Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 233 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
( − 1) · (t5 − t4 − t2 − 1) |
| (t + 1) · (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-∞,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 5:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- b_2_4, an element of degree 2
- b_2_5, an element of degree 2
- a_3_3, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- b_3_9, an element of degree 3
- b_4_13, an element of degree 4
- b_4_14, an element of degree 4
- c_4_15, a Duflot regular element of degree 4
- c_4_16, a Duflot regular element of degree 4
- a_5_14, a nilpotent element of degree 5
Ring relations
There are 44 minimal relations of maximal degree 10:
- a_1_02
- a_1_0·b_1_1
- b_1_1·b_1_22 + a_1_0·b_1_22
- b_2_4·b_1_1 + a_1_0·b_1_22
- a_1_0·b_1_22 + b_2_5·a_1_0
- b_2_5·b_1_1 + a_1_0·b_1_22
- b_2_52 + b_2_4·b_1_22
- a_1_0·a_3_3
- b_1_1·a_3_3
- b_2_5·a_1_0·b_1_2 + b_2_4·a_1_0·b_1_2 + a_1_0·a_3_5
- b_1_1·a_3_5
- a_1_0·b_3_9
- b_2_5·b_3_9 + b_1_22·a_3_5 + b_2_5·a_3_3 + b_2_4·b_2_5·a_1_0
- b_1_22·b_3_9 + b_1_22·a_3_5 + b_2_5·a_3_3 + b_2_4·b_2_5·a_1_0
- b_2_4·b_3_9 + b_2_5·a_3_5 + b_2_4·a_3_3 + b_2_4·b_2_5·a_1_0
- b_1_22·a_3_5 + b_4_13·a_1_0 + b_2_5·a_3_3 + b_2_4·b_2_5·a_1_0
- b_4_13·b_1_1 + b_1_22·a_3_5 + b_2_5·a_3_3 + b_2_4·b_2_5·a_1_0
- b_4_14·a_1_0 + b_2_5·a_3_5 + b_2_4·a_3_3 + b_2_4·b_2_5·a_1_0
- b_4_14·b_1_1 + b_1_22·a_3_5 + b_2_5·a_3_3 + b_2_4·b_2_5·a_1_0
- a_3_32
- a_3_52
- a_3_3·b_3_9
- a_3_5·b_3_9 + a_3_3·a_3_5
- b_3_92 + c_4_15·b_1_12
- b_4_13·a_1_0·b_1_2 + b_2_5·b_1_2·a_3_5 + b_2_4·b_1_2·a_3_3 + b_2_42·a_1_0·b_1_2
+ a_3_3·a_3_5 + b_2_4·a_1_0·a_3_5
- b_2_5·b_4_14 + b_2_4·b_1_24 + b_2_4·b_4_13 + b_2_42·b_1_22
- b_4_14·b_1_22 + b_2_5·b_1_24 + b_2_5·b_4_13 + b_2_4·b_2_5·b_1_22
- a_3_3·a_3_5 + a_1_0·a_5_14
- b_1_1·a_5_14
- b_4_13·b_3_9 + b_2_42·b_2_5·a_1_0 + b_2_5·c_4_16·a_1_0 + b_2_5·c_4_15·a_1_0
- b_4_14·a_3_3 + b_4_13·a_3_5 + b_2_5·b_1_22·a_3_3 + b_2_4·b_4_13·a_1_0
+ b_2_4·b_2_5·a_3_3 + b_2_42·b_2_5·a_1_0 + b_2_5·c_4_15·a_1_0 + b_2_4·c_4_16·a_1_0
- b_4_14·b_3_9 + b_2_42·b_2_5·a_1_0 + b_2_5·c_4_15·a_1_0 + b_2_4·c_4_16·a_1_0
- b_4_13·a_3_5 + b_2_5·a_5_14 + b_2_4·b_1_22·a_3_3 + b_2_4·b_2_5·a_3_3
+ b_2_5·c_4_16·a_1_0 + b_2_5·c_4_15·a_1_0
- b_1_22·a_5_14 + b_4_13·a_3_3 + b_2_5·b_1_22·a_3_3 + b_2_4·b_1_22·a_3_3
+ b_2_4·b_4_13·a_1_0 + b_2_42·b_2_5·a_1_0
- b_4_14·a_3_5 + b_2_4·a_5_14 + b_2_4·b_1_22·a_3_3 + b_2_4·b_4_13·a_1_0
+ b_2_4·b_2_5·a_3_5 + b_2_4·b_2_5·a_3_3 + b_2_42·a_3_3 + b_2_42·b_2_5·a_1_0 + b_2_5·c_4_15·a_1_0 + b_2_4·c_4_16·a_1_0
- b_4_13·b_1_24 + b_4_132 + b_2_5·b_1_26 + b_2_4·b_1_26 + b_2_4·b_4_13·b_1_22
+ b_2_4·b_2_5·b_1_24 + c_4_15·b_1_24 + b_2_4·c_4_16·b_1_22
- b_4_13·b_4_14 + b_2_4·b_1_26 + b_2_4·b_2_5·b_1_24 + b_2_42·b_1_24
+ b_2_5·c_4_15·b_1_22 + b_2_4·b_2_5·c_4_16
- b_4_142 + b_2_4·b_1_26 + b_2_4·b_4_13·b_1_22 + b_2_4·b_2_5·b_1_24
+ b_2_42·b_1_24 + b_2_42·b_4_13 + b_2_42·b_2_5·b_1_22 + b_2_43·b_1_22 + b_2_4·c_4_15·b_1_22 + b_2_42·c_4_16
- a_3_3·a_5_14 + c_4_16·a_1_0·a_3_5
- a_3_5·a_5_14 + b_2_4·a_1_0·a_5_14 + c_4_16·a_1_0·a_3_5
- b_3_9·a_5_14 + c_4_16·a_1_0·a_3_5
- b_4_13·a_5_14 + b_4_13·b_1_22·a_3_3 + b_2_5·b_1_24·a_3_3 + b_2_5·b_4_13·a_3_3
+ b_2_4·b_1_24·a_3_3 + b_2_4·b_2_5·b_1_22·a_3_3 + b_2_42·b_4_13·a_1_0 + b_2_43·b_2_5·a_1_0 + c_4_15·b_1_22·a_3_3 + b_4_13·c_4_16·a_1_0 + b_2_5·c_4_16·a_3_5 + b_2_4·b_2_5·c_4_15·a_1_0
- b_4_14·a_5_14 + b_2_4·b_4_13·a_3_3 + b_2_4·b_2_5·a_5_14 + b_2_42·b_1_22·a_3_3
+ b_2_5·c_4_16·a_3_5 + b_2_5·c_4_15·a_3_3 + b_2_4·c_4_16·a_3_5 + b_2_4·c_4_16·a_3_3 + b_2_4·b_2_5·c_4_15·a_1_0 + b_2_42·c_4_16·a_1_0
- a_5_142
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_15, a Duflot regular element of degree 4
- c_4_16, a Duflot regular element of degree 4
- b_1_22 + b_1_12 + b_2_5 + b_2_4, an element of degree 2
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 6, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_4_13 → 0, an element of degree 4
- b_4_14 → 0, an element of degree 4
- c_4_15 → c_1_04, an element of degree 4
- c_4_16 → c_1_14 + c_1_04, an element of degree 4
- a_5_14 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- b_3_9 → c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_4_13 → 0, an element of degree 4
- b_4_14 → 0, an element of degree 4
- c_4_15 → c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_16 → c_1_12·c_1_22 + c_1_14 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- a_5_14 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- b_2_4 → c_1_22, an element of degree 2
- b_2_5 → c_1_2·c_1_3, an element of degree 2
- a_3_3 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- b_3_9 → 0, an element of degree 3
- b_4_13 → c_1_12·c_1_2·c_1_3 + c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_02·c_1_32
+ c_1_02·c_1_2·c_1_3, an element of degree 4
- b_4_14 → c_1_2·c_1_33 + c_1_23·c_1_3 + c_1_12·c_1_22 + c_1_0·c_1_2·c_1_32
+ c_1_0·c_1_22·c_1_3 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- c_4_15 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22
+ c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_04, an element of degree 4
- c_4_16 → c_1_2·c_1_33 + c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_14 + c_1_0·c_1_33
+ c_1_0·c_1_2·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_04, an element of degree 4
- a_5_14 → 0, an element of degree 5
|