Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 265 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t4 − t3 + t2 − t + 1 |
| (t − 1)4 · (t2 + 1) · (t4 + 1) |
- The a-invariants are -∞,-∞,-6,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- c_2_5, a Duflot regular element of degree 2
- a_3_7, a nilpotent element of degree 3
- b_4_13, an element of degree 4
- a_5_8, a nilpotent element of degree 5
- b_5_20, an element of degree 5
- a_6_13, a nilpotent element of degree 6
- b_7_41, an element of degree 7
- b_8_53, an element of degree 8
- c_8_55, a Duflot regular element of degree 8
Ring relations
There are 52 minimal relations of maximal degree 16:
- a_1_02
- a_1_0·b_1_1
- a_2_4·a_1_0
- a_1_0·b_1_22 + a_2_4·b_1_1
- a_2_42
- a_1_0·a_3_7
- b_1_1·a_3_7 + a_2_4·b_1_22 + a_2_4·b_1_1·b_1_2
- a_2_4·b_1_1·b_1_22
- a_2_4·a_3_7
- b_4_13·a_1_0
- a_2_4·b_1_24 + a_3_72
- a_2_4·b_4_13
- a_1_0·a_5_8
- b_1_1·a_5_8 + a_2_4·b_1_24 + a_2_4·c_2_5·b_1_1·b_1_2
- a_1_0·b_5_20
- b_4_13·a_3_7
- a_2_4·a_5_8
- b_1_22·a_5_8 + b_1_24·a_3_7 + a_2_4·b_5_20 + a_2_4·c_2_5·b_1_23
+ a_2_4·c_2_52·b_1_1
- a_6_13·a_1_0
- b_1_22·a_5_8 + b_1_24·a_3_7 + a_6_13·b_1_1 + b_1_2·a_3_72
- a_3_7·a_5_8 + b_1_22·a_3_72
- b_1_13·b_5_20 + b_4_132 + c_2_5·b_1_14·b_1_22 + c_2_5·b_1_15·b_1_2
+ c_2_5·b_1_16
- a_3_7·b_5_20 + b_1_25·a_3_7 + a_6_13·b_1_22 + b_1_22·a_3_72 + c_2_5·b_1_23·a_3_7
+ c_2_5·a_3_72 + a_2_4·c_2_52·b_1_22
- a_2_4·a_6_13
- a_1_0·b_7_41 + a_2_4·c_2_52·b_1_1·b_1_2
- b_1_1·b_7_41 + b_1_1·b_1_22·b_5_20 + b_1_12·b_1_2·b_5_20 + b_4_13·b_1_24
+ b_4_13·b_1_1·b_1_23 + b_4_13·b_1_12·b_1_22 + a_3_7·b_5_20 + b_1_22·a_3_72 + c_2_5·b_4_13·b_1_1·b_1_2 + c_2_5·a_3_72 + c_2_52·b_1_1·b_1_23 + c_2_52·b_1_12·b_1_22
- b_4_13·a_5_8
- a_2_4·b_1_22·b_5_20 + b_1_23·a_3_72 + a_6_13·a_3_7 + c_2_5·b_1_2·a_3_72
- a_2_4·b_7_41 + a_2_4·c_2_52·b_1_23
- b_8_53·a_1_0
- b_1_1·b_1_23·b_5_20 + b_8_53·b_1_1 + b_4_13·b_5_20 + b_4_13·b_1_25
+ b_4_13·b_1_1·b_1_24 + b_4_132·b_1_1 + b_1_26·a_3_7 + a_6_13·b_1_23 + c_2_5·b_1_12·b_5_20 + c_2_5·b_1_12·b_1_25 + c_2_5·b_1_13·b_1_24 + c_2_5·b_1_14·b_1_23 + c_2_5·b_1_15·b_1_22 + c_2_5·b_1_16·b_1_2 + c_2_5·b_1_17 + c_2_5·b_4_13·b_1_1·b_1_22 + c_2_5·b_1_24·a_3_7 + c_2_5·b_1_2·a_3_72 + c_2_52·b_1_1·b_1_24 + c_2_52·b_1_13·b_1_22 + c_2_52·b_1_14·b_1_2 + c_2_52·b_4_13·b_1_1
- a_5_82 + b_1_24·a_3_72
- a_5_8·b_5_20 + b_1_27·a_3_7 + a_6_13·b_1_24 + b_1_24·a_3_72 + c_2_5·b_1_25·a_3_7
+ a_2_4·c_2_5·b_1_2·b_5_20 + c_2_5·b_1_22·a_3_72 + c_2_52·a_3_72
- b_4_13·a_6_13
- a_3_7·b_7_41 + c_2_52·b_1_23·a_3_7 + c_2_52·a_3_72
- b_5_202 + b_8_53·b_1_1·b_1_2 + b_4_13·b_1_2·b_5_20 + b_4_13·b_1_26
+ b_4_13·b_1_12·b_1_24 + b_4_13·b_1_13·b_1_23 + b_4_132·b_1_12 + a_5_8·b_5_20 + b_1_24·a_3_72 + a_6_13·b_1_2·a_3_7 + c_8_55·b_1_12 + c_2_5·b_1_14·b_1_24 + c_2_5·b_1_17·b_1_2 + c_2_5·b_1_18 + c_2_5·b_4_13·b_1_1·b_1_23 + c_2_5·b_4_13·b_1_12·b_1_22 + c_2_5·b_4_13·b_1_14 + c_2_5·b_4_132 + a_2_4·c_2_5·b_1_2·b_5_20 + c_2_5·b_1_22·a_3_72 + c_2_52·b_1_1·b_1_25 + c_2_52·b_4_13·b_1_1·b_1_2 + c_2_52·a_3_72 + c_2_53·b_1_12·b_1_22 + c_2_53·b_1_14 + c_2_54·b_1_12
- a_2_4·b_8_53 + c_2_52·a_3_72
- a_6_13·a_5_8 + a_6_13·b_1_22·a_3_7
- b_1_28·a_3_7 + a_6_13·b_5_20 + a_6_13·b_1_25 + b_1_25·a_3_72
+ c_2_5·a_6_13·b_1_23 + a_2_4·c_8_55·b_1_1 + c_2_5·b_1_23·a_3_72 + c_2_5·a_6_13·a_3_7 + c_2_52·b_1_24·a_3_7 + a_2_4·c_2_52·b_5_20 + c_2_52·b_1_2·a_3_72 + a_2_4·c_2_53·b_1_23 + a_2_4·c_2_54·b_1_1
- b_8_53·b_1_12·b_1_2 + b_4_13·b_7_41 + b_4_13·b_1_22·b_5_20 + b_4_13·b_1_1·b_1_26
+ b_4_13·b_1_12·b_1_25 + b_4_132·b_1_23 + b_4_132·b_1_1·b_1_22 + b_4_132·b_1_12·b_1_2 + b_1_25·a_3_72 + a_6_13·a_5_8 + c_2_5·b_1_16·b_1_23 + c_2_5·b_1_17·b_1_22 + c_2_5·b_1_18·b_1_2 + c_2_5·b_4_13·b_1_12·b_1_23 + c_2_5·a_6_13·a_3_7 + c_2_52·b_1_12·b_1_25 + c_2_52·b_1_16·b_1_2 + c_2_52·b_4_13·b_1_23 + c_2_52·b_4_13·b_1_1·b_1_22 + c_2_52·b_4_13·b_1_12·b_1_2 + c_2_52·b_1_2·a_3_72
- b_8_53·a_3_7 + c_2_52·b_1_24·a_3_7 + c_2_52·b_1_2·a_3_72
- b_1_26·a_3_72 + a_6_132 + c_2_52·b_1_22·a_3_72
- a_5_8·b_7_41 + c_2_52·b_1_25·a_3_7 + a_2_4·c_2_52·b_1_2·b_5_20
+ c_2_52·b_1_22·a_3_72 + c_2_53·a_3_72 + a_2_4·c_2_54·b_1_1·b_1_2
- b_4_13·b_1_2·b_7_41 + b_4_13·b_1_1·b_1_22·b_5_20 + b_4_13·b_1_13·b_1_25
+ b_4_13·b_1_14·b_1_24 + b_4_13·b_1_15·b_1_23 + b_4_13·b_8_53 + b_4_132·b_1_24 + b_4_132·b_1_1·b_1_23 + b_4_132·b_1_13·b_1_2 + b_4_132·b_1_14 + b_4_133 + c_8_55·b_1_14 + c_2_5·b_1_16·b_1_24 + c_2_5·b_1_17·b_1_23 + c_2_5·b_1_18·b_1_22 + c_2_5·b_1_110 + c_2_5·b_4_13·b_1_1·b_5_20 + c_2_5·b_4_13·b_1_1·b_1_25 + c_2_5·b_4_13·b_1_12·b_1_24 + c_2_5·b_4_13·b_1_13·b_1_23 + c_2_5·b_4_13·b_1_15·b_1_2 + c_2_5·b_4_132·b_1_22 + c_2_52·b_1_14·b_1_24 + c_2_52·b_1_16·b_1_22 + c_2_52·b_1_17·b_1_2 + c_2_52·b_1_18 + c_2_52·b_4_13·b_1_1·b_1_23 + c_2_52·b_4_13·b_1_12·b_1_22 + c_2_52·b_4_13·b_1_13·b_1_2 + c_2_52·b_4_132 + c_2_53·b_1_14·b_1_22 + c_2_53·b_1_16 + c_2_54·b_1_14
- b_5_20·b_7_41 + b_1_25·b_7_41 + b_8_53·b_1_24 + b_4_13·b_1_2·b_7_41
+ b_4_13·b_1_14·b_1_24 + b_4_132·b_1_13·b_1_2 + a_6_13·b_1_23·a_3_7 + c_8_55·b_1_12·b_1_22 + c_8_55·b_1_13·b_1_2 + c_2_5·b_1_1·b_1_29 + c_2_5·b_1_14·b_1_26 + c_2_5·b_1_15·b_1_25 + c_2_5·b_1_16·b_1_24 + c_2_5·b_1_17·b_1_23 + c_2_5·b_1_18·b_1_22 + c_2_5·b_1_19·b_1_2 + c_2_5·b_8_53·b_1_1·b_1_2 + c_2_5·b_8_53·b_1_12 + c_2_5·b_4_13·b_1_26 + c_2_5·b_4_13·b_1_1·b_5_20 + c_2_5·b_4_13·b_1_13·b_1_23 + c_2_5·b_4_13·b_1_14·b_1_22 + c_2_5·b_4_13·b_1_15·b_1_2 + c_2_5·b_4_132·b_1_22 + c_2_5·b_4_132·b_1_12 + c_2_5·b_1_27·a_3_7 + a_2_4·c_8_55·b_1_22 + a_2_4·c_8_55·b_1_1·b_1_2 + c_2_5·b_1_24·a_3_72 + c_2_52·b_1_23·b_5_20 + c_2_52·b_1_1·b_1_22·b_5_20 + c_2_52·b_1_1·b_1_27 + c_2_52·b_1_12·b_1_2·b_5_20 + c_2_52·b_1_14·b_1_24 + c_2_52·b_1_16·b_1_22 + c_2_52·b_1_18 + c_2_52·b_4_13·b_1_12·b_1_22 + c_2_52·b_4_132 + c_2_52·b_1_25·a_3_7 + c_2_52·b_1_22·a_3_72 + c_2_53·b_1_1·b_1_25 + c_2_53·b_1_15·b_1_2 + c_2_53·b_1_16 + c_2_53·b_4_13·b_1_1·b_1_2 + c_2_53·b_4_13·b_1_12 + c_2_54·b_1_12·b_1_22 + c_2_54·b_1_13·b_1_2 + a_2_4·c_2_54·b_1_22 + a_2_4·c_2_54·b_1_1·b_1_2
- a_6_13·b_7_41 + c_2_52·a_6_13·b_1_23 + c_2_52·a_6_13·a_3_7
- b_1_26·b_7_41 + b_8_53·b_5_20 + b_8_53·b_1_25 + b_4_13·b_1_12·b_1_27
+ b_4_13·b_1_13·b_1_26 + b_4_132·b_5_20 + b_4_133·b_1_2 + b_4_133·b_1_1 + a_6_132·b_1_2 + c_8_55·b_1_12·b_1_23 + b_4_13·c_8_55·b_1_1 + c_2_5·b_1_1·b_1_210 + c_2_5·b_1_14·b_1_27 + c_2_5·b_1_18·b_1_23 + c_2_5·b_4_13·b_7_41 + c_2_5·b_4_13·b_1_1·b_1_26 + c_2_5·b_4_13·b_1_12·b_5_20 + c_2_5·b_4_13·b_1_12·b_1_25 + c_2_5·b_4_13·b_1_13·b_1_24 + c_2_5·b_4_13·b_1_14·b_1_23 + c_2_5·b_4_13·b_1_15·b_1_22 + c_2_5·b_4_13·b_1_17 + c_2_5·b_4_132·b_1_23 + c_2_5·b_4_132·b_1_1·b_1_22 + c_2_5·b_4_132·b_1_13 + c_2_5·a_6_13·b_5_20 + c_2_5·a_6_13·b_1_25 + a_2_4·c_8_55·b_1_23 + c_2_5·c_8_55·b_1_13 + c_2_52·b_1_24·b_5_20 + c_2_52·b_1_1·b_1_28 + c_2_52·b_1_12·b_1_22·b_5_20 + c_2_52·b_1_12·b_1_27 + c_2_52·b_1_15·b_1_24 + c_2_52·b_4_13·b_5_20 + c_2_52·b_4_13·b_1_25 + c_2_52·b_4_13·b_1_12·b_1_23 + c_2_52·b_4_13·b_1_13·b_1_22 + c_2_52·b_4_13·b_1_14·b_1_2 + c_2_52·b_4_132·b_1_2 + c_2_52·b_4_132·b_1_1 + a_2_4·c_2_5·c_8_55·b_1_1 + c_2_52·a_6_13·a_3_7 + c_2_53·b_1_12·b_1_25 + c_2_53·b_1_15·b_1_22 + c_2_53·b_4_13·b_1_23 + c_2_53·b_4_13·b_1_13 + a_2_4·c_2_53·b_5_20 + c_2_53·b_1_2·a_3_72 + c_2_54·b_1_12·b_1_23 + c_2_54·b_1_13·b_1_22 + c_2_54·b_1_15 + c_2_54·b_4_13·b_1_1 + a_2_4·c_2_54·b_1_23 + c_2_55·b_1_13 + a_2_4·c_2_55·b_1_1
- b_8_53·a_5_8 + c_2_52·b_1_26·a_3_7 + c_2_52·a_6_13·a_3_7
- b_7_412 + b_4_13·b_1_1·b_1_29 + b_4_13·b_1_12·b_1_28 + b_4_13·b_1_16·b_1_24
+ b_4_132·b_1_2·b_5_20 + b_4_132·b_1_13·b_1_23 + b_4_132·b_1_15·b_1_2 + c_8_55·b_1_12·b_1_24 + c_8_55·b_1_14·b_1_22 + c_8_55·b_1_15·b_1_2 + c_2_5·b_1_14·b_1_28 + c_2_5·b_1_15·b_1_27 + c_2_5·b_1_18·b_1_24 + c_2_5·b_1_19·b_1_23 + c_2_5·b_1_110·b_1_22 + c_2_5·b_1_111·b_1_2 + c_2_5·b_4_13·b_1_23·b_5_20 + c_2_5·b_4_13·b_1_12·b_1_26 + c_2_5·b_4_13·b_1_13·b_1_25 + c_2_5·b_4_13·b_1_14·b_1_24 + c_2_5·b_4_13·b_1_16·b_1_22 + c_2_5·b_4_13·b_1_17·b_1_2 + c_2_5·b_4_13·b_8_53 + c_2_5·b_4_132·b_1_24 + c_2_5·b_4_132·b_1_12·b_1_22 + c_2_5·b_4_132·b_1_13·b_1_2 + c_2_5·b_4_132·b_1_14 + c_2_5·b_4_133 + c_8_55·a_3_72 + c_2_5·a_6_13·b_1_23·a_3_7 + c_2_5·a_6_132 + c_2_5·c_8_55·b_1_14 + c_2_52·b_1_16·b_1_24 + c_2_52·b_1_17·b_1_23 + c_2_52·b_1_19·b_1_2 + c_2_52·b_1_110 + c_2_52·b_4_13·b_1_1·b_5_20 + c_2_52·b_4_13·b_1_1·b_1_25 + c_2_52·b_4_13·b_1_12·b_1_24 + c_2_52·b_4_13·b_1_13·b_1_23 + c_2_52·b_4_13·b_1_15·b_1_2 + c_2_52·b_4_132·b_1_22 + c_2_52·a_6_13·b_1_2·a_3_7 + c_2_53·b_1_12·b_1_26 + c_2_53·b_1_14·b_1_24 + c_2_53·b_1_15·b_1_23 + c_2_53·b_1_18 + c_2_53·b_4_13·b_1_24 + c_2_53·b_4_13·b_1_12·b_1_22 + c_2_53·b_4_13·b_1_13·b_1_2 + c_2_53·b_4_132 + c_2_53·b_1_22·a_3_72 + c_2_54·b_1_26 + c_2_54·b_1_15·b_1_2 + c_2_54·b_1_16 + c_2_54·a_3_72 + c_2_55·b_1_14
- a_6_13·b_8_53 + c_2_52·a_6_13·b_1_24 + c_2_52·a_6_13·b_1_2·a_3_7
- b_8_53·b_7_41 + b_4_13·b_1_1·b_1_210 + b_4_13·b_1_12·b_1_29
+ b_4_13·b_1_17·b_1_24 + b_4_13·b_1_18·b_1_23 + b_4_13·b_8_53·b_1_1·b_1_22 + b_4_132·b_7_41 + b_4_132·b_1_22·b_5_20 + b_4_132·b_1_27 + b_4_132·b_1_12·b_5_20 + b_4_132·b_1_12·b_1_25 + b_4_132·b_1_13·b_1_24 + b_4_132·b_1_15·b_1_22 + b_4_132·b_1_16·b_1_2 + b_4_132·b_1_17 + b_4_133·b_1_23 + b_4_133·b_1_1·b_1_22 + b_4_133·b_1_12·b_1_2 + c_8_55·b_1_12·b_1_25 + c_8_55·b_1_14·b_1_23 + c_8_55·b_1_15·b_1_22 + c_8_55·b_1_17 + b_4_13·c_8_55·b_1_1·b_1_22 + b_4_13·c_8_55·b_1_12·b_1_2 + c_2_5·b_1_14·b_1_29 + c_2_5·b_1_15·b_1_28 + c_2_5·b_1_18·b_1_25 + c_2_5·b_1_113 + c_2_5·b_8_53·b_1_1·b_1_24 + c_2_5·b_4_13·b_1_24·b_5_20 + c_2_5·b_4_13·b_1_13·b_1_26 + c_2_5·b_4_13·b_1_15·b_1_24 + c_2_5·b_4_13·b_1_17·b_1_22 + c_2_5·b_4_13·b_1_18·b_1_2 + c_2_5·b_4_13·b_1_19 + c_2_5·b_4_13·b_8_53·b_1_2 + c_2_5·b_4_13·b_8_53·b_1_1 + c_2_5·b_4_132·b_1_15 + c_2_5·b_4_133·b_1_1 + c_8_55·b_1_2·a_3_72 + c_2_5·a_6_13·b_1_24·a_3_7 + c_2_5·a_6_132·b_1_2 + c_2_5·c_8_55·b_1_13·b_1_22 + c_2_5·c_8_55·b_1_14·b_1_2 + c_2_5·c_8_55·b_1_15 + c_2_52·b_1_24·b_7_41 + c_2_52·b_1_12·b_1_29 + c_2_52·b_1_15·b_1_26 + c_2_52·b_1_18·b_1_23 + c_2_52·b_1_19·b_1_22 + c_2_52·b_1_110·b_1_2 + c_2_52·b_8_53·b_1_23 + c_2_52·b_8_53·b_1_1·b_1_22 + c_2_52·b_4_13·b_7_41 + c_2_52·b_4_13·b_1_1·b_1_26 + c_2_52·b_4_13·b_1_12·b_5_20 + c_2_52·b_4_132·b_1_1·b_1_22 + c_2_52·b_4_132·b_1_12·b_1_2 + c_2_52·b_1_25·a_3_72 + c_2_52·a_6_13·b_1_22·a_3_7 + c_2_53·b_1_1·b_1_28 + c_2_53·b_1_12·b_1_27 + c_2_53·b_1_13·b_1_26 + c_2_53·b_1_14·b_1_25 + c_2_53·b_1_15·b_1_24 + c_2_53·b_1_16·b_1_23 + c_2_53·b_1_17·b_1_22 + c_2_53·b_1_18·b_1_2 + c_2_53·b_4_13·b_1_25 + c_2_53·b_4_13·b_1_1·b_1_24 + c_2_53·b_4_13·b_1_12·b_1_23 + c_2_53·b_4_132·b_1_2 + c_2_53·b_4_132·b_1_1 + c_2_54·b_1_27 + c_2_54·b_1_1·b_1_26 + c_2_54·b_1_12·b_1_25 + c_2_54·b_1_13·b_1_24 + c_2_54·b_1_15·b_1_22 + c_2_54·b_1_16·b_1_2 + c_2_54·b_4_13·b_1_23 + c_2_54·b_4_13·b_1_12·b_1_2 + c_2_54·b_1_2·a_3_72 + c_2_55·b_1_13·b_1_22 + c_2_55·b_1_14·b_1_2 + c_2_55·b_1_15
- b_8_532 + b_4_13·b_1_1·b_1_211 + b_4_13·b_1_12·b_1_210
+ b_4_13·b_1_19·b_1_23 + b_4_132·b_1_12·b_1_26 + b_4_132·b_1_13·b_1_25 + b_4_132·b_1_16·b_1_22 + b_4_132·b_1_18 + b_4_132·b_8_53 + b_4_133·b_1_24 + b_4_133·b_1_1·b_1_23 + b_4_133·b_1_13·b_1_2 + b_4_133·b_1_14 + c_8_55·b_1_12·b_1_26 + c_8_55·b_1_14·b_1_24 + c_8_55·b_1_15·b_1_23 + c_8_55·b_1_17·b_1_2 + c_8_55·b_1_18 + b_4_13·c_8_55·b_1_14 + b_4_132·c_8_55 + c_2_5·b_1_14·b_1_210 + c_2_5·b_1_15·b_1_29 + c_2_5·b_1_18·b_1_26 + c_2_5·b_1_110·b_1_24 + c_2_5·b_1_111·b_1_23 + c_2_5·b_1_112·b_1_22 + c_2_5·b_1_113·b_1_2 + c_2_5·b_1_114 + c_2_5·b_4_13·b_1_25·b_5_20 + c_2_5·b_4_13·b_1_12·b_1_28 + c_2_5·b_4_13·b_1_13·b_1_27 + c_2_5·b_4_13·b_1_19·b_1_2 + c_2_5·b_4_13·b_8_53·b_1_22 + c_2_5·b_4_132·b_1_26 + c_2_5·b_4_132·b_1_1·b_5_20 + c_2_5·b_4_132·b_1_13·b_1_23 + c_2_5·b_4_132·b_1_15·b_1_2 + c_2_5·b_4_132·b_1_16 + c_2_5·b_4_133·b_1_12 + c_8_55·b_1_22·a_3_72 + c_2_5·a_6_13·b_1_25·a_3_7 + c_2_5·a_6_132·b_1_22 + c_2_5·c_8_55·b_1_14·b_1_22 + c_2_5·c_8_55·b_1_15·b_1_2 + c_2_5·c_8_55·b_1_16 + c_2_52·b_1_12·b_1_210 + c_2_52·b_1_16·b_1_26 + c_2_52·b_1_17·b_1_25 + c_2_52·b_1_18·b_1_24 + c_2_52·b_1_110·b_1_22 + c_2_52·b_1_111·b_1_2 + c_2_52·b_1_112 + c_2_52·b_4_13·b_1_1·b_1_22·b_5_20 + c_2_52·b_4_13·b_1_1·b_1_27 + c_2_52·b_4_13·b_1_12·b_1_26 + c_2_52·b_4_13·b_1_15·b_1_23 + c_2_52·b_4_132·b_1_24 + c_2_52·b_4_132·b_1_13·b_1_2 + c_2_52·b_4_133 + c_2_52·a_6_13·b_1_23·a_3_7 + c_2_52·a_6_132 + c_2_52·c_8_55·b_1_14 + c_2_53·b_1_12·b_1_28 + c_2_53·b_1_14·b_1_26 + c_2_53·b_1_17·b_1_23 + c_2_53·b_1_18·b_1_22 + c_2_53·b_1_19·b_1_2 + c_2_53·b_1_110 + c_2_53·b_4_13·b_1_26 + c_2_53·b_4_13·b_1_12·b_1_24 + c_2_53·b_4_13·b_1_13·b_1_23 + c_2_53·b_4_132·b_1_1·b_1_2 + c_2_53·b_1_24·a_3_72 + c_2_54·b_1_28 + c_2_54·b_1_12·b_1_26 + c_2_54·b_1_14·b_1_24 + c_2_54·b_1_16·b_1_22 + c_2_54·b_1_17·b_1_2 + c_2_54·b_4_13·b_1_14 + c_2_54·b_1_22·a_3_72 + c_2_55·b_1_15·b_1_2 + c_2_56·b_1_14
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_2_5, a Duflot regular element of degree 2
- c_8_55, a Duflot regular element of degree 8
- b_1_22 + b_1_1·b_1_2 + b_1_12, an element of degree 2
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 8, 10].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- c_2_5 → c_1_02, an element of degree 2
- a_3_7 → 0, an element of degree 3
- b_4_13 → 0, an element of degree 4
- a_5_8 → 0, an element of degree 5
- b_5_20 → 0, an element of degree 5
- a_6_13 → 0, an element of degree 6
- b_7_41 → 0, an element of degree 7
- b_8_53 → 0, an element of degree 8
- c_8_55 → c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- a_2_4 → 0, an element of degree 2
- c_2_5 → c_1_0·c_1_2 + c_1_02, an element of degree 2
- a_3_7 → 0, an element of degree 3
- b_4_13 → c_1_1·c_1_23 + c_1_12·c_1_22 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
- a_5_8 → 0, an element of degree 5
- b_5_20 → c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_0·c_1_22·c_1_32 + c_1_0·c_1_23·c_1_3
+ c_1_0·c_1_24 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_04·c_1_2, an element of degree 5
- a_6_13 → 0, an element of degree 6
- b_7_41 → c_1_1·c_1_22·c_1_34 + c_1_1·c_1_23·c_1_33 + c_1_1·c_1_24·c_1_32
+ c_1_12·c_1_2·c_1_34 + c_1_12·c_1_22·c_1_33 + c_1_12·c_1_24·c_1_3 + c_1_14·c_1_2·c_1_32 + c_1_14·c_1_22·c_1_3 + c_1_0·c_1_23·c_1_33 + c_1_0·c_1_24·c_1_32 + c_1_0·c_1_25·c_1_3 + c_1_0·c_1_1·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_23·c_1_32 + c_1_02·c_1_24·c_1_3 + c_1_02·c_1_1·c_1_23·c_1_3 + c_1_02·c_1_12·c_1_22·c_1_3 + c_1_04·c_1_33, an element of degree 7
- b_8_53 → c_1_1·c_1_22·c_1_35 + c_1_1·c_1_23·c_1_34 + c_1_12·c_1_2·c_1_35
+ c_1_12·c_1_22·c_1_34 + c_1_12·c_1_23·c_1_33 + c_1_12·c_1_26 + c_1_13·c_1_25 + c_1_14·c_1_2·c_1_33 + c_1_15·c_1_23 + c_1_16·c_1_22 + c_1_0·c_1_22·c_1_35 + c_1_0·c_1_23·c_1_34 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_26·c_1_3 + c_1_0·c_1_27 + c_1_0·c_1_1·c_1_25·c_1_3 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_12·c_1_25 + c_1_02·c_1_2·c_1_35 + c_1_02·c_1_23·c_1_33 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_24·c_1_3 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_12·c_1_24 + c_1_03·c_1_25 + c_1_04·c_1_34 + c_1_04·c_1_2·c_1_33 + c_1_04·c_1_23·c_1_3 + c_1_05·c_1_23 + c_1_06·c_1_22, an element of degree 8
- c_8_55 → c_1_1·c_1_22·c_1_35 + c_1_1·c_1_23·c_1_34 + c_1_1·c_1_24·c_1_33
+ c_1_12·c_1_2·c_1_35 + c_1_12·c_1_23·c_1_33 + c_1_12·c_1_25·c_1_3 + c_1_12·c_1_26 + c_1_14·c_1_34 + c_1_14·c_1_23·c_1_3 + c_1_18 + c_1_0·c_1_22·c_1_35 + c_1_0·c_1_25·c_1_32 + c_1_0·c_1_27 + c_1_0·c_1_1·c_1_24·c_1_32 + c_1_0·c_1_1·c_1_26 + c_1_0·c_1_12·c_1_23·c_1_32 + c_1_0·c_1_12·c_1_24·c_1_3 + c_1_0·c_1_14·c_1_22·c_1_3 + c_1_0·c_1_14·c_1_23 + c_1_02·c_1_2·c_1_35 + c_1_02·c_1_24·c_1_32 + c_1_02·c_1_1·c_1_23·c_1_32 + c_1_02·c_1_1·c_1_25 + c_1_02·c_1_12·c_1_22·c_1_32 + c_1_02·c_1_12·c_1_23·c_1_3 + c_1_02·c_1_14·c_1_2·c_1_3 + c_1_02·c_1_14·c_1_22 + c_1_03·c_1_23·c_1_32 + c_1_03·c_1_24·c_1_3 + c_1_04·c_1_22·c_1_32 + c_1_04·c_1_23·c_1_3 + c_1_04·c_1_24 + c_1_05·c_1_2·c_1_32 + c_1_05·c_1_22·c_1_3 + c_1_06·c_1_32 + c_1_06·c_1_2·c_1_3, an element of degree 8
|