Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 2274 of order 128
General information on the group
- The group has 5 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 6 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3, 4, 4, 4, 4 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
t4 − t3 + t2 + t + 1 |
| (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-∞,-5,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 9 minimal generators of maximal degree 4:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_1_3, an element of degree 1
- b_1_4, an element of degree 1
- b_4_31, an element of degree 4
- b_4_32, an element of degree 4
- c_4_33, a Duflot regular element of degree 4
- c_4_34, a Duflot regular element of degree 4
Ring relations
There are 10 minimal relations of maximal degree 8:
- b_1_1·b_1_2 + b_1_0·b_1_3 + b_1_0·b_1_2
- b_1_42 + b_1_32 + b_1_1·b_1_3 + b_1_0·b_1_4 + b_1_0·b_1_1 + b_1_02
- b_1_0·b_1_32 + b_1_0·b_1_2·b_1_3 + b_1_0·b_1_1·b_1_3
- b_1_1·b_1_32 + b_1_12·b_1_3 + b_1_0·b_1_2·b_1_3 + b_1_0·b_1_12 + b_1_03
- b_1_0·b_1_12·b_1_3·b_1_4 + b_1_0·b_1_13·b_1_4 + b_1_0·b_1_13·b_1_3 + b_1_0·b_1_14
+ b_1_02·b_1_12·b_1_4 + b_1_02·b_1_13 + b_1_03·b_1_3·b_1_4 + b_1_03·b_1_1·b_1_4 + b_1_03·b_1_1·b_1_3 + b_1_03·b_1_12 + b_1_04·b_1_4 + b_1_04·b_1_1 + b_4_31·b_1_3 + b_4_31·b_1_1 + b_4_31·b_1_0
- b_1_0·b_1_12·b_1_3·b_1_4 + b_1_02·b_1_22·b_1_4 + b_1_02·b_1_13
+ b_1_03·b_1_2·b_1_4 + b_1_03·b_1_12 + b_1_04·b_1_3 + b_1_04·b_1_1 + b_1_05 + b_4_32·b_1_0 + b_4_31·b_1_2 + b_4_31·b_1_0
- b_1_13·b_1_3·b_1_4 + b_1_0·b_1_13·b_1_3 + b_1_02·b_1_22·b_1_4
+ b_1_03·b_1_2·b_1_4 + b_4_32·b_1_1 + b_4_31·b_1_2 + b_4_31·b_1_0
- b_1_17·b_1_3 + b_1_02·b_1_16 + b_1_03·b_1_15 + b_1_05·b_1_12·b_1_4
+ b_1_06·b_1_1·b_1_3 + b_1_06·b_1_12 + b_1_07·b_1_4 + b_1_07·b_1_1 + b_4_32·b_1_0·b_1_13 + b_4_32·b_1_02·b_1_22 + b_4_32·b_1_02·b_1_12 + b_4_32·b_1_03·b_1_2 + b_4_31·b_1_12·b_1_3·b_1_4 + b_4_31·b_1_13·b_1_4 + b_4_31·b_1_14 + b_4_31·b_1_0·b_1_12·b_1_4 + b_4_31·b_1_0·b_1_13 + b_4_31·b_1_02·b_1_12 + b_4_31·b_1_03·b_1_3 + b_4_31·b_1_03·b_1_2 + b_4_31·b_1_03·b_1_1 + b_4_312 + c_4_34·b_1_02·b_1_22 + c_4_34·b_1_02·b_1_12 + c_4_34·b_1_04 + c_4_33·b_1_13·b_1_3 + c_4_33·b_1_0·b_1_13 + c_4_33·b_1_02·b_1_22 + c_4_33·b_1_02·b_1_1·b_1_3 + c_4_33·b_1_02·b_1_12 + c_4_33·b_1_03·b_1_1 + c_4_33·b_1_04
- b_4_32·b_1_0·b_1_23 + b_4_32·b_1_03·b_1_2 + b_4_31·b_1_12·b_1_3·b_1_4
+ b_4_31·b_1_0·b_1_22·b_1_4 + b_4_31·b_1_0·b_1_13 + b_4_31·b_1_02·b_1_2·b_1_4 + b_4_31·b_1_02·b_1_22 + b_4_31·b_1_02·b_1_12 + b_4_31·b_1_03·b_1_3 + b_4_31·b_1_03·b_1_2 + b_4_31·b_1_03·b_1_1 + b_4_31·b_1_04 + b_4_31·b_4_32 + c_4_34·b_1_0·b_1_23 + c_4_34·b_1_02·b_1_22 + c_4_34·b_1_02·b_1_1·b_1_3 + c_4_34·b_1_02·b_1_12 + c_4_34·b_1_03·b_1_3 + c_4_34·b_1_04 + c_4_33·b_1_0·b_1_23 + c_4_33·b_1_02·b_1_22 + c_4_33·b_1_02·b_1_1·b_1_3 + c_4_33·b_1_02·b_1_12 + c_4_33·b_1_03·b_1_3 + c_4_33·b_1_04
- b_4_32·b_1_2·b_1_33 + b_4_32·b_1_24 + b_4_32·b_1_0·b_1_23 + b_4_32·b_1_03·b_1_1
+ b_4_32·b_1_04 + b_4_322 + c_4_34·b_1_22·b_1_32 + c_4_34·b_1_24 + c_4_34·b_1_02·b_1_22 + c_4_34·b_1_02·b_1_12 + c_4_34·b_1_04 + c_4_33·b_1_34 + c_4_33·b_1_22·b_1_32 + c_4_33·b_1_24 + c_4_33·b_1_13·b_1_3 + c_4_33·b_1_0·b_1_13 + c_4_33·b_1_02·b_1_22 + c_4_33·b_1_02·b_1_1·b_1_3 + c_4_33·b_1_03·b_1_1
Data used for Benson′s test
- Benson′s completion test succeeded in degree 8.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_33, a Duflot regular element of degree 4
- c_4_34, a Duflot regular element of degree 4
- b_1_32 + b_1_2·b_1_3 + b_1_22 + b_1_1·b_1_3 + b_1_12 + b_1_0·b_1_3 + b_1_0·b_1_2, an element of degree 2
- b_1_2·b_1_3·b_1_4 + b_1_22·b_1_3 + b_1_0·b_1_3·b_1_4 + b_1_0·b_1_2·b_1_3
+ b_1_0·b_1_22 + b_1_0·b_1_1·b_1_3 + b_1_02·b_1_2, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 5, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
- We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 2 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → 0, an element of degree 1
- b_4_31 → 0, an element of degree 4
- b_4_32 → 0, an element of degree 4
- c_4_33 → c_1_14, an element of degree 4
- c_4_34 → c_1_14 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → 0, an element of degree 1
- b_4_31 → 0, an element of degree 4
- b_4_32 → 0, an element of degree 4
- c_4_33 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_34 → c_1_12·c_1_22 + c_1_14 + c_1_02·c_1_22 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → c_1_3, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → 0, an element of degree 1
- b_4_31 → c_1_0·c_1_2·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
- b_4_32 → c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- c_4_33 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_2·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
- c_4_34 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_3, an element of degree 1
- b_1_4 → c_1_3, an element of degree 1
- b_4_31 → 0, an element of degree 4
- b_4_32 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_12·c_1_32
+ c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- c_4_33 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14, an element of degree 4
- c_4_34 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_2·c_1_32
+ c_1_1·c_1_22·c_1_3 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → c_1_3, an element of degree 1
- b_1_1 → c_1_3, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_3, an element of degree 1
- b_4_31 → c_1_0·c_1_2·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
- b_4_32 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3
+ c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- c_4_33 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_2·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
- c_4_34 → c_1_34 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → c_1_3, an element of degree 1
- b_1_1 → c_1_3 + c_1_2, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → 0, an element of degree 1
- b_4_31 → c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22
+ c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
- b_4_32 → c_1_2·c_1_33 + c_1_23·c_1_3, an element of degree 4
- c_4_33 → c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_24 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_23
+ c_1_12·c_1_32 + c_1_14 + c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
- c_4_34 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → c_1_3, an element of degree 1
- b_1_1 → c_1_3 + c_1_2, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_3, an element of degree 1
- b_4_31 → c_1_22·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_12·c_1_2·c_1_3
+ c_1_12·c_1_22 + c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
- b_4_32 → 0, an element of degree 4
- c_4_33 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_23·c_1_3 + c_1_24 + c_1_1·c_1_2·c_1_32
+ c_1_1·c_1_23 + c_1_12·c_1_32 + c_1_14 + c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
- c_4_34 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
|