| Simon King       
     
 
        David J. Green
     
     
 
      Cohomology
      →Theory
 →Implementation
 
     
 
      Jena:
     
           
      Faculty
     
     
 
      External links:
     
        
    Singular
     
    Gap
     
 | 
         
 
 
  Cohomology of group number 2258 of order 128
 
 
  General information on the group
  The group has 5 minimal generators and exponent 4.
   It is non-abelian.
   It has p-Rank 5.
   Its center has rank 3.
   It has 2 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 5.
   
 
  Structure of the cohomology ring
  General information
   The cohomology ring is of dimension 5 and depth 3.
   The depth coincides with the Duflot bound.
   The Poincaré series is    | ( − 1) · (t6  −  t5  +  2·t4  +  t  +  1) |  | 
 |  | (t  +  1) · (t  −  1)5 · (t2  +  1)2 | 
 The a-invariants are -∞,-∞,-∞,-4,-6,-5.  They were obtained using the first, the second, the 4th power of the third, the second power of the fourth, and the fifth filter regular parameter of the Benson test.
   
 
  Ring generators
The cohomology ring has 10 minimal generators of maximal degree 6:
 
   b_1_0, an element of degree 1
   b_1_1, an element of degree 1
   b_1_2, an element of degree 1
   b_1_3, an element of degree 1
   c_1_4, a Duflot regular element of degree 1
   b_3_23, an element of degree 3
   b_3_24, an element of degree 3
   c_4_43, a Duflot regular element of degree 4
   c_4_44, a Duflot regular element of degree 4
   b_6_125, an element of degree 6
   
 
  Ring relations
There are 16 minimal relations of maximal degree 12:
 
   b_1_1·b_1_2 + b_1_0·b_1_3 + b_1_0·b_1_2
   b_1_1·b_1_3 + b_1_12 + b_1_0·b_1_2 + b_1_0·b_1_1 + b_1_02
   b_1_0·b_1_22 + b_1_02·b_1_2
   b_1_0·b_1_2·b_1_3 + b_1_0·b_1_22 + b_1_02·b_1_3 + b_1_03
   b_1_0·b_1_2·b_3_23 + b_1_02·b_3_23
   b_1_0·b_1_3·b_3_23 + b_1_0·b_1_2·b_3_24 + b_1_0·b_1_2·b_3_23 + b_1_0·b_1_1·b_3_23+ b_1_02·b_3_24
 b_1_0·b_1_3·b_3_24 + b_1_0·b_1_2·b_3_24 + b_1_0·b_1_1·b_3_24
   b_3_232 + b_1_33·b_3_23 + b_1_2·b_1_32·b_3_24 + b_1_2·b_1_32·b_3_23+ b_1_22·b_1_3·b_3_23 + b_1_23·b_3_23 + b_1_13·b_3_24 + b_1_13·b_3_23
 + b_1_0·b_1_12·b_3_23 + b_1_02·b_1_14 + b_1_03·b_3_23 + b_1_03·b_1_13
 + b_1_05·b_1_1 + b_1_06 + c_4_44·b_1_22 + c_4_43·b_1_32 + c_4_43·b_1_22
 + c_4_43·b_1_02
 b_3_242 + b_1_33·b_3_23 + b_1_2·b_1_32·b_3_23 + b_1_22·b_1_3·b_3_24+ b_1_22·b_1_3·b_3_23 + b_1_23·b_3_24 + b_1_0·b_1_12·b_3_23 + b_1_02·b_1_1·b_3_24
 + b_1_02·b_1_1·b_3_23 + b_1_02·b_1_14 + b_1_05·b_1_1 + b_1_06 + c_4_44·b_1_32
 + c_4_43·b_1_22 + c_4_43·b_1_12 + c_4_43·b_1_02
 b_1_2·b_3_23·b_3_24 + b_1_2·b_1_33·b_3_24 + b_1_23·b_1_3·b_3_23 + b_1_24·b_3_24+ b_1_24·b_3_23 + b_1_0·b_3_23·b_3_24 + b_1_02·b_1_12·b_3_23 + b_1_02·b_1_15
 + b_1_04·b_3_24 + b_6_125·b_1_2 + c_4_44·b_1_22·b_1_3 + c_4_44·b_1_0·b_1_12
 + c_4_44·b_1_02·b_1_3 + c_4_44·b_1_02·b_1_1 + c_4_43·b_1_23 + c_4_43·b_1_02·b_1_3
 + c_4_43·b_1_02·b_1_2 + c_4_43·b_1_02·b_1_1
 b_1_3·b_3_23·b_3_24 + b_1_34·b_3_24 + b_1_22·b_1_32·b_3_23 + b_1_23·b_1_3·b_3_24+ b_1_23·b_1_3·b_3_23 + b_1_1·b_3_23·b_3_24 + b_1_0·b_3_23·b_3_24
 + b_1_0·b_1_13·b_3_23 + b_1_0·b_1_16 + b_1_02·b_1_12·b_3_23 + b_1_02·b_1_15
 + b_1_03·b_1_1·b_3_24 + b_1_04·b_3_24 + b_6_125·b_1_3 + c_4_44·b_1_2·b_1_32
 + c_4_44·b_1_13 + c_4_44·b_1_0·b_1_12 + c_4_44·b_1_02·b_1_1 + c_4_44·b_1_03
 + c_4_43·b_1_22·b_1_3 + c_4_43·b_1_02·b_1_3 + c_4_43·b_1_02·b_1_1 + c_4_43·b_1_03
 b_1_0·b_1_13·b_3_24 + b_1_02·b_1_12·b_3_24 + b_1_02·b_1_12·b_3_23+ b_1_02·b_1_15 + b_1_03·b_1_1·b_3_24 + b_1_03·b_1_1·b_3_23 + b_1_04·b_3_24
 + b_6_125·b_1_0 + c_4_44·b_1_0·b_1_12 + c_4_44·b_1_02·b_1_1 + c_4_43·b_1_02·b_1_3
 + c_4_43·b_1_02·b_1_1
 b_1_14·b_3_24 + b_1_0·b_1_13·b_3_24 + b_1_0·b_1_13·b_3_23 + b_1_0·b_1_16+ b_1_02·b_1_12·b_3_24 + b_1_02·b_1_12·b_3_23 + b_1_03·b_1_1·b_3_24
 + b_6_125·b_1_1 + c_4_44·b_1_13 + c_4_44·b_1_0·b_1_12 + c_4_43·b_1_02·b_1_3
 + c_4_43·b_1_03
 b_1_2·b_1_35·b_3_24 + b_1_2·b_1_35·b_3_23 + b_1_22·b_1_34·b_3_24+ b_1_24·b_1_32·b_3_24 + b_1_25·b_1_3·b_3_24 + b_1_25·b_1_3·b_3_23 + b_1_26·b_3_23
 + b_1_13·b_3_23·b_3_24 + b_1_0·b_1_12·b_3_23·b_3_24 + b_1_02·b_1_1·b_3_23·b_3_24
 + b_1_03·b_3_23·b_3_24 + b_1_03·b_1_13·b_3_23 + b_1_03·b_1_16
 + b_1_04·b_1_12·b_3_24 + b_1_04·b_1_15 + b_1_05·b_1_14 + b_1_06·b_3_24
 + b_1_06·b_3_23 + b_1_06·b_1_13 + b_1_08·b_1_1 + b_6_125·b_3_23
 + b_6_125·b_1_2·b_1_32 + b_6_125·b_1_22·b_1_3 + b_6_125·b_1_0·b_1_12
 + b_6_125·b_1_02·b_1_1 + b_6_125·b_1_03 + c_4_44·b_1_2·b_1_3·b_3_23
 + c_4_44·b_1_2·b_1_34 + c_4_44·b_1_22·b_3_24 + c_4_44·b_1_22·b_1_33
 + c_4_44·b_1_23·b_1_32 + c_4_44·b_1_24·b_1_3 + c_4_44·b_1_25
 + c_4_44·b_1_12·b_3_23 + c_4_44·b_1_0·b_1_14 + c_4_44·b_1_02·b_3_24
 + c_4_44·b_1_02·b_3_23 + c_4_44·b_1_02·b_1_13 + c_4_44·b_1_05
 + c_4_43·b_1_32·b_3_24 + c_4_43·b_1_22·b_3_24 + c_4_43·b_1_22·b_3_23
 + c_4_43·b_1_22·b_1_33 + c_4_43·b_1_23·b_1_32 + c_4_43·b_1_25
 + c_4_43·b_1_12·b_3_24 + c_4_43·b_1_0·b_1_14 + c_4_43·b_1_03·b_1_12
 b_1_2·b_1_35·b_3_24 + b_1_2·b_1_35·b_3_23 + b_1_24·b_1_32·b_3_23+ b_1_25·b_1_3·b_3_24 + b_1_26·b_3_24 + b_1_16·b_3_23 + b_1_0·b_1_12·b_3_23·b_3_24
 + b_1_0·b_1_15·b_3_23 + b_1_02·b_1_1·b_3_23·b_3_24 + b_1_02·b_1_17
 + b_1_03·b_1_13·b_3_23 + b_1_06·b_3_23 + b_1_09 + b_6_125·b_3_24
 + b_6_125·b_1_02·b_1_1 + b_6_125·b_1_03 + c_4_44·b_1_32·b_3_23 + c_4_44·b_1_35
 + c_4_44·b_1_2·b_1_3·b_3_24 + c_4_44·b_1_22·b_1_33 + c_4_44·b_1_24·b_1_3
 + c_4_44·b_1_12·b_3_24 + c_4_44·b_1_12·b_3_23 + c_4_44·b_1_02·b_3_24
 + c_4_44·b_1_02·b_3_23 + c_4_44·b_1_03·b_1_12 + c_4_44·b_1_04·b_1_1
 + c_4_43·b_1_35 + c_4_43·b_1_2·b_1_34 + c_4_43·b_1_22·b_3_24
 + c_4_43·b_1_22·b_3_23 + c_4_43·b_1_22·b_1_33 + c_4_43·b_1_23·b_1_32
 + c_4_43·b_1_24·b_1_3 + c_4_43·b_1_25 + c_4_43·b_1_0·b_1_2·b_3_24
 + c_4_43·b_1_0·b_1_14 + c_4_43·b_1_02·b_3_24 + c_4_43·b_1_02·b_3_23
 + c_4_43·b_1_03·b_1_12 + c_4_43·b_1_05
 b_6_125·b_1_2·b_1_32·b_3_24 + b_6_125·b_1_2·b_1_35 + b_6_125·b_1_22·b_1_3·b_3_24+ b_6_125·b_1_23·b_1_33 + b_6_125·b_1_26 + b_6_125·b_1_13·b_3_24
 + b_6_125·b_1_0·b_1_12·b_3_23 + b_6_125·b_1_02·b_1_1·b_3_23
 + b_6_125·b_1_02·b_1_14 + b_6_125·b_1_03·b_3_24 + b_6_125·b_1_03·b_1_13
 + b_6_125·b_1_04·b_1_12 + b_6_125·b_1_06 + b_6_1252 + c_4_44·b_1_35·b_3_23
 + c_4_44·b_1_38 + c_4_44·b_1_2·b_1_34·b_3_24 + c_4_44·b_1_2·b_1_37
 + c_4_44·b_1_22·b_1_33·b_3_24 + c_4_44·b_1_22·b_1_33·b_3_23
 + c_4_44·b_1_22·b_1_36 + c_4_44·b_1_23·b_1_32·b_3_24
 + c_4_44·b_1_24·b_1_3·b_3_24 + c_4_44·b_1_24·b_1_3·b_3_23 + c_4_44·b_1_25·b_3_24
 + c_4_44·b_1_26·b_1_32 + c_4_44·b_1_28 + c_4_44·b_1_15·b_3_23 + c_4_44·b_1_18
 + c_4_44·b_1_0·b_1_14·b_3_23 + c_4_44·b_1_0·b_1_17 + c_4_44·b_1_02·b_1_16
 + c_4_44·b_1_03·b_1_12·b_3_24 + c_4_44·b_1_03·b_1_15
 + c_4_44·b_1_04·b_1_1·b_3_24 + c_4_44·b_1_04·b_1_1·b_3_23 + c_4_44·b_1_05·b_3_24
 + c_4_44·b_1_05·b_3_23 + c_4_44·b_1_05·b_1_13 + c_4_44·b_1_06·b_1_12
 + c_4_44·b_1_07·b_1_1 + c_4_44·b_1_08 + c_4_44·b_6_125·b_1_12
 + c_4_43·b_1_35·b_3_23 + c_4_43·b_1_38 + c_4_43·b_1_2·b_1_34·b_3_23
 + c_4_43·b_1_2·b_1_37 + c_4_43·b_1_22·b_1_33·b_3_24
 + c_4_43·b_1_22·b_1_33·b_3_23 + c_4_43·b_1_22·b_1_36
 + c_4_43·b_1_23·b_1_32·b_3_24 + c_4_43·b_1_23·b_1_32·b_3_23
 + c_4_43·b_1_24·b_1_3·b_3_23 + c_4_43·b_1_25·b_3_24 + c_4_43·b_1_25·b_3_23
 + c_4_43·b_1_26·b_1_32 + c_4_43·b_1_28 + c_4_43·b_1_15·b_3_23 + c_4_43·b_1_18
 + c_4_43·b_1_0·b_1_17 + c_4_43·b_1_02·b_1_13·b_3_23
 + c_4_43·b_1_03·b_1_12·b_3_24 + c_4_43·b_1_03·b_1_12·b_3_23
 + c_4_43·b_1_05·b_1_13 + c_4_43·b_1_06·b_1_12 + c_4_43·b_1_07·b_1_1
 + c_4_43·b_1_08 + c_4_442·b_1_0·b_1_13 + c_4_442·b_1_02·b_1_12
 + c_4_43·c_4_44·b_1_34 + c_4_43·c_4_44·b_1_22·b_1_32 + c_4_43·c_4_44·b_1_24
 + c_4_43·c_4_44·b_1_14 + c_4_43·c_4_44·b_1_04 + c_4_432·b_1_22·b_1_32
 + c_4_432·b_1_02·b_1_12
 
 
 
  Data used for Benson′s test
   
     Benson′s completion test succeeded in degree 12.
     The completion test was perfect: It applied in the last degree in which a generator or relation was found.
     The following is a filter regular homogeneous system of parameters:
    
        c_1_4, a Duflot regular element of degree 1
      c_4_43, a Duflot regular element of degree 4
      c_4_44, a Duflot regular element of degree 4
      b_1_32 + b_1_2·b_1_3 + b_1_22, an element of degree 2
      b_1_32, an element of degree 2
       The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 5, 5, 8].
     The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -5, -5].
     
 
 
  Restriction maps
    Restriction map to the greatest central el. ab. subgp., which is of rank 3
  
       b_1_0 → 0, an element of degree 1
       b_1_1 → 0, an element of degree 1
       b_1_2 → 0, an element of degree 1
       b_1_3 → 0, an element of degree 1
       c_1_4 → c_1_0, an element of degree 1
       b_3_23 → 0, an element of degree 3
       b_3_24 → 0, an element of degree 3
       c_4_43 → c_1_24, an element of degree 4
       c_4_44 → c_1_24 + c_1_14, an element of degree 4
       b_6_125 → 0, an element of degree 6
       
    Restriction map to a maximal el. ab. subgp. of rank 5
  
       b_1_0 → 0, an element of degree 1
       b_1_1 → 0, an element of degree 1
       b_1_2 → c_1_3, an element of degree 1
       b_1_3 → c_1_4, an element of degree 1
       c_1_4 → c_1_0, an element of degree 1
       b_3_23 → c_1_2·c_1_42 + c_1_22·c_1_4 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
       b_3_24 → c_1_2·c_1_42 + c_1_2·c_1_32 + c_1_22·c_1_4 + c_1_22·c_1_3 + c_1_1·c_1_42+ c_1_12·c_1_4, an element of degree 3
 c_4_43 → c_1_2·c_1_43 + c_1_2·c_1_32·c_1_4 + c_1_2·c_1_33 + c_1_24 + c_1_1·c_1_3·c_1_42+ c_1_1·c_1_32·c_1_4, an element of degree 4
 c_4_44 → c_1_2·c_1_43 + c_1_2·c_1_3·c_1_42 + c_1_2·c_1_32·c_1_4 + c_1_2·c_1_33+ c_1_22·c_1_3·c_1_4 + c_1_24 + c_1_1·c_1_33 + c_1_12·c_1_42
 + c_1_12·c_1_3·c_1_4 + c_1_14, an element of degree 4
 b_6_125 → c_1_2·c_1_45 + c_1_2·c_1_3·c_1_44 + c_1_2·c_1_33·c_1_42+ c_1_22·c_1_3·c_1_43 + c_1_22·c_1_32·c_1_42 + c_1_22·c_1_34
 + c_1_23·c_1_3·c_1_42 + c_1_23·c_1_32·c_1_4 + c_1_24·c_1_42 + c_1_24·c_1_32
 + c_1_1·c_1_45 + c_1_1·c_1_34·c_1_4 + c_1_1·c_1_35 + c_1_1·c_1_2·c_1_44
 + c_1_1·c_1_2·c_1_32·c_1_42 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_22·c_1_43
 + c_1_1·c_1_22·c_1_32·c_1_4 + c_1_1·c_1_22·c_1_33 + c_1_12·c_1_44
 + c_1_12·c_1_3·c_1_43 + c_1_12·c_1_34 + c_1_12·c_1_2·c_1_43
 + c_1_12·c_1_2·c_1_3·c_1_42 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_42
 + c_1_12·c_1_22·c_1_3·c_1_4 + c_1_12·c_1_22·c_1_32 + c_1_13·c_1_3·c_1_42
 + c_1_13·c_1_32·c_1_4, an element of degree 6
 
    Restriction map to a maximal el. ab. subgp. of rank 5
  
       b_1_0 → c_1_4, an element of degree 1
       b_1_1 → c_1_4 + c_1_3, an element of degree 1
       b_1_2 → c_1_4, an element of degree 1
       b_1_3 → c_1_3, an element of degree 1
       c_1_4 → c_1_0, an element of degree 1
       b_3_23 → c_1_2·c_1_42 + c_1_2·c_1_32 + c_1_22·c_1_4 + c_1_22·c_1_3 + c_1_1·c_1_42+ c_1_12·c_1_4, an element of degree 3
 b_3_24 → c_1_3·c_1_42 + c_1_2·c_1_42 + c_1_22·c_1_4 + c_1_1·c_1_32 + c_1_12·c_1_3, an element of degree 3
       c_4_43 → c_1_44 + c_1_3·c_1_43 + c_1_2·c_1_32·c_1_4 + c_1_22·c_1_42 + c_1_22·c_1_32+ c_1_24 + c_1_1·c_1_33 + c_1_12·c_1_32, an element of degree 4
 c_4_44 → c_1_3·c_1_43 + c_1_32·c_1_42 + c_1_2·c_1_43 + c_1_2·c_1_3·c_1_42+ c_1_2·c_1_32·c_1_4 + c_1_2·c_1_33 + c_1_22·c_1_3·c_1_4 + c_1_24 + c_1_1·c_1_33
 + c_1_12·c_1_42 + c_1_12·c_1_3·c_1_4 + c_1_14, an element of degree 4
 b_6_125 → c_1_32·c_1_44 + c_1_34·c_1_42 + c_1_35·c_1_4 + c_1_2·c_1_34·c_1_4+ c_1_2·c_1_35 + c_1_22·c_1_44 + c_1_22·c_1_3·c_1_43 + c_1_22·c_1_33·c_1_4
 + c_1_24·c_1_42 + c_1_24·c_1_3·c_1_4 + c_1_24·c_1_32 + c_1_1·c_1_3·c_1_44
 + c_1_1·c_1_32·c_1_43 + c_1_1·c_1_33·c_1_42 + c_1_1·c_1_34·c_1_4
 + c_1_12·c_1_33·c_1_4 + c_1_12·c_1_34 + c_1_14·c_1_3·c_1_4 + c_1_14·c_1_32, an element of degree 6
 
 
 
 
               
 
 |