Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 2188 of order 128
General information on the group
- The group has 5 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 5.
- Its center has rank 3.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 5.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 5 and depth 3.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t5 − 3·t4 + 2·t3 − t − 1 |
| (t + 1) · (t − 1)5 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-∞,-6,-5,-5. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_3, an element of degree 1
- c_1_4, a Duflot regular element of degree 1
- a_4_31, a nilpotent element of degree 4
- b_4_32, an element of degree 4
- b_4_33, an element of degree 4
- b_4_34, an element of degree 4
- b_4_35, an element of degree 4
- c_4_36, a Duflot regular element of degree 4
- c_4_37, a Duflot regular element of degree 4
- b_6_101, an element of degree 6
Ring relations
There are 38 minimal relations of maximal degree 12:
- a_1_22 + a_1_0·a_1_2 + a_1_02
- a_1_2·b_1_1 + a_1_0·b_1_3 + a_1_0·b_1_1
- a_1_03
- a_1_0·b_1_32 + a_1_0·b_1_1·b_1_3 + a_1_02·b_1_1
- a_4_31·a_1_0
- a_4_31·a_1_2
- b_4_32·a_1_2 + b_4_32·a_1_0
- b_4_33·b_1_3 + b_4_33·b_1_1 + b_4_32·b_1_3 + a_4_31·b_1_3 + a_4_31·b_1_1
- b_4_33·a_1_0 + b_4_32·a_1_0 + a_4_31·b_1_1
- b_4_33·a_1_2
- b_4_34·b_1_1 + b_4_33·b_1_3 + b_4_32·b_1_1 + a_4_31·b_1_3
- b_4_34·a_1_0 + a_4_31·b_1_1
- b_4_34·a_1_2 + a_4_31·b_1_3 + a_4_31·b_1_1
- b_4_35·a_1_0 + b_4_32·a_1_0 + a_4_31·b_1_1
- b_4_35·a_1_2
- b_6_101·a_1_0 + a_4_31·b_1_12·b_1_3 + c_4_37·a_1_0·b_1_12 + c_4_36·a_1_0·b_1_12
+ c_4_37·a_1_02·b_1_1 + c_4_36·a_1_02·b_1_1
- b_6_101·a_1_2 + a_4_31·b_1_33 + a_4_31·b_1_12·b_1_3 + c_4_37·a_1_2·b_1_32
+ c_4_37·a_1_0·b_1_1·b_1_3 + c_4_37·a_1_0·b_1_12 + c_4_36·a_1_0·b_1_1·b_1_3 + c_4_36·a_1_0·b_1_12 + c_4_37·a_1_02·b_1_1 + c_4_36·a_1_02·b_1_3 + c_4_36·a_1_02·b_1_1 + c_4_36·a_1_02·a_1_2
- a_4_312
- b_4_322 + c_4_37·b_1_12·b_1_32 + c_4_37·b_1_14
- a_4_31·b_4_32 + c_4_37·a_1_0·b_1_12·b_1_3 + c_4_37·a_1_0·b_1_13
- b_4_332 + c_4_37·b_1_12·b_1_32
- b_4_32·b_4_33 + c_4_37·b_1_12·b_1_32 + c_4_37·b_1_13·b_1_3
+ c_4_37·a_1_0·b_1_12·b_1_3 + c_4_37·a_1_0·b_1_13
- a_4_31·b_4_33 + c_4_37·a_1_0·b_1_12·b_1_3
- b_4_33·b_4_34 + c_4_37·b_1_1·b_1_33 + c_4_37·b_1_12·b_1_32 + c_4_37·b_1_13·b_1_3
+ c_4_37·a_1_2·b_1_33 + c_4_37·a_1_0·b_1_13
- b_4_342 + c_4_37·b_1_34 + c_4_37·b_1_12·b_1_32 + c_4_37·b_1_14
- b_4_32·b_4_34 + c_4_37·b_1_1·b_1_33 + c_4_37·b_1_14
- a_4_31·b_4_34 + c_4_37·a_1_2·b_1_33 + c_4_37·a_1_0·b_1_13
- b_4_352 + b_4_32·b_1_1·b_1_33 + b_4_32·b_1_12·b_1_32 + c_4_37·b_1_12·b_1_32
- a_4_31·b_4_35 + c_4_37·a_1_0·b_1_12·b_1_3
- b_6_101·b_1_32 + b_4_34·b_1_34 + b_4_34·b_4_35 + b_4_32·b_1_34 + b_4_32·b_4_35
+ a_4_31·b_1_13·b_1_3 + c_4_37·b_1_34 + c_4_37·b_1_12·b_1_32 + c_4_36·b_1_12·b_1_32 + c_4_36·a_1_2·b_1_33
- b_6_101·b_1_1·b_1_3 + b_4_33·b_1_14 + b_4_33·b_4_35 + b_4_32·b_1_34
+ b_4_32·b_1_1·b_1_33 + b_4_32·b_1_12·b_1_32 + b_4_32·b_1_13·b_1_3 + a_4_31·b_1_13·b_1_3 + a_4_31·b_1_14 + c_4_37·b_1_1·b_1_33 + c_4_37·b_1_13·b_1_3 + c_4_36·b_1_13·b_1_3 + c_4_37·a_1_0·b_1_12·b_1_3
- b_6_101·b_1_12 + b_4_33·b_1_14 + b_4_33·b_4_35 + b_4_32·b_1_1·b_1_33
+ b_4_32·b_1_12·b_1_32 + b_4_32·b_1_13·b_1_3 + b_4_32·b_4_35 + a_4_31·b_1_13·b_1_3 + a_4_31·b_1_14 + c_4_37·b_1_12·b_1_32 + c_4_37·b_1_14 + c_4_36·b_1_14 + c_4_37·a_1_0·b_1_12·b_1_3
- b_4_33·b_6_101 + c_4_37·b_1_1·b_1_35 + b_4_35·c_4_37·b_1_1·b_1_3
+ b_4_33·c_4_36·b_1_12 + b_4_32·c_4_37·b_1_32 + b_4_32·c_4_37·b_1_1·b_1_3 + c_4_37·a_1_2·b_1_35 + a_4_31·c_4_37·b_1_32 + a_4_31·c_4_37·b_1_1·b_1_3 + a_4_31·c_4_37·b_1_12
- b_4_35·b_6_101 + b_4_34·b_4_35·b_1_32 + b_4_32·b_4_35·b_1_32
+ c_4_37·b_1_12·b_1_34 + c_4_37·b_1_14·b_1_32 + b_4_35·c_4_37·b_1_32 + b_4_35·c_4_37·b_1_12 + b_4_35·c_4_36·b_1_12 + b_4_33·c_4_37·b_1_12 + b_4_32·c_4_37·b_1_1·b_1_3 + c_4_37·a_1_0·b_1_14·b_1_3 + a_4_31·c_4_37·b_1_12
- b_4_34·b_6_101 + c_4_37·b_1_36 + c_4_37·b_1_1·b_1_35 + c_4_37·b_1_12·b_1_34
+ b_4_35·c_4_37·b_1_32 + b_4_35·c_4_37·b_1_1·b_1_3 + b_4_35·c_4_37·b_1_12 + b_4_34·c_4_37·b_1_32 + b_4_33·c_4_37·b_1_12 + b_4_33·c_4_36·b_1_12 + b_4_32·c_4_37·b_1_1·b_1_3 + b_4_32·c_4_37·b_1_12 + b_4_32·c_4_36·b_1_1·b_1_3 + b_4_32·c_4_36·b_1_12 + c_4_37·a_1_0·b_1_14·b_1_3 + a_4_31·c_4_37·b_1_12 + a_4_31·c_4_36·b_1_32 + a_4_31·c_4_36·b_1_1·b_1_3 + a_4_31·c_4_36·b_1_12
- b_4_32·b_6_101 + c_4_37·b_1_1·b_1_35 + c_4_37·b_1_12·b_1_34
+ b_4_35·c_4_37·b_1_1·b_1_3 + b_4_35·c_4_37·b_1_12 + b_4_32·c_4_37·b_1_32 + b_4_32·c_4_37·b_1_12 + b_4_32·c_4_36·b_1_12
- a_4_31·b_6_101 + c_4_37·a_1_2·b_1_35 + c_4_37·a_1_0·b_1_14·b_1_3
+ a_4_31·c_4_37·b_1_32 + a_4_31·c_4_37·b_1_1·b_1_3 + a_4_31·c_4_37·b_1_12 + a_4_31·c_4_36·b_1_12
- b_6_1012 + c_4_37·b_1_38 + b_4_32·c_4_37·b_1_1·b_1_33
+ b_4_32·c_4_37·b_1_12·b_1_32 + c_4_372·b_1_34 + c_4_372·b_1_12·b_1_32 + c_4_372·b_1_14 + c_4_362·b_1_14
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_1_4, a Duflot regular element of degree 1
- c_4_36, a Duflot regular element of degree 4
- c_4_37, a Duflot regular element of degree 4
- b_1_32 + b_1_1·b_1_3 + b_1_12, an element of degree 2
- b_1_32, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 3, 6, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -5, -5].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- c_1_4 → c_1_0, an element of degree 1
- a_4_31 → 0, an element of degree 4
- b_4_32 → 0, an element of degree 4
- b_4_33 → 0, an element of degree 4
- b_4_34 → 0, an element of degree 4
- b_4_35 → 0, an element of degree 4
- c_4_36 → c_1_14, an element of degree 4
- c_4_37 → c_1_24, an element of degree 4
- b_6_101 → 0, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 5
- a_1_0 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_3 → c_1_4, an element of degree 1
- c_1_4 → c_1_0, an element of degree 1
- a_4_31 → 0, an element of degree 4
- b_4_32 → c_1_22·c_1_3·c_1_4 + c_1_22·c_1_32, an element of degree 4
- b_4_33 → c_1_22·c_1_3·c_1_4, an element of degree 4
- b_4_34 → c_1_22·c_1_42 + c_1_22·c_1_3·c_1_4 + c_1_22·c_1_32, an element of degree 4
- b_4_35 → c_1_2·c_1_3·c_1_42 + c_1_2·c_1_32·c_1_4 + c_1_22·c_1_3·c_1_4, an element of degree 4
- c_4_36 → c_1_2·c_1_3·c_1_42 + c_1_2·c_1_32·c_1_4 + c_1_22·c_1_3·c_1_4
+ c_1_1·c_1_3·c_1_42 + c_1_1·c_1_32·c_1_4 + c_1_12·c_1_42 + c_1_12·c_1_3·c_1_4 + c_1_12·c_1_32 + c_1_14, an element of degree 4
- c_4_37 → c_1_24, an element of degree 4
- b_6_101 → c_1_2·c_1_33·c_1_42 + c_1_2·c_1_34·c_1_4 + c_1_22·c_1_44
+ c_1_22·c_1_33·c_1_4 + c_1_23·c_1_3·c_1_42 + c_1_23·c_1_32·c_1_4 + c_1_24·c_1_42 + c_1_24·c_1_3·c_1_4 + c_1_24·c_1_32 + c_1_1·c_1_33·c_1_42 + c_1_1·c_1_34·c_1_4 + c_1_12·c_1_32·c_1_42 + c_1_12·c_1_33·c_1_4 + c_1_12·c_1_34 + c_1_14·c_1_32, an element of degree 6
|