1_02
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_8, a Duflot regular element of degree 4
- c_8_17, a Duflot regular element of degree 8
- The Raw Filter Degree Type of that HSOP is [-1, -1, 10].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- a_1_3 → 0, an element of degree 1
- c_4_8 → c_1_04, an element of degree 4
- a_5_7 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- a_5_9 → 0, an element of degree 5
- c_8_17 → c_1_18, an element of degree 8
|