Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 2327 of order 128
General information on the group
- The group is also known as E128-, the Extraspecial 2-group of order 128 and type -.
- The group has 6 minimal generators and exponent 4.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 1.
- It has 45 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 3.
- The depth exceeds the Duflot bound, which is 1.
- The Poincaré series is
( − 1) · (t2 + t + 1)2 · (t4 + t3 + t2 + t + 1) · (t6 + t3 + 1) |
| (t − 1)3 · (t2 + 1) · (t4 + 1) · (t8 + 1) |
- The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 7 minimal generators of maximal degree 16:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_1_3, an element of degree 1
- b_1_4, an element of degree 1
- b_1_5, an element of degree 1
- c_16_2565, a Duflot regular element of degree 16
Ring relations
There are 4 minimal relations of maximal degree 9:
- b_1_32 + b_1_2·b_1_3 + b_1_22 + b_1_1·b_1_4 + b_1_0·b_1_5 + b_1_0·b_1_1
- b_1_23 + b_1_1·b_1_42 + b_1_1·b_1_2·b_1_4 + b_1_12·b_1_4 + b_1_0·b_1_52
+ b_1_0·b_1_2·b_1_5 + b_1_0·b_1_1·b_1_2 + b_1_0·b_1_12 + b_1_02·b_1_5 + b_1_02·b_1_1
- b_1_1·b_1_44 + b_1_12·b_1_43 + b_1_13·b_1_42 + b_1_14·b_1_4 + b_1_0·b_1_54
+ b_1_0·b_1_1·b_1_4·b_1_52 + b_1_0·b_1_1·b_1_42·b_1_5 + b_1_0·b_1_12·b_1_4·b_1_5 + b_1_0·b_1_12·b_1_42 + b_1_0·b_1_14 + b_1_02·b_1_53 + b_1_02·b_1_1·b_1_52 + b_1_02·b_1_1·b_1_4·b_1_5 + b_1_02·b_1_12·b_1_5 + b_1_02·b_1_12·b_1_4 + b_1_02·b_1_13 + b_1_03·b_1_52 + b_1_03·b_1_12 + b_1_04·b_1_5 + b_1_04·b_1_1
- b_1_0·b_1_58 + b_1_0·b_1_44·b_1_54 + b_1_0·b_1_1·b_1_43·b_1_54
+ b_1_0·b_1_12·b_1_42·b_1_54 + b_1_0·b_1_13·b_1_4·b_1_54 + b_1_0·b_1_14·b_1_54 + b_1_02·b_1_4·b_1_56 + b_1_02·b_1_42·b_1_55 + b_1_02·b_1_44·b_1_53 + b_1_02·b_1_1·b_1_56 + b_1_02·b_1_1·b_1_4·b_1_55 + b_1_02·b_1_1·b_1_42·b_1_54 + b_1_02·b_1_1·b_1_43·b_1_53 + b_1_02·b_1_12·b_1_55 + b_1_02·b_1_12·b_1_42·b_1_53 + b_1_02·b_1_13·b_1_54 + b_1_02·b_1_13·b_1_4·b_1_53 + b_1_02·b_1_14·b_1_53 + b_1_03·b_1_56 + b_1_03·b_1_42·b_1_54 + b_1_03·b_1_44·b_1_52 + b_1_03·b_1_1·b_1_55 + b_1_03·b_1_1·b_1_42·b_1_53 + b_1_03·b_1_1·b_1_43·b_1_52 + b_1_03·b_1_12·b_1_42·b_1_52 + b_1_03·b_1_13·b_1_53 + b_1_03·b_1_13·b_1_4·b_1_52 + b_1_03·b_1_14·b_1_52 + b_1_04·b_1_42·b_1_53 + b_1_04·b_1_44·b_1_5 + b_1_04·b_1_1·b_1_42·b_1_52 + b_1_04·b_1_1·b_1_43·b_1_5 + b_1_04·b_1_12·b_1_42·b_1_5 + b_1_04·b_1_13·b_1_52 + b_1_04·b_1_13·b_1_4·b_1_5 + b_1_04·b_1_14·b_1_5 + b_1_05·b_1_54 + b_1_05·b_1_42·b_1_52 + b_1_05·b_1_1·b_1_42·b_1_5 + b_1_05·b_1_13·b_1_5 + b_1_06·b_1_4·b_1_52 + b_1_06·b_1_1·b_1_52 + b_1_06·b_1_1·b_1_4·b_1_5 + b_1_06·b_1_12·b_1_5 + b_1_07·b_1_52 + b_1_07·b_1_1·b_1_5
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- However, the last relation was already found in degree 9 and the last generator in degree 16.
- The following is a filter regular homogeneous system of parameters:
- c_16_2565, a Duflot regular element of degree 16
- b_1_54 + b_1_42·b_1_52 + b_1_44 + b_1_22·b_1_42 + b_1_1·b_1_4·b_1_52
+ b_1_1·b_1_42·b_1_5 + b_1_1·b_1_43 + b_1_1·b_1_3·b_1_42 + b_1_1·b_1_2·b_1_3·b_1_4 + b_1_1·b_1_22·b_1_4 + b_1_12·b_1_52 + b_1_12·b_1_4·b_1_5 + b_1_12·b_1_3·b_1_4 + b_1_12·b_1_2·b_1_3 + b_1_14 + b_1_0·b_1_53 + b_1_0·b_1_4·b_1_52 + b_1_0·b_1_42·b_1_5 + b_1_0·b_1_3·b_1_52 + b_1_0·b_1_2·b_1_42 + b_1_0·b_1_2·b_1_3·b_1_5 + b_1_0·b_1_22·b_1_5 + b_1_0·b_1_22·b_1_4 + b_1_0·b_1_1·b_1_4·b_1_5 + b_1_0·b_1_1·b_1_22 + b_1_0·b_1_12·b_1_5 + b_1_0·b_1_12·b_1_2 + b_1_02·b_1_4·b_1_5 + b_1_02·b_1_42 + b_1_02·b_1_3·b_1_5 + b_1_02·b_1_2·b_1_4 + b_1_02·b_1_2·b_1_3 + b_1_02·b_1_22 + b_1_02·b_1_1·b_1_4 + b_1_02·b_1_1·b_1_2 + b_1_02·b_1_12 + b_1_04, an element of degree 4
- b_1_42·b_1_54 + b_1_44·b_1_52 + b_1_3·b_1_4·b_1_54 + b_1_3·b_1_44·b_1_5
+ b_1_2·b_1_42·b_1_53 + b_1_2·b_1_44·b_1_5 + b_1_2·b_1_3·b_1_54 + b_1_2·b_1_3·b_1_42·b_1_52 + b_1_2·b_1_3·b_1_44 + b_1_22·b_1_54 + b_1_22·b_1_4·b_1_53 + b_1_22·b_1_42·b_1_52 + b_1_22·b_1_43·b_1_5 + b_1_22·b_1_3·b_1_53 + b_1_22·b_1_3·b_1_4·b_1_52 + b_1_22·b_1_3·b_1_42·b_1_5 + b_1_22·b_1_3·b_1_43 + b_1_1·b_1_42·b_1_53 + b_1_1·b_1_43·b_1_52 + b_1_1·b_1_3·b_1_43·b_1_5 + b_1_1·b_1_2·b_1_3·b_1_53 + b_1_1·b_1_2·b_1_3·b_1_4·b_1_52 + b_1_1·b_1_2·b_1_3·b_1_42·b_1_5 + b_1_1·b_1_22·b_1_4·b_1_52 + b_1_1·b_1_22·b_1_42·b_1_5 + b_1_1·b_1_22·b_1_43 + b_1_1·b_1_22·b_1_3·b_1_42 + b_1_12·b_1_54 + b_1_12·b_1_4·b_1_53 + b_1_12·b_1_42·b_1_52 + b_1_12·b_1_43·b_1_5 + b_1_12·b_1_3·b_1_4·b_1_52 + b_1_12·b_1_3·b_1_42·b_1_5 + b_1_12·b_1_3·b_1_43 + b_1_12·b_1_2·b_1_4·b_1_52 + b_1_12·b_1_2·b_1_43 + b_1_12·b_1_22·b_1_52 + b_1_12·b_1_22·b_1_4·b_1_5 + b_1_12·b_1_22·b_1_42 + b_1_12·b_1_22·b_1_3·b_1_5 + b_1_13·b_1_3·b_1_4·b_1_5 + b_1_13·b_1_2·b_1_52 + b_1_13·b_1_2·b_1_4·b_1_5 + b_1_13·b_1_2·b_1_42 + b_1_13·b_1_2·b_1_3·b_1_5 + b_1_13·b_1_2·b_1_3·b_1_4 + b_1_14·b_1_52 + b_1_14·b_1_4·b_1_5 + b_1_14·b_1_3·b_1_4 + b_1_14·b_1_2·b_1_5 + b_1_0·b_1_42·b_1_53 + b_1_0·b_1_43·b_1_52 + b_1_0·b_1_3·b_1_4·b_1_53 + b_1_0·b_1_3·b_1_43·b_1_5 + b_1_0·b_1_2·b_1_54 + b_1_0·b_1_2·b_1_42·b_1_52 + b_1_0·b_1_2·b_1_43·b_1_5 + b_1_0·b_1_2·b_1_3·b_1_4·b_1_52 + b_1_0·b_1_22·b_1_42·b_1_5 + b_1_0·b_1_22·b_1_43 + b_1_0·b_1_1·b_1_43·b_1_5 + b_1_0·b_1_1·b_1_3·b_1_4·b_1_52 + b_1_0·b_1_1·b_1_3·b_1_42·b_1_5 + b_1_0·b_1_1·b_1_2·b_1_42·b_1_5 + b_1_0·b_1_1·b_1_2·b_1_43 + b_1_0·b_1_1·b_1_2·b_1_3·b_1_52 + b_1_0·b_1_1·b_1_22·b_1_52 + b_1_0·b_1_1·b_1_22·b_1_4·b_1_5 + b_1_0·b_1_1·b_1_22·b_1_3·b_1_5 + b_1_0·b_1_1·b_1_22·b_1_3·b_1_4 + b_1_0·b_1_12·b_1_3·b_1_52 + b_1_0·b_1_12·b_1_2·b_1_3·b_1_5 + b_1_0·b_1_12·b_1_22·b_1_5 + b_1_0·b_1_12·b_1_22·b_1_4 + b_1_0·b_1_12·b_1_22·b_1_3 + b_1_0·b_1_13·b_1_4·b_1_5 + b_1_0·b_1_13·b_1_3·b_1_5 + b_1_0·b_1_13·b_1_3·b_1_4 + b_1_0·b_1_13·b_1_2·b_1_4 + b_1_0·b_1_13·b_1_22 + b_1_0·b_1_14·b_1_3 + b_1_0·b_1_14·b_1_2 + b_1_02·b_1_4·b_1_53 + b_1_02·b_1_42·b_1_52 + b_1_02·b_1_44 + b_1_02·b_1_3·b_1_53 + b_1_02·b_1_2·b_1_53 + b_1_02·b_1_2·b_1_3·b_1_52 + b_1_02·b_1_22·b_1_4·b_1_5 + b_1_02·b_1_22·b_1_3·b_1_5 + b_1_02·b_1_22·b_1_3·b_1_4 + b_1_02·b_1_1·b_1_53 + b_1_02·b_1_1·b_1_4·b_1_52 + b_1_02·b_1_1·b_1_42·b_1_5 + b_1_02·b_1_1·b_1_3·b_1_42 + b_1_02·b_1_1·b_1_2·b_1_4·b_1_5 + b_1_02·b_1_1·b_1_2·b_1_42 + b_1_02·b_1_1·b_1_2·b_1_3·b_1_5 + b_1_02·b_1_1·b_1_22·b_1_5 + b_1_02·b_1_1·b_1_22·b_1_4 + b_1_02·b_1_1·b_1_22·b_1_3 + b_1_02·b_1_12·b_1_3·b_1_5 + b_1_02·b_1_12·b_1_2·b_1_3 + b_1_02·b_1_12·b_1_22 + b_1_02·b_1_13·b_1_5 + b_1_02·b_1_13·b_1_4 + b_1_02·b_1_13·b_1_3 + b_1_02·b_1_13·b_1_2 + b_1_02·b_1_14 + b_1_03·b_1_53 + b_1_03·b_1_4·b_1_52 + b_1_03·b_1_42·b_1_5 + b_1_03·b_1_2·b_1_3·b_1_4 + b_1_03·b_1_22·b_1_5 + b_1_03·b_1_1·b_1_3·b_1_5 + b_1_03·b_1_1·b_1_2·b_1_4 + b_1_03·b_1_1·b_1_2·b_1_3 + b_1_03·b_1_12·b_1_3 + b_1_03·b_1_13 + b_1_04·b_1_42 + b_1_04·b_1_3·b_1_5 + b_1_04·b_1_1·b_1_4 + b_1_04·b_1_1·b_1_3 + b_1_04·b_1_12 + b_1_05·b_1_5 + b_1_05·b_1_1, an element of degree 6
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 23].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
- We found that there exists some filter regular HSOP formed by the first term of the above HSOP, together with 2 elements of degree 2.
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 1
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → 0, an element of degree 1
- b_1_5 → 0, an element of degree 1
- c_16_2565 → c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → 0, an element of degree 1
- c_16_2565 → c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28
+ c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → 0, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_12·c_1_214 + c_1_14·c_1_212 + c_1_16·c_1_210 + c_1_17·c_1_29
+ c_1_19·c_1_27 + c_1_110·c_1_26 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_115·c_1_2 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_12·c_1_214 + c_1_15·c_1_211 + c_1_18·c_1_28 + c_1_111·c_1_25
+ c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_115·c_1_2 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_14·c_1_212 + c_1_15·c_1_211 + c_1_16·c_1_210 + c_1_17·c_1_29
+ c_1_18·c_1_28 + c_1_110·c_1_26 + c_1_113·c_1_23 + c_1_115·c_1_2 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_12·c_1_214 + c_1_13·c_1_213 + c_1_17·c_1_29 + c_1_18·c_1_28
+ c_1_110·c_1_26 + c_1_111·c_1_25 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_115·c_1_2 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → 0, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28
+ c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → 0, an element of degree 1
- c_16_2565 → c_1_12·c_1_214 + c_1_13·c_1_213 + c_1_15·c_1_211 + c_1_16·c_1_210
+ c_1_112·c_1_24 + c_1_114·c_1_22 + c_1_115·c_1_2 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_14·c_1_212 + c_1_16·c_1_210 + c_1_110·c_1_26
+ c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_114·c_1_22 + c_1_115·c_1_2 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_14·c_1_212 + c_1_17·c_1_29 + c_1_18·c_1_28 + c_1_110·c_1_26
+ c_1_111·c_1_25 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_114·c_1_22 + c_1_115·c_1_2 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_14·c_1_212 + c_1_15·c_1_211 + c_1_16·c_1_210 + c_1_19·c_1_27
+ c_1_110·c_1_26 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_114·c_1_22 + c_1_115·c_1_2 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28
+ c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_14·c_1_212 + c_1_17·c_1_29 + c_1_19·c_1_27 + c_1_111·c_1_25
+ c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_13·c_1_213 + c_1_14·c_1_212 + c_1_17·c_1_29 + c_1_112·c_1_24
+ c_1_113·c_1_23 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_1·c_1_215 + c_1_13·c_1_213 + c_1_15·c_1_211
+ c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_1·c_1_215 + c_1_13·c_1_213 + c_1_14·c_1_212 + c_1_15·c_1_211
+ c_1_17·c_1_29 + c_1_19·c_1_27 + c_1_110·c_1_26 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_216 + c_1_12·c_1_214 + c_1_13·c_1_213 + c_1_14·c_1_212
+ c_1_16·c_1_210 + c_1_18·c_1_28 + c_1_19·c_1_27 + c_1_111·c_1_25 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_1·c_1_215 + c_1_13·c_1_213 + c_1_15·c_1_211 + c_1_16·c_1_210
+ c_1_17·c_1_29 + c_1_18·c_1_28 + c_1_110·c_1_26 + c_1_111·c_1_25 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → 0, an element of degree 1
- c_16_2565 → c_1_14·c_1_212 + c_1_17·c_1_29 + c_1_18·c_1_28 + c_1_19·c_1_27
+ c_1_111·c_1_25 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_114·c_1_22 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → 0, an element of degree 1
- c_16_2565 → c_1_216 + c_1_17·c_1_29 + c_1_18·c_1_28 + c_1_19·c_1_27 + c_1_111·c_1_25
+ c_1_112·c_1_24 + c_1_114·c_1_22 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → 0, an element of degree 1
- c_16_2565 → c_1_1·c_1_215 + c_1_13·c_1_213 + c_1_14·c_1_212 + c_1_15·c_1_211
+ c_1_16·c_1_210 + c_1_18·c_1_28 + c_1_113·c_1_23 + c_1_114·c_1_22 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_2 + c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → 0, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_12·c_1_214 + c_1_14·c_1_212 + c_1_15·c_1_211 + c_1_18·c_1_28
+ c_1_19·c_1_27 + c_1_111·c_1_25 + c_1_113·c_1_23 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_2 + c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → 0, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_216 + c_1_12·c_1_214 + c_1_13·c_1_213 + c_1_17·c_1_29 + c_1_18·c_1_28
+ c_1_111·c_1_25 + c_1_112·c_1_24 + c_1_114·c_1_22 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_2 + c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → 0, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_1·c_1_215 + c_1_17·c_1_29 + c_1_19·c_1_27 + c_1_110·c_1_26
+ c_1_113·c_1_23 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_1·c_1_215 + c_1_16·c_1_210 + c_1_17·c_1_29 + c_1_19·c_1_27
+ c_1_111·c_1_25 + c_1_113·c_1_23 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_216 + c_1_13·c_1_213 + c_1_17·c_1_29 + c_1_19·c_1_27 + c_1_110·c_1_26
+ c_1_114·c_1_22 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_2 + c_1_1, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_216 + c_1_14·c_1_212 + c_1_16·c_1_210 + c_1_17·c_1_29 + c_1_18·c_1_28
+ c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_12·c_1_214 + c_1_13·c_1_213 + c_1_16·c_1_210 + c_1_19·c_1_27
+ c_1_112·c_1_24 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_12·c_1_214 + c_1_13·c_1_213 + c_1_14·c_1_212
+ c_1_16·c_1_210 + c_1_17·c_1_29 + c_1_19·c_1_27 + c_1_110·c_1_26 + c_1_111·c_1_25 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_115·c_1_2 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2 + c_1_1, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_12·c_1_214 + c_1_13·c_1_213 + c_1_14·c_1_212 + c_1_15·c_1_211
+ c_1_17·c_1_29 + c_1_110·c_1_26 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_1, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_1·c_1_215 + c_1_14·c_1_212 + c_1_16·c_1_210 + c_1_18·c_1_28
+ c_1_19·c_1_27 + c_1_111·c_1_25 + c_1_113·c_1_23 + c_1_115·c_1_2 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2 + c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_1, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_1·c_1_215 + c_1_12·c_1_214 + c_1_14·c_1_212 + c_1_15·c_1_211
+ c_1_16·c_1_210 + c_1_18·c_1_28 + c_1_111·c_1_25 + c_1_112·c_1_24 + c_1_114·c_1_22 + c_1_115·c_1_2 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_1·c_1_215 + c_1_14·c_1_212 + c_1_16·c_1_210 + c_1_17·c_1_29
+ c_1_19·c_1_27 + c_1_110·c_1_26 + c_1_111·c_1_25 + c_1_114·c_1_22 + c_1_115·c_1_2 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_1·c_1_215 + c_1_13·c_1_213 + c_1_17·c_1_29 + c_1_18·c_1_28
+ c_1_110·c_1_26 + c_1_111·c_1_25 + c_1_113·c_1_23 + c_1_114·c_1_22 + c_1_115·c_1_2 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_1·c_1_215 + c_1_14·c_1_212 + c_1_18·c_1_28 + c_1_113·c_1_23
+ c_1_114·c_1_22 + c_1_115·c_1_2 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2 + c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → 0, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_1·c_1_215 + c_1_15·c_1_211 + c_1_16·c_1_210 + c_1_17·c_1_29
+ c_1_19·c_1_27 + c_1_110·c_1_26 + c_1_111·c_1_25 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_114·c_1_22 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2 + c_1_1, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_216 + c_1_13·c_1_213 + c_1_14·c_1_212 + c_1_19·c_1_27 + c_1_110·c_1_26
+ c_1_111·c_1_25 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_114·c_1_22 + c_1_115·c_1_2 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2 + c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_15·c_1_211 + c_1_18·c_1_28 + c_1_19·c_1_27 + c_1_110·c_1_26
+ c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_115·c_1_2 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_216 + c_1_13·c_1_213 + c_1_15·c_1_211 + c_1_18·c_1_28 + c_1_19·c_1_27
+ c_1_115·c_1_2 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2 + c_1_1, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_1·c_1_215 + c_1_12·c_1_214 + c_1_14·c_1_212 + c_1_15·c_1_211
+ c_1_17·c_1_29 + c_1_19·c_1_27 + c_1_113·c_1_23 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_1, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_12·c_1_214 + c_1_14·c_1_212 + c_1_110·c_1_26 + c_1_111·c_1_25
+ c_1_112·c_1_24 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_1, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2 + c_1_1, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_1, an element of degree 1
- c_16_2565 → c_1_12·c_1_214 + c_1_14·c_1_212 + c_1_17·c_1_29 + c_1_110·c_1_26
+ c_1_111·c_1_25 + c_1_112·c_1_24 + c_1_113·c_1_23 + c_1_114·c_1_22 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2 + c_1_1, an element of degree 1
- b_1_3 → c_1_2, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_12·c_1_214 + c_1_18·c_1_28 + c_1_111·c_1_25 + c_1_112·c_1_24
+ c_1_113·c_1_23 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- b_1_3 → c_1_2 + c_1_1, an element of degree 1
- b_1_4 → c_1_1, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_16·c_1_210 + c_1_18·c_1_28 + c_1_111·c_1_25 + c_1_112·c_1_24
+ c_1_114·c_1_22 + c_1_115·c_1_2 + c_1_116 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_2 + c_1_1, an element of degree 1
- b_1_3 → c_1_1, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_13·c_1_213 + c_1_14·c_1_212 + c_1_17·c_1_29 + c_1_18·c_1_28
+ c_1_19·c_1_27 + c_1_110·c_1_26 + c_1_114·c_1_22 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2 + c_1_1, an element of degree 1
- b_1_1 → c_1_1, an element of degree 1
- b_1_2 → c_1_1, an element of degree 1
- b_1_3 → c_1_2 + c_1_1, an element of degree 1
- b_1_4 → c_1_2, an element of degree 1
- b_1_5 → c_1_2, an element of degree 1
- c_16_2565 → c_1_216 + c_1_12·c_1_214 + c_1_16·c_1_210 + c_1_17·c_1_29 + c_1_18·c_1_28
+ c_1_113·c_1_23 + c_1_114·c_1_22 + c_1_04·c_1_14·c_1_28 + c_1_04·c_1_18·c_1_24 + c_1_08·c_1_28 + c_1_08·c_1_14·c_1_24 + c_1_08·c_1_18 + c_1_016, an element of degree 16
|