Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 2261 of order 128
General information on the group
- The group has 5 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 5 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 3, 3, 4 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
(t + 1) · (t4 − 2·t3 + t2 + 1) |
| (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-3,-5,-4. They were obtained using the first, the second, the second power of the third, and the fourth filter regular parameter of the Benson test.
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 5:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_1_3, an element of degree 1
- b_1_4, an element of degree 1
- c_4_31, a Duflot regular element of degree 4
- c_4_32, a Duflot regular element of degree 4
- b_5_45, an element of degree 5
- b_5_46, an element of degree 5
Ring relations
There are 11 minimal relations of maximal degree 10:
- b_1_1·b_1_2 + b_1_0·b_1_3 + b_1_0·b_1_2
- b_1_42 + b_1_1·b_1_3 + b_1_0·b_1_2 + b_1_0·b_1_1
- b_1_0·b_1_32 + b_1_0·b_1_2·b_1_3 + b_1_0·b_1_1·b_1_3
- b_1_1·b_1_32 + b_1_12·b_1_3 + b_1_0·b_1_22 + b_1_0·b_1_12 + b_1_02·b_1_2
+ b_1_02·b_1_1
- b_1_2·b_5_45 + b_1_0·b_5_45 + b_1_04·b_1_2·b_1_3 + b_1_05·b_1_2 + b_1_05·b_1_1
+ c_4_32·b_1_2·b_1_3 + c_4_32·b_1_0·b_1_3 + c_4_32·b_1_0·b_1_2 + c_4_32·b_1_02 + c_4_31·b_1_22 + c_4_31·b_1_0·b_1_2
- b_1_3·b_5_45 + b_1_2·b_5_45 + b_1_1·b_5_45 + b_1_0·b_1_14·b_1_3 + b_1_0·b_1_15
+ b_1_02·b_1_14 + b_1_04·b_1_2·b_1_3 + b_1_05·b_1_2 + b_1_05·b_1_1 + c_4_32·b_1_32 + c_4_32·b_1_2·b_1_3 + c_4_32·b_1_1·b_1_3 + c_4_32·b_1_0·b_1_3 + c_4_32·b_1_0·b_1_2 + c_4_32·b_1_0·b_1_1 + c_4_31·b_1_2·b_1_3 + c_4_31·b_1_22 + c_4_31·b_1_0·b_1_3 + c_4_31·b_1_0·b_1_2
- b_1_2·b_5_45 + b_1_0·b_5_46 + b_1_0·b_1_14·b_1_3 + b_1_02·b_1_14
+ b_1_04·b_1_2·b_1_3 + b_1_04·b_1_1·b_1_3 + b_1_05·b_1_2 + b_1_05·b_1_1 + c_4_32·b_1_2·b_1_3 + c_4_32·b_1_0·b_1_3 + c_4_32·b_1_0·b_1_1 + c_4_31·b_1_22
- b_1_3·b_5_45 + b_1_2·b_5_45 + b_1_1·b_5_46 + b_1_15·b_1_3 + b_1_0·b_1_14·b_1_3
+ b_1_02·b_1_14 + b_1_03·b_1_13 + b_1_04·b_1_1·b_1_3 + b_1_05·b_1_3 + b_1_05·b_1_2 + c_4_32·b_1_32 + c_4_32·b_1_2·b_1_3 + c_4_32·b_1_1·b_1_3 + c_4_32·b_1_12 + c_4_31·b_1_2·b_1_3 + c_4_31·b_1_22
- b_5_452 + b_1_19·b_1_3 + b_1_0·b_1_14·b_5_45 + b_1_0·b_1_19 + b_1_02·b_1_18
+ b_1_03·b_1_17 + b_1_04·b_1_1·b_5_45 + b_1_05·b_1_15 + b_1_08·b_1_1·b_1_3 + b_1_09·b_1_2 + b_1_09·b_1_1 + c_4_32·b_1_0·b_1_14·b_1_3 + c_4_32·b_1_04·b_1_1·b_1_3 + c_4_32·b_1_04·b_1_12 + c_4_32·b_1_05·b_1_1 + c_4_31·b_1_15·b_1_3 + c_4_31·b_1_0·b_1_15 + c_4_31·b_1_04·b_1_2·b_1_3 + c_4_31·b_1_04·b_1_1·b_1_3 + c_4_31·b_1_04·b_1_12 + c_4_31·b_1_05·b_1_3 + c_4_31·b_1_05·b_1_2 + c_4_322·b_1_32 + c_4_322·b_1_02 + c_4_312·b_1_22
- b_5_462 + b_1_2·b_1_34·b_5_46 + b_1_24·b_1_3·b_5_46 + b_1_0·b_1_18·b_1_3
+ b_1_03·b_1_17 + b_1_06·b_1_14 + b_1_07·b_1_13 + b_1_08·b_1_1·b_1_3 + b_1_09·b_1_2 + b_1_09·b_1_1 + c_4_32·b_1_2·b_1_35 + c_4_32·b_1_25·b_1_3 + c_4_32·b_1_0·b_1_14·b_1_3 + c_4_32·b_1_02·b_1_14 + c_4_32·b_1_04·b_1_12 + c_4_31·b_1_36 + c_4_31·b_1_22·b_1_34 + c_4_31·b_1_26 + c_4_31·b_1_02·b_1_14 + c_4_31·b_1_04·b_1_12 + c_4_322·b_1_32 + c_4_322·b_1_22 + c_4_322·b_1_12
- b_5_45·b_5_46 + b_1_15·b_5_45 + b_1_19·b_1_3 + b_1_0·b_1_14·b_5_45
+ b_1_0·b_1_18·b_1_3 + b_1_03·b_1_12·b_5_45 + b_1_03·b_1_17 + b_1_05·b_1_15 + b_1_08·b_1_2·b_1_3 + b_1_08·b_1_12 + b_1_09·b_1_3 + b_1_09·b_1_2 + c_4_32·b_1_3·b_5_46 + c_4_32·b_1_15·b_1_3 + c_4_32·b_1_0·b_5_45 + c_4_32·b_1_0·b_1_14·b_1_3 + c_4_32·b_1_03·b_1_13 + c_4_32·b_1_05·b_1_3 + c_4_32·b_1_05·b_1_2 + c_4_31·b_1_2·b_5_46 + c_4_31·b_1_15·b_1_3 + c_4_31·b_1_0·b_1_14·b_1_3 + c_4_31·b_1_0·b_1_15 + c_4_31·b_1_02·b_1_14 + c_4_31·b_1_04·b_1_2·b_1_3 + c_4_31·b_1_04·b_1_1·b_1_3 + c_4_322·b_1_0·b_1_2 + c_4_322·b_1_0·b_1_1 + c_4_322·b_1_02 + c_4_31·c_4_32·b_1_0·b_1_2
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_31, a Duflot regular element of degree 4
- c_4_32, a Duflot regular element of degree 4
- b_1_32 + b_1_2·b_1_4 + b_1_2·b_1_3 + b_1_22 + b_1_1·b_1_4 + b_1_12 + b_1_02, an element of degree 2
- b_1_32, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 5, 5, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → 0, an element of degree 1
- c_4_31 → c_1_14, an element of degree 4
- c_4_32 → c_1_14 + c_1_04, an element of degree 4
- b_5_45 → 0, an element of degree 5
- b_5_46 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → 0, an element of degree 1
- c_4_31 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_32 → c_1_12·c_1_22 + c_1_14 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- b_5_45 → c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- b_5_46 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → 0, an element of degree 1
- c_4_31 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_32 → c_1_12·c_1_22 + c_1_14 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- b_5_45 → 0, an element of degree 5
- b_5_46 → c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- c_4_31 → c_1_24 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_32 → c_1_24 + c_1_12·c_1_22 + c_1_14 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- b_5_45 → c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
- b_5_46 → c_1_25 + c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_02·c_1_23 + c_1_04·c_1_2, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- b_1_4 → 0, an element of degree 1
- c_4_31 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_32 → c_1_1·c_1_33 + c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_14 + c_1_02·c_1_32
+ c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- b_5_45 → c_1_1·c_1_34 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23
+ c_1_14·c_1_3 + c_1_14·c_1_2 + c_1_02·c_1_33 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_04·c_1_3, an element of degree 5
- b_5_46 → c_1_1·c_1_2·c_1_33 + c_1_12·c_1_33 + c_1_12·c_1_22·c_1_3 + c_1_12·c_1_23
+ c_1_14·c_1_3 + c_1_14·c_1_2 + c_1_02·c_1_33 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_23 + c_1_04·c_1_3 + c_1_04·c_1_2, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_3 + c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- b_1_4 → c_1_3, an element of degree 1
- c_4_31 → c_1_34 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_24 + c_1_1·c_1_2·c_1_32
+ c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_32 → c_1_34 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_24 + c_1_1·c_1_33
+ c_1_1·c_1_2·c_1_32 + c_1_1·c_1_23 + c_1_14 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- b_5_45 → c_1_35 + c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_24·c_1_3 + c_1_25
+ c_1_1·c_1_22·c_1_32 + c_1_12·c_1_33 + c_1_12·c_1_22·c_1_3 + c_1_14·c_1_3 + c_1_02·c_1_33 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_02·c_1_23 + c_1_04·c_1_3 + c_1_04·c_1_2, an element of degree 5
- b_5_46 → c_1_35 + c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_24 + c_1_12·c_1_33
+ c_1_12·c_1_2·c_1_32 + c_1_12·c_1_23 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3, an element of degree 5
|