Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 2109 of order 128
General information on the group
- The group has 4 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t9 + 2·t8 − 2·t6 − 2·t5 + 2·t4 − 2·t2 − 2·t − 1 |
| (t + 1) · (t − 1)3 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 12 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- b_1_3, an element of degree 1
- c_4_8, a Duflot regular element of degree 4
- a_5_8, a nilpotent element of degree 5
- a_5_3, a nilpotent element of degree 5
- a_5_6, a nilpotent element of degree 5
- b_5_10, an element of degree 5
- b_5_11, an element of degree 5
- c_8_21, a Duflot regular element of degree 8
- b_9_24, an element of degree 9
Ring relations
There are 40 minimal relations of maximal degree 18:
- a_1_1·b_1_3 + a_1_0·b_1_3 + a_1_0·a_1_1
- a_1_2·b_1_3 + a_1_2·a_1_1 + a_1_0·a_1_2
- a_1_13 + a_1_23 + a_1_0·a_1_2·a_1_1 + a_1_02·a_1_2 + a_1_03
- a_1_02·b_1_3 + a_1_02·a_1_1
- a_1_05
- b_1_3·a_5_8 + a_1_0·b_1_35 + a_1_1·a_5_8 + a_1_0·a_5_8 + c_4_8·a_1_0·b_1_3
+ c_4_8·a_1_0·a_1_1 + c_4_8·a_1_02
- a_1_1·a_5_8 + a_1_2·a_5_3 + a_1_2·a_5_8 + c_4_8·a_1_2·a_1_1 + c_4_8·a_1_22
+ c_4_8·a_1_0·a_1_1
- b_1_3·a_5_8 + a_1_0·b_1_35 + a_1_1·a_5_6 + a_1_1·a_5_3 + a_1_0·a_5_3 + c_4_8·a_1_0·b_1_3
+ c_4_8·a_1_12 + c_4_8·a_1_2·a_1_1 + c_4_8·a_1_0·a_1_2 + c_4_8·a_1_02
- b_1_3·a_5_8 + a_1_0·b_1_35 + a_1_2·a_5_6 + c_4_8·a_1_0·b_1_3
- b_1_3·a_5_6 + b_1_3·a_5_8 + a_1_1·b_5_10 + a_1_1·a_5_3 + a_1_1·a_5_8 + a_1_0·a_5_3
+ c_4_8·a_1_0·b_1_3 + c_4_8·a_1_2·a_1_1 + c_4_8·a_1_0·a_1_1 + c_4_8·a_1_0·a_1_2 + c_4_8·a_1_02
- b_1_3·a_5_6 + b_1_3·a_5_8 + a_1_0·b_5_10 + a_1_1·a_5_8 + c_4_8·a_1_0·b_1_3
- a_1_2·b_5_10 + a_1_1·a_5_8 + a_1_2·a_5_8 + c_4_8·a_1_2·a_1_1 + c_4_8·a_1_0·a_1_1
+ c_4_8·a_1_0·a_1_2
- b_1_3·a_5_6 + b_1_3·a_5_3 + a_1_1·b_5_11 + a_1_1·a_5_3 + a_1_1·a_5_8 + a_1_0·a_5_3
+ c_4_8·a_1_12 + c_4_8·a_1_0·a_1_1 + c_4_8·a_1_02
- b_1_3·a_5_6 + b_1_3·a_5_3 + b_1_3·a_5_8 + a_1_0·b_5_11 + a_1_0·b_1_35 + a_1_0·a_5_3
+ c_4_8·a_1_0·b_1_3 + c_4_8·a_1_2·a_1_1
- b_1_3·a_5_8 + a_1_2·b_5_11 + a_1_0·b_1_35 + a_1_1·a_5_8 + a_1_2·a_5_8
+ c_4_8·a_1_0·b_1_3 + c_4_8·a_1_0·a_1_1
- a_1_12·a_5_3 + a_1_22·a_5_8 + a_1_02·a_5_6 + a_1_02·a_5_3 + a_1_02·a_5_8
+ c_4_8·a_1_23 + c_4_8·a_1_0·a_1_12 + c_4_8·a_1_0·a_1_22 + c_4_8·a_1_02·a_1_1 + c_4_8·a_1_02·a_1_2 + c_4_8·a_1_03
- a_1_02·b_5_11 + a_1_02·a_5_8
- a_5_8·b_5_10 + a_1_0·b_1_34·b_5_10 + a_5_8·a_5_3 + c_4_8·a_1_0·b_5_10
+ c_4_8·a_1_2·a_5_8 + c_4_8·a_1_0·a_5_3 + c_4_8·a_1_0·a_5_8 + c_4_82·a_1_0·a_1_2 + c_4_82·a_1_02
- b_5_102 + b_1_35·b_5_11 + b_1_310 + a_5_6·b_5_10 + a_1_0·b_1_34·b_5_10 + a_5_3·a_5_6
+ a_5_32 + c_4_8·a_1_0·b_1_35 + c_4_8·a_1_2·a_5_3 + c_4_8·a_1_2·a_5_8 + c_4_8·a_1_0·a_5_6 + c_4_8·a_1_0·a_5_8 + c_4_82·a_1_2·a_1_1
- a_5_6·b_5_10 + a_1_0·b_1_34·b_5_11 + a_1_0·b_1_34·b_5_10 + a_1_0·b_1_39
+ a_5_3·a_5_6 + c_4_8·a_1_2·a_5_3 + c_4_8·a_1_2·a_5_8 + c_4_8·a_1_0·a_5_6 + c_4_8·a_1_0·a_5_8 + c_4_82·a_1_2·a_1_1 + c_4_82·a_1_22 + c_4_82·a_1_02
- a_5_6·b_5_11 + a_5_3·b_5_10 + a_1_0·b_1_34·b_5_10 + a_1_0·b_1_39 + a_5_8·a_5_6
+ a_5_82 + c_4_8·a_1_2·a_5_3 + c_4_8·a_1_0·a_5_3 + c_4_82·a_1_12 + c_4_82·a_1_22
- a_5_6·b_5_10 + a_5_8·b_5_11 + a_1_0·b_1_34·b_5_10 + a_1_0·b_1_39 + a_5_3·a_5_6
+ a_5_8·a_5_6 + a_5_8·a_5_3 + c_4_8·a_1_0·b_5_11 + c_4_8·a_1_2·a_5_8 + c_4_8·a_1_0·a_5_3 + c_4_8·a_1_0·a_5_8 + c_4_82·a_1_0·a_1_2 + c_4_82·a_1_02
- b_5_112 + b_1_310 + a_1_0·b_1_34·b_5_10 + a_5_32 + c_8_21·b_1_32 + c_4_8·b_1_36
+ c_4_82·a_1_12 + c_4_82·a_1_22
- a_5_3·b_5_11 + a_5_3·b_5_10 + a_1_0·b_1_34·b_5_10 + a_5_3·a_5_6 + a_5_32 + a_5_82
+ c_8_21·a_1_0·b_1_3 + c_4_8·a_1_0·b_1_35 + c_4_8·a_1_2·a_5_3 + c_4_8·a_1_2·a_5_8 + c_4_8·a_1_0·a_5_6 + c_4_8·a_1_0·a_5_3 + c_4_82·a_1_0·a_1_1
- a_5_32 + a_5_82 + c_8_21·a_1_12 + c_4_82·a_1_12 + c_4_82·a_1_22
- a_5_3·a_5_6 + a_5_32 + a_5_8·a_5_6 + a_5_82 + c_8_21·a_1_0·a_1_1 + c_4_8·a_1_1·a_5_3
+ c_4_8·a_1_0·a_5_3 + c_4_82·a_1_2·a_1_1 + c_4_82·a_1_22 + c_4_82·a_1_0·a_1_2 + c_4_82·a_1_02
- a_5_8·a_5_3 + a_5_82 + c_8_21·a_1_2·a_1_1 + c_4_8·a_1_2·a_5_3 + c_4_8·a_1_0·a_5_3
+ c_4_8·a_1_0·a_5_8 + c_4_82·a_1_2·a_1_1 + c_4_82·a_1_22 + c_4_82·a_1_0·a_1_2
- a_5_62 + a_5_32 + a_5_82 + c_8_21·a_1_02 + c_4_82·a_1_12 + c_4_82·a_1_22
- a_5_8·a_5_6 + a_5_8·a_5_3 + a_5_82 + c_8_21·a_1_0·a_1_2 + c_4_8·a_1_2·a_5_3
+ c_4_8·a_1_0·a_5_6 + c_4_8·a_1_0·a_5_3 + c_4_8·a_1_0·a_5_8 + c_4_82·a_1_2·a_1_1 + c_4_82·a_1_22 + c_4_82·a_1_0·a_1_2
- a_5_82 + c_8_21·a_1_22 + c_4_82·a_1_02
- b_5_112 + b_5_10·b_5_11 + b_5_102 + b_1_3·b_9_24 + b_1_310 + a_5_8·b_5_10
+ a_5_3·a_5_6 + a_5_8·a_5_6 + a_5_8·a_5_3 + a_5_82 + c_4_8·b_1_3·b_5_10 + c_4_8·a_1_0·b_1_35 + c_4_8·a_1_2·a_5_3 + c_4_8·a_1_0·a_5_3 + c_4_8·a_1_0·a_5_8 + c_4_82·a_1_0·b_1_3 + c_4_82·a_1_12 + c_4_82·a_1_2·a_1_1 + c_4_82·a_1_22 + c_4_82·a_1_0·a_1_1 + c_4_82·a_1_0·a_1_2 + c_4_82·a_1_02
- a_5_3·b_5_11 + a_5_8·b_5_10 + a_1_1·b_9_24 + a_1_0·b_1_34·b_5_10 + a_5_3·a_5_6
+ c_4_8·a_1_1·a_5_3 + c_4_8·a_1_2·a_5_8 + c_4_8·a_1_0·a_5_6 + c_4_8·a_1_0·a_5_8 + c_4_82·a_1_12 + c_4_82·a_1_2·a_1_1 + c_4_82·a_1_0·a_1_1
- a_5_3·b_5_11 + a_5_8·b_5_10 + a_1_0·b_9_24 + a_1_0·b_1_34·b_5_10 + a_5_62 + a_5_3·a_5_6
+ a_5_32 + a_5_8·a_5_6 + a_5_82 + c_4_8·a_1_2·a_5_3 + c_4_8·a_1_0·a_5_6 + c_4_8·a_1_0·a_5_3 + c_4_82·a_1_12 + c_4_82·a_1_2·a_1_1 + c_4_82·a_1_0·a_1_1 + c_4_82·a_1_0·a_1_2
- a_1_2·b_9_24 + a_5_8·a_5_3 + c_4_8·a_1_2·a_5_8 + c_4_8·a_1_0·a_5_3 + c_4_82·a_1_0·a_1_2
- a_5_6·b_9_24 + a_1_0·b_1_38·b_5_10 + c_8_21·a_1_0·b_5_10 + c_4_8·a_1_0·b_1_34·b_5_11
+ c_4_8·a_1_0·b_1_39 + c_8_21·a_1_2·a_5_3 + c_8_21·a_1_2·a_5_8 + c_8_21·a_1_0·a_5_6 + c_4_8·c_8_21·a_1_12 + c_4_8·c_8_21·a_1_2·a_1_1 + c_4_8·c_8_21·a_1_22 + c_4_8·c_8_21·a_1_0·a_1_1 + c_4_8·c_8_21·a_1_02
- a_5_3·b_9_24 + a_5_8·b_9_24 + a_1_0·b_1_34·b_9_24 + a_1_0·b_1_38·b_5_11
+ a_1_0·b_1_313 + c_8_21·a_1_0·b_5_11 + c_8_21·a_1_0·b_1_35 + c_4_8·a_1_0·b_1_34·b_5_11 + c_4_8·a_1_0·b_1_34·b_5_10 + c_4_8·a_1_0·b_1_39 + c_8_21·a_1_2·a_5_3 + c_8_21·a_1_2·a_5_8 + c_8_21·a_1_0·a_5_3 + c_4_8·c_8_21·a_1_0·b_1_3 + c_4_82·a_1_0·b_5_10 + c_4_82·a_1_0·b_1_35 + c_4_8·c_8_21·a_1_12 + c_4_8·c_8_21·a_1_2·a_1_1 + c_4_8·c_8_21·a_1_0·a_1_2 + c_4_82·a_1_1·a_5_3 + c_4_83·a_1_12 + c_4_83·a_1_2·a_1_1
- a_5_3·b_9_24 + a_1_0·b_1_38·b_5_11 + a_1_0·b_1_313 + c_8_21·a_1_0·b_5_11
+ c_8_21·a_1_0·b_1_35 + c_4_8·a_1_0·b_9_24 + c_4_8·a_1_0·b_1_34·b_5_11 + c_4_8·a_1_0·b_1_34·b_5_10 + c_4_8·a_1_0·b_1_39 + c_8_21·a_1_2·a_5_8 + c_8_21·a_1_0·a_5_3 + c_4_8·c_8_21·a_1_0·b_1_3 + c_4_82·a_1_0·b_5_10 + c_4_82·a_1_0·b_1_35 + c_4_8·c_8_21·a_1_12 + c_4_8·c_8_21·a_1_2·a_1_1 + c_4_8·c_8_21·a_1_22 + c_4_8·c_8_21·a_1_0·a_1_2 + c_4_82·a_1_1·a_5_3 + c_4_83·a_1_12 + c_4_83·a_1_2·a_1_1
- b_5_10·b_9_24 + b_1_35·b_9_24 + b_1_39·b_5_10 + a_1_0·b_1_34·b_9_24
+ a_1_0·b_1_38·b_5_11 + a_1_0·b_1_313 + c_8_21·b_1_3·b_5_10 + c_4_8·b_1_35·b_5_11 + c_4_8·b_1_310 + c_4_8·a_1_0·b_1_34·b_5_11 + c_8_21·a_1_2·a_5_3 + c_8_21·a_1_0·a_5_3 + c_4_82·a_1_0·b_5_10 + c_4_8·c_8_21·a_1_12 + c_4_8·c_8_21·a_1_2·a_1_1 + c_4_8·c_8_21·a_1_22 + c_4_8·c_8_21·a_1_0·a_1_1 + c_4_8·c_8_21·a_1_0·a_1_2 + c_4_8·c_8_21·a_1_02 + c_4_82·a_1_1·a_5_3 + c_4_82·a_1_2·a_5_3 + c_4_82·a_1_2·a_5_8 + c_4_82·a_1_0·a_5_8 + c_4_83·a_1_12 + c_4_83·a_1_22 + c_4_83·a_1_02
- b_5_11·b_9_24 + b_1_39·b_5_11 + b_1_39·b_5_10 + b_1_314 + a_5_3·b_9_24
+ a_1_0·b_1_38·b_5_11 + a_1_0·b_1_38·b_5_10 + a_1_0·b_1_313 + c_8_21·b_1_3·b_5_11 + c_8_21·b_1_3·b_5_10 + c_8_21·b_1_36 + c_4_8·b_1_3·b_9_24 + c_4_8·b_1_35·b_5_10 + c_8_21·a_1_0·b_5_11 + c_4_8·a_1_0·b_1_34·b_5_11 + c_4_8·a_1_0·b_1_34·b_5_10 + c_8_21·a_1_2·a_5_3 + c_8_21·a_1_2·a_5_8 + c_8_21·a_1_0·a_5_3 + c_8_21·a_1_0·a_5_8 + c_4_8·c_8_21·b_1_32 + c_4_82·b_1_3·b_5_10 + c_4_82·b_1_36 + c_4_82·a_1_0·b_5_11 + c_4_82·a_1_0·b_5_10 + c_4_8·c_8_21·a_1_0·a_1_1 + c_4_8·c_8_21·a_1_02 + c_4_82·a_1_1·a_5_3 + c_4_82·a_1_2·a_5_3 + c_4_82·a_1_2·a_5_8 + c_4_82·a_1_0·a_5_3 + c_4_82·a_1_0·a_5_8 + c_4_83·a_1_0·b_1_3 + c_4_83·a_1_12 + c_4_83·a_1_22 + c_4_83·a_1_0·a_1_2 + c_4_83·a_1_02
- b_9_242 + b_1_313·b_5_11 + b_1_318 + a_1_0·b_1_38·b_9_24 + c_8_21·b_1_35·b_5_11
+ c_4_8·b_1_39·b_5_11 + c_8_21·a_1_0·b_1_34·b_5_11 + c_4_8·a_1_0·b_1_38·b_5_11 + c_4_8·a_1_0·b_1_38·b_5_10 + c_4_8·a_1_0·b_1_313 + c_8_212·b_1_32 + c_4_82·b_1_35·b_5_11 + c_4_8·c_8_21·a_1_0·b_1_35 + c_4_82·a_1_0·b_1_34·b_5_11 + c_8_212·a_1_22 + c_8_212·a_1_02 + c_4_83·a_1_0·b_1_35 + c_4_82·c_8_21·a_1_12 + c_4_82·c_8_21·a_1_02
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_8, a Duflot regular element of degree 4
- c_8_21, a Duflot regular element of degree 8
- b_1_32, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- c_4_8 → c_1_04, an element of degree 4
- a_5_8 → 0, an element of degree 5
- a_5_3 → 0, an element of degree 5
- a_5_6 → 0, an element of degree 5
- b_5_10 → 0, an element of degree 5
- b_5_11 → 0, an element of degree 5
- c_8_21 → c_1_18, an element of degree 8
- b_9_24 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- c_4_8 → c_1_02·c_1_22 + c_1_04, an element of degree 4
- a_5_8 → 0, an element of degree 5
- a_5_3 → 0, an element of degree 5
- a_5_6 → 0, an element of degree 5
- b_5_10 → c_1_25 + c_1_1·c_1_24 + c_1_12·c_1_23, an element of degree 5
- b_5_11 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
- c_8_21 → c_1_28 + c_1_14·c_1_24 + c_1_18 + c_1_02·c_1_26 + c_1_04·c_1_24, an element of degree 8
- b_9_24 → c_1_13·c_1_26 + c_1_15·c_1_24 + c_1_16·c_1_23 + c_1_18·c_1_2
+ c_1_02·c_1_27 + c_1_02·c_1_1·c_1_26 + c_1_02·c_1_12·c_1_25 + c_1_04·c_1_25 + c_1_04·c_1_1·c_1_24 + c_1_04·c_1_12·c_1_23, an element of degree 9
|