Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 266 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t7 + t5 + t4 + t2 + 1) |
| (t − 1)3 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 18 minimal generators of maximal degree 8:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- b_1_2, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- a_3_5, a nilpotent element of degree 3
- a_3_6, a nilpotent element of degree 3
- a_4_7, a nilpotent element of degree 4
- a_4_8, a nilpotent element of degree 4
- c_4_9, a Duflot regular element of degree 4
- a_5_11, a nilpotent element of degree 5
- a_5_13, a nilpotent element of degree 5
- a_5_14, a nilpotent element of degree 5
- a_6_19, a nilpotent element of degree 6
- a_7_22, a nilpotent element of degree 7
- a_7_17, a nilpotent element of degree 7
- a_8_25, a nilpotent element of degree 8
- a_8_26, a nilpotent element of degree 8
- c_8_29, a Duflot regular element of degree 8
Ring relations
There are 119 minimal relations of maximal degree 16:
- a_1_02
- a_1_0·a_1_1
- a_1_13
- a_1_0·b_1_22 + a_2_4·a_1_1
- a_2_4·a_1_0
- a_2_42
- a_1_1·a_3_5
- a_1_0·a_3_5
- a_2_4·b_1_22 + a_1_1·a_3_6 + a_2_4·a_1_1·b_1_2
- a_1_0·a_3_6
- a_2_4·a_3_5
- a_1_12·a_3_6
- a_2_4·a_3_6
- b_1_22·a_3_5 + a_4_7·a_1_1
- a_4_7·a_1_0
- a_4_8·a_1_0
- a_3_52
- a_3_62 + a_1_1·b_1_22·a_3_6 + a_1_12·b_1_24
- a_3_5·a_3_6 + a_2_4·a_4_7
- a_3_5·a_3_6 + a_4_8·a_1_12
- a_3_5·a_3_6 + a_2_4·a_4_8
- a_1_1·a_5_11
- a_1_0·a_5_11
- a_1_0·a_5_13
- a_4_7·b_1_22 + a_1_1·a_5_14 + a_1_1·a_5_13 + a_4_7·a_1_1·b_1_2 + c_4_9·a_1_12
- a_3_5·a_3_6 + a_1_0·a_5_14
- a_4_7·a_3_5
- a_4_8·a_1_1·b_1_22 + a_4_7·a_3_6 + a_4_8·a_1_12·b_1_2
- a_4_8·a_3_5
- a_2_4·a_5_11
- a_4_8·a_3_6 + a_4_7·a_3_6 + a_1_12·a_5_13
- b_1_22·a_5_11 + a_1_1·b_1_23·a_3_6 + a_4_8·a_3_6 + a_4_7·a_3_6 + a_2_4·a_5_13
- a_1_12·a_5_14
- b_1_22·a_5_11 + a_1_1·b_1_23·a_3_6 + a_4_8·a_3_6 + a_2_4·a_5_14 + a_2_4·c_4_9·a_1_1
- b_1_22·a_5_11 + a_1_1·b_1_2·a_5_14 + a_1_1·b_1_2·a_5_13 + a_1_1·b_1_23·a_3_6
+ a_6_19·a_1_1 + a_4_7·a_3_6 + c_4_9·a_1_12·b_1_2
- a_6_19·a_1_0 + a_4_8·a_1_1·b_1_22 + a_4_7·a_3_6
- a_4_72
- a_4_82
- a_3_5·a_5_11 + a_4_7·a_4_8
- a_3_6·a_5_11
- a_3_5·a_5_13 + a_4_7·a_4_8
- a_3_5·a_5_14 + a_4_7·a_4_8
- a_4_7·a_4_8 + a_2_4·a_1_1·a_5_14
- a_4_8·b_1_24 + a_3_6·a_5_14 + a_3_6·a_5_13 + a_1_1·b_1_24·a_3_6 + c_4_9·a_1_1·a_3_6
- b_1_23·a_5_14 + b_1_23·a_5_13 + a_6_19·b_1_22 + a_4_8·b_1_24 + a_3_6·a_5_13
+ a_1_1·b_1_22·a_5_13 + a_1_1·b_1_24·a_3_6 + a_2_4·b_1_2·a_5_14 + a_6_19·a_1_12 + c_4_9·a_1_1·b_1_23
- a_4_7·a_4_8 + a_2_4·b_1_2·a_5_14 + a_2_4·b_1_2·a_5_13 + a_2_4·a_6_19
+ a_2_4·c_4_9·a_1_1·b_1_2
- a_1_1·a_7_22 + a_1_1·b_1_22·a_5_13 + a_1_1·b_1_24·a_3_6 + a_6_19·a_1_1·b_1_2
+ a_4_7·a_4_8 + c_4_9·a_1_1·a_3_6
- a_1_0·a_7_22
- b_1_23·a_5_14 + b_1_23·a_5_13 + a_6_19·b_1_22 + a_1_1·a_7_17 + a_1_1·b_1_22·a_5_13
+ a_1_1·b_1_24·a_3_6 + a_6_19·a_1_1·b_1_2 + a_4_7·a_4_8 + a_2_4·b_1_2·a_5_13 + c_4_9·a_1_1·b_1_23 + c_4_9·a_1_1·a_3_6 + c_4_9·a_1_12·b_1_22
- a_1_0·a_7_17
- a_4_8·a_5_11 + a_4_7·a_5_11
- a_4_7·a_5_14 + a_4_7·a_5_13 + a_6_19·a_1_12·b_1_2 + a_4_7·c_4_9·a_1_1
- a_6_19·a_3_5
- a_4_8·a_5_11 + a_2_4·a_6_19·a_1_1
- b_1_22·a_7_22 + b_1_24·a_5_13 + b_1_26·a_3_6 + a_6_19·b_1_23 + a_1_1·b_1_23·a_5_13
+ a_6_19·a_1_1·b_1_22 + a_4_7·a_5_14 + a_1_1·a_3_6·a_5_13 + c_4_9·b_1_22·a_3_6 + c_4_9·a_1_12·b_1_23
- a_4_8·a_5_14 + a_4_8·a_5_13 + a_2_4·a_7_22 + a_4_8·c_4_9·a_1_1
- b_1_2·a_3_6·a_5_13 + a_1_1·b_1_2·a_7_17 + a_1_1·b_1_25·a_3_6 + a_6_19·a_3_6
+ a_6_19·a_1_1·b_1_22 + a_4_8·a_5_11 + a_4_7·a_5_14 + a_4_7·a_5_13 + c_4_9·a_1_1·b_1_2·a_3_6 + c_4_9·a_1_12·b_1_23 + a_4_7·c_4_9·a_1_1
- a_4_8·a_5_14 + a_4_8·a_5_13 + a_4_7·a_5_14 + a_4_7·a_5_13 + a_1_12·a_7_17
+ a_4_8·c_4_9·a_1_1 + a_4_7·c_4_9·a_1_1
- a_4_8·a_5_11 + a_2_4·a_7_17 + a_1_1·a_3_6·a_5_13
- a_1_1·b_1_25·a_3_6 + a_8_25·a_1_1 + a_6_19·a_1_1·b_1_22 + a_4_8·a_5_14 + a_4_8·a_5_13
+ a_4_8·a_5_11 + a_4_7·a_5_13 + a_4_8·c_4_9·a_1_1 + a_4_7·c_4_9·a_1_1
- a_8_25·a_1_0 + a_4_8·a_5_11
- a_8_26·a_1_1 + a_6_19·a_1_1·b_1_22 + a_4_8·a_5_14 + a_4_7·a_5_14 + a_1_1·a_3_6·a_5_13
+ c_4_9·a_1_1·b_1_2·a_3_6 + a_4_7·c_4_9·a_1_1
- a_8_26·a_1_0
- a_5_112
- a_5_11·a_5_14 + a_4_8·a_6_19 + a_4_8·a_1_1·a_5_13
- a_5_11·a_5_14 + a_5_11·a_5_13 + a_6_19·a_1_1·a_3_6 + a_4_8·a_1_1·a_5_13
- a_4_7·a_6_19 + a_6_19·a_1_12·b_1_22 + a_4_8·a_1_1·a_5_13
- a_3_5·a_7_22 + a_4_8·c_4_9·a_1_12
- a_5_11·a_5_14 + a_3_6·a_7_22 + a_1_1·b_1_22·a_7_17 + a_1_12·b_1_28
+ a_6_19·a_1_1·b_1_23 + a_6_19·a_1_12·b_1_22 + a_4_8·c_4_9·a_1_12
- a_5_11·a_5_14 + a_1_12·b_1_2·a_7_17 + a_6_19·a_1_12·b_1_22 + a_4_8·a_1_1·a_5_13
- a_3_5·a_7_17 + a_4_8·a_1_1·a_5_13 + a_4_8·c_4_9·a_1_12
- a_5_11·a_5_14 + a_5_11·a_5_13 + a_3_6·a_7_17 + a_3_6·a_7_22 + a_1_1·b_1_24·a_5_13
+ a_6_19·b_1_2·a_3_6 + a_6_19·a_1_1·b_1_23 + a_4_8·a_1_1·a_5_13 + c_4_9·a_1_1·b_1_22·a_3_6 + a_4_8·c_4_9·a_1_12
- a_5_142 + a_6_19·a_1_12·b_1_22 + c_8_29·a_1_12 + c_4_9·a_1_1·b_1_22·a_3_6
+ c_4_9·a_1_12·b_1_24 + a_4_8·c_4_9·a_1_12 + c_4_92·a_1_12
- b_1_27·a_3_6 + a_8_25·b_1_22 + a_6_19·b_1_24 + a_5_13·a_5_14 + a_5_132
+ a_3_6·a_7_22 + a_1_12·b_1_28 + a_4_7·b_1_2·a_5_13 + a_6_19·a_1_12·b_1_22 + c_4_9·a_1_1·a_5_14 + c_4_9·a_1_12·b_1_24 + a_4_8·c_4_9·a_1_12 + c_4_92·a_1_12
- a_5_142 + a_5_132 + a_5_11·a_5_14 + a_1_1·b_1_24·a_5_13 + a_8_25·a_1_1·b_1_2
+ a_6_19·a_1_1·b_1_23 + a_4_7·b_1_2·a_5_13 + a_4_8·a_1_1·a_5_13 + c_4_9·a_1_1·b_1_22·a_3_6 + a_4_7·c_4_9·a_1_1·b_1_2 + c_4_92·a_1_12
- a_5_11·a_5_14 + a_5_11·a_5_13 + a_2_4·a_8_25 + a_4_8·c_4_9·a_1_12
- a_5_11·a_5_14 + a_5_11·a_5_13 + a_2_4·a_8_26 + a_4_8·a_1_1·a_5_13 + a_4_8·c_4_9·a_1_12
- a_6_19·a_5_11 + a_6_19·a_1_1·b_1_2·a_3_6 + a_4_8·a_1_1·b_1_2·a_5_13
- a_4_7·a_7_22 + a_1_1·a_5_13·a_5_14 + a_6_19·a_1_1·b_1_2·a_3_6
+ a_4_8·a_1_1·b_1_2·a_5_13 + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13 + c_4_9·a_1_12·a_5_13 + a_2_4·c_4_92·a_1_1
- a_4_8·a_7_17 + a_4_8·b_1_22·a_5_13 + a_1_1·a_5_13·a_5_14 + a_6_19·a_1_1·b_1_2·a_3_6
+ a_6_19·a_1_12·b_1_23 + a_4_8·c_4_9·a_1_12·b_1_2
- a_4_8·a_7_22 + a_4_8·b_1_22·a_5_13 + a_1_12·b_1_22·a_7_17
+ a_6_19·a_1_1·b_1_2·a_3_6 + a_4_8·a_1_1·b_1_2·a_5_13 + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13 + c_4_9·a_1_12·a_5_13 + a_4_8·c_4_9·a_1_12·b_1_2 + a_2_4·c_4_92·a_1_1
- a_4_8·b_1_22·a_5_13 + a_4_7·a_7_17 + a_6_19·a_1_1·b_1_2·a_3_6
+ a_6_19·a_1_12·b_1_23 + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13 + c_4_9·a_1_12·a_5_13 + a_4_8·c_4_9·a_1_12·b_1_2 + a_2_4·c_4_92·a_1_1
- b_1_2·a_5_13·a_5_14 + a_6_19·a_5_14 + a_1_1·a_5_13·a_5_14 + a_6_19·a_1_12·b_1_23
+ c_8_29·a_1_12·b_1_2 + c_4_9·a_1_1·b_1_2·a_5_13 + c_4_9·a_1_1·b_1_23·a_3_6 + c_4_9·a_1_12·b_1_25 + c_4_9·a_6_19·a_1_1 + a_2_4·c_8_29·a_1_1 + c_4_9·a_1_12·a_5_13
- a_1_1·b_1_25·a_5_13 + a_8_25·a_1_1·b_1_22 + a_6_19·a_5_14 + a_6_19·a_5_13
+ a_6_19·a_1_1·b_1_24 + a_4_8·a_7_22 + a_6_19·a_1_1·b_1_2·a_3_6 + a_6_19·a_1_12·b_1_23 + c_4_9·a_1_1·b_1_23·a_3_6 + c_4_9·a_6_19·a_1_1 + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13 + a_2_4·c_4_92·a_1_1
- a_8_25·a_3_5
- a_1_1·b_1_25·a_5_13 + a_1_12·b_1_29 + a_8_25·a_3_6 + a_6_19·a_5_14 + a_6_19·a_5_13
+ a_6_19·b_1_22·a_3_6 + a_1_1·a_5_13·a_5_14 + a_6_19·a_1_1·b_1_2·a_3_6 + a_6_19·a_1_12·b_1_23 + c_4_9·a_1_1·b_1_23·a_3_6 + c_4_9·a_6_19·a_1_1 + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13 + c_4_9·a_1_12·a_5_13 + a_2_4·c_4_92·a_1_1
- a_8_26·a_3_5 + a_4_8·c_4_9·a_1_12·b_1_2
- a_8_26·a_3_6 + a_6_19·b_1_22·a_3_6 + a_1_1·a_5_13·a_5_14 + a_6_19·a_1_1·b_1_2·a_3_6
+ a_6_19·a_1_12·b_1_23 + a_4_8·a_1_1·b_1_2·a_5_13 + c_4_9·a_1_1·b_1_23·a_3_6 + c_4_9·a_1_12·b_1_25 + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13 + a_2_4·c_4_92·a_1_1
- a_5_11·a_7_22 + a_1_12·b_1_23·a_7_17 + a_6_19·a_1_12·b_1_24 + a_2_4·a_5_13·a_5_14
+ a_2_4·c_4_9·a_1_1·a_5_14
- a_6_19·b_1_2·a_5_14 + a_6_19·b_1_2·a_5_13 + a_6_192 + a_4_7·b_1_2·a_7_17
+ a_6_19·a_1_1·a_5_13 + a_6_19·a_1_1·b_1_22·a_3_6 + a_6_19·a_1_12·b_1_24 + c_4_9·a_6_19·a_1_1·b_1_2 + a_2_4·c_4_9·a_6_19 + c_4_9·a_6_19·a_1_12
- a_5_11·a_7_17 + a_5_11·a_7_22 + a_6_19·a_1_1·b_1_22·a_3_6 + a_2_4·c_4_9·a_1_1·a_5_14
- a_5_14·a_7_17 + a_5_13·a_7_22 + a_5_11·a_7_22 + a_6_19·b_1_23·a_3_6
+ a_6_19·a_1_1·a_5_13 + a_6_19·a_1_12·b_1_24 + a_2_4·a_5_13·a_5_14 + c_8_29·a_1_1·a_3_6 + c_8_29·a_1_12·b_1_22 + c_4_9·a_3_6·a_5_13 + c_4_9·a_1_1·b_1_22·a_5_13 + a_2_4·c_4_9·a_6_19 + c_4_9·a_6_19·a_1_12 + c_4_92·a_1_1·a_3_6 + c_4_92·a_1_12·b_1_22 + a_2_4·c_4_92·a_1_1·b_1_2
- a_5_14·a_7_22 + a_5_13·a_7_22 + a_6_19·b_1_2·a_5_13 + a_6_19·b_1_23·a_3_6 + a_6_192
+ a_6_19·a_1_1·b_1_22·a_3_6 + c_4_9·a_3_6·a_5_13 + c_4_9·a_1_1·a_7_17 + c_4_9·a_1_1·b_1_22·a_5_13 + a_2_4·c_8_29·a_1_1·b_1_2 + a_2_4·c_4_9·a_6_19 + c_4_92·a_1_12·b_1_22 + a_2_4·c_4_92·a_1_1·b_1_2
- a_5_11·a_7_22 + a_4_8·a_8_25 + a_6_19·a_1_1·b_1_22·a_3_6 + a_6_19·a_1_12·b_1_24
+ a_2_4·a_5_13·a_5_14 + a_2_4·c_4_9·a_1_1·a_5_14
- a_5_13·a_7_22 + a_5_11·a_7_22 + a_1_1·b_1_24·a_7_17 + a_8_25·a_1_1·b_1_23
+ a_6_19·b_1_2·a_5_13 + a_6_19·b_1_23·a_3_6 + a_6_192 + a_6_19·a_1_12·b_1_24 + c_8_29·a_1_12·b_1_22 + c_4_9·a_3_6·a_5_13 + a_2_4·c_4_9·a_1_1·a_5_14
- a_4_7·a_8_25 + a_6_19·a_1_1·b_1_22·a_3_6 + a_6_19·a_1_12·b_1_24
+ a_2_4·c_4_9·a_1_1·a_5_14
- a_5_11·a_7_22 + a_4_8·a_8_26 + a_2_4·a_5_13·a_5_14 + a_2_4·c_4_9·a_6_19
+ c_4_9·a_6_19·a_1_12
- a_8_26·b_1_24 + a_6_19·b_1_26 + a_5_14·a_7_17 + a_5_14·a_7_22 + a_5_13·a_7_17
+ a_1_1·b_1_24·a_7_17 + a_8_25·b_1_2·a_3_6 + a_6_19·b_1_2·a_5_14 + a_6_19·b_1_23·a_3_6 + a_6_19·a_1_1·b_1_25 + a_6_192 + c_4_9·b_1_25·a_3_6 + c_8_29·a_1_12·b_1_22 + c_4_9·a_1_1·b_1_22·a_5_13 + c_4_9·a_1_1·b_1_24·a_3_6 + a_2_4·c_4_9·b_1_2·a_5_13 + c_4_9·a_6_19·a_1_12 + c_4_92·a_1_12·b_1_22 + a_2_4·c_4_92·a_1_1·b_1_2
- a_4_7·a_8_26 + a_6_19·a_1_12·b_1_24 + a_2_4·c_4_9·a_6_19
- a_6_19·a_7_22 + a_6_19·b_1_22·a_5_13 + a_6_19·b_1_24·a_3_6 + a_6_192·b_1_2
+ a_6_19·a_1_1·b_1_2·a_5_13 + a_6_192·a_1_1 + a_2_4·a_6_19·a_5_13 + c_4_9·a_6_19·a_3_6 + c_4_9·a_6_19·a_1_12·b_1_2
- b_1_2·a_5_13·a_7_17 + a_1_1·b_1_25·a_7_17 + a_8_25·a_1_1·b_1_24 + a_6_19·a_7_17
+ a_6_19·b_1_22·a_5_13 + a_6_192·b_1_2 + a_6_19·a_1_1·b_1_23·a_3_6 + a_2_4·a_6_19·a_5_13 + c_8_29·a_1_1·b_1_2·a_3_6 + c_4_9·a_1_1·b_1_2·a_7_17 + c_4_9·a_1_1·b_1_23·a_5_13 + c_4_9·a_1_12·a_7_17 + c_4_9·a_6_19·a_1_12·b_1_2 + a_2_4·c_4_9·a_6_19·a_1_1 + c_4_92·a_1_1·b_1_2·a_3_6 + c_4_92·a_1_12·b_1_23
- a_8_25·a_5_11 + a_6_19·a_1_1·b_1_23·a_3_6
- b_1_2·a_5_13·a_7_17 + a_8_25·a_5_13 + a_6_19·a_7_17 + a_6_19·b_1_24·a_3_6
+ a_6_192·b_1_2 + a_1_1·a_5_13·a_7_17 + a_1_12·b_1_24·a_7_17 + a_6_19·a_1_1·b_1_2·a_5_13 + c_8_29·a_1_1·b_1_2·a_3_6 + c_4_9·a_1_1·b_1_2·a_7_17 + c_4_9·a_1_1·b_1_23·a_5_13 + c_4_9·a_1_12·b_1_27 + c_4_9·a_8_25·a_1_1 + c_4_9·a_6_19·a_1_1·b_1_22 + a_4_7·c_8_29·a_1_1 + c_4_9·a_6_19·a_1_12·b_1_2 + c_4_92·a_1_1·b_1_2·a_3_6 + c_4_92·a_1_12·b_1_23 + a_4_7·c_4_92·a_1_1
- b_1_2·a_5_13·a_7_17 + a_8_25·a_5_14 + a_6_19·a_7_17 + a_1_1·a_5_13·a_7_17
+ a_6_19·a_1_1·b_1_23·a_3_6 + a_2_4·a_6_19·a_5_13 + c_8_29·a_1_1·b_1_2·a_3_6 + c_4_9·a_1_1·b_1_2·a_7_17 + c_4_9·a_1_1·b_1_23·a_5_13 + c_4_9·a_1_12·b_1_27 + c_4_9·a_6_19·a_1_1·b_1_22 + a_4_7·c_8_29·a_1_1 + c_4_9·a_1_12·a_7_17 + c_4_9·a_6_19·a_1_12·b_1_2 + a_2_4·c_4_9·a_6_19·a_1_1 + c_4_92·a_1_1·b_1_2·a_3_6 + c_4_92·a_1_12·b_1_23 + a_4_7·c_4_92·a_1_1
- a_8_26·a_5_11 + a_6_19·a_1_1·b_1_23·a_3_6 + a_2_4·a_6_19·a_5_13
+ a_2_4·c_4_9·a_6_19·a_1_1
- a_8_26·a_5_13 + a_6_19·b_1_22·a_5_13 + a_1_12·b_1_24·a_7_17
+ a_6_19·a_1_1·b_1_2·a_5_13 + a_6_19·a_1_1·b_1_23·a_3_6 + a_6_192·a_1_1 + c_4_9·a_1_1·b_1_2·a_7_17 + c_4_9·a_8_25·a_1_1 + c_4_9·a_6_19·a_3_6 + a_4_8·c_8_29·a_1_1 + a_4_8·c_4_9·a_5_13 + a_4_7·c_8_29·a_1_1 + a_4_7·c_4_9·a_5_13 + c_4_9·a_1_1·a_3_6·a_5_13 + c_4_9·a_6_19·a_1_12·b_1_2 + a_2_4·c_4_9·a_6_19·a_1_1 + c_4_92·a_1_1·b_1_2·a_3_6 + c_4_92·a_1_12·b_1_23 + a_4_7·c_4_92·a_1_1
- a_8_26·a_5_14 + a_6_19·b_1_22·a_5_13 + a_6_192·b_1_2 + a_6_19·a_1_1·b_1_2·a_5_13
+ c_4_9·a_1_1·b_1_2·a_7_17 + c_4_9·a_8_25·a_1_1 + c_4_9·a_6_19·a_1_1·b_1_22 + a_4_8·c_8_29·a_1_1 + a_4_7·c_8_29·a_1_1 + c_4_9·a_1_1·a_3_6·a_5_13 + c_4_9·a_1_12·a_7_17 + c_4_9·a_6_19·a_1_12·b_1_2 + c_4_92·a_1_12·b_1_23 + a_4_8·c_4_92·a_1_1 + a_4_7·c_4_92·a_1_1
- a_7_172 + a_7_222 + a_6_192·b_1_22 + a_6_19·a_3_6·a_5_13 + a_6_19·a_1_1·a_7_17
+ a_6_19·a_1_1·b_1_24·a_3_6 + a_6_192·a_1_1·b_1_2 + c_8_29·a_1_1·b_1_22·a_3_6 + c_4_9·a_1_12·b_1_28 + c_4_9·a_6_19·a_1_1·a_3_6 + c_4_9·a_6_19·a_1_12·b_1_22 + c_4_92·a_1_12·b_1_24
- a_7_172 + a_7_22·a_7_17 + a_8_25·a_1_1·b_1_25 + a_6_19·b_1_23·a_5_13
+ a_6_19·b_1_25·a_3_6 + a_6_192·b_1_22 + a_6_19·a_3_6·a_5_13 + a_6_19·a_1_1·a_7_17 + a_6_19·a_1_1·b_1_22·a_5_13 + a_6_19·a_1_1·b_1_24·a_3_6 + a_1_12·a_5_13·a_7_17 + c_8_29·a_1_12·b_1_24 + c_4_9·a_1_12·b_1_28 + c_4_9·a_8_25·a_1_1·b_1_2 + c_4_9·a_6_19·b_1_2·a_3_6 + c_4_9·a_6_19·a_1_1·b_1_23 + a_4_7·c_4_9·b_1_2·a_5_13 + c_4_9·a_1_12·b_1_2·a_7_17 + a_4_8·c_8_29·a_1_12 + a_4_8·c_4_9·a_1_1·a_5_13 + c_4_92·a_1_1·b_1_22·a_3_6 + c_4_92·a_1_12·b_1_24 + a_4_7·c_4_92·a_1_1·b_1_2 + a_4_8·c_4_92·a_1_12
- a_7_172 + a_7_22·a_7_17 + a_7_222 + a_8_25·b_1_23·a_3_6 + a_8_25·a_1_1·b_1_25
+ a_6_19·b_1_23·a_5_13 + a_6_192·b_1_22 + a_6_19·a_3_6·a_5_13 + a_6_19·a_1_1·b_1_22·a_5_13 + a_6_19·a_1_1·b_1_24·a_3_6 + a_1_12·a_5_13·a_7_17 + c_4_9·a_6_19·b_1_2·a_3_6 + a_4_8·c_8_29·a_1_12 + a_4_8·c_4_9·a_1_1·a_5_13 + a_4_8·c_4_92·a_1_12
- a_6_19·b_1_25·a_3_6 + a_6_19·a_8_25 + a_6_192·b_1_22 + a_6_19·a_3_6·a_5_13
+ a_6_19·a_1_1·b_1_24·a_3_6 + a_6_192·a_1_1·b_1_2 + c_4_9·a_1_12·b_1_2·a_7_17 + a_4_8·c_8_29·a_1_12 + a_4_8·c_4_9·a_1_1·a_5_13
- a_6_19·a_8_26 + a_6_192·b_1_22 + a_6_19·a_3_6·a_5_13 + a_6_19·a_1_1·b_1_22·a_5_13
+ c_4_9·a_6_19·b_1_2·a_3_6 + c_4_9·a_1_12·b_1_2·a_7_17 + c_4_9·a_6_19·a_1_12·b_1_22 + a_4_8·c_8_29·a_1_12
- a_8_25·a_7_17 + a_8_25·a_7_22 + a_8_25·a_1_1·b_1_26 + a_6_19·b_1_22·a_7_17
+ a_6_19·b_1_24·a_5_13 + a_6_19·a_1_1·b_1_23·a_5_13 + a_6_19·a_8_25·a_1_1 + c_4_9·a_6_19·b_1_22·a_3_6 + a_4_7·c_4_9·a_7_17 + a_2_4·c_8_29·a_5_14 + a_2_4·c_8_29·a_5_13 + c_8_29·a_1_12·a_5_13 + c_4_9·a_6_19·a_1_12·b_1_23 + a_4_8·c_4_9·a_1_1·b_1_2·a_5_13 + a_2_4·c_4_9·c_8_29·a_1_1 + a_2_4·c_4_92·a_5_14 + a_2_4·c_4_92·a_5_13 + a_2_4·c_4_93·a_1_1
- a_8_25·a_7_17 + a_8_25·b_1_22·a_5_13 + a_8_25·b_1_24·a_3_6 + a_8_25·a_1_1·b_1_26
+ a_6_19·b_1_22·a_7_17 + a_6_19·b_1_24·a_5_13 + a_6_19·a_8_25·b_1_2 + a_6_192·a_3_6 + a_6_19·a_1_12·a_7_17 + c_4_9·a_8_25·a_3_6 + c_4_9·a_6_19·b_1_22·a_3_6 + a_4_7·c_4_9·a_7_17 + a_2_4·c_8_29·a_5_14 + a_2_4·c_8_29·a_5_13 + c_8_29·a_1_12·a_5_13 + a_4_8·c_4_9·a_1_1·b_1_2·a_5_13 + a_2_4·c_4_9·c_8_29·a_1_1 + a_2_4·c_4_92·a_5_14 + a_2_4·c_4_92·a_5_13 + a_2_4·c_4_93·a_1_1
- a_8_26·a_7_17 + a_6_19·b_1_22·a_7_17 + a_6_19·a_1_1·b_1_23·a_5_13
+ a_6_192·a_1_1·b_1_22 + c_4_9·a_1_1·b_1_23·a_7_17 + c_4_9·a_8_25·a_3_6 + c_4_9·a_6_19·a_5_14 + c_4_9·a_6_19·a_5_13 + c_8_29·a_1_12·a_5_13 + c_4_9·a_1_12·b_1_22·a_7_17 + a_4_8·c_8_29·a_1_12·b_1_2 + a_4_8·c_4_9·a_1_1·b_1_2·a_5_13 + c_4_92·a_6_19·a_1_1 + a_2_4·c_4_92·a_5_14 + a_2_4·c_4_92·a_5_13 + c_4_92·a_1_12·a_5_13 + a_4_8·c_4_92·a_1_12·b_1_2 + a_2_4·c_4_93·a_1_1
- a_8_26·a_7_22 + a_6_19·b_1_24·a_5_13 + a_6_19·a_8_25·b_1_2 + a_6_192·a_3_6
+ c_4_9·a_1_1·b_1_23·a_7_17 + c_4_9·a_8_25·a_3_6 + c_4_9·a_8_25·a_1_1·b_1_22 + a_2_4·c_8_29·a_5_14 + a_2_4·c_8_29·a_5_13 + c_8_29·a_1_12·a_5_13 + a_2_4·c_4_9·c_8_29·a_1_1 + a_4_8·c_4_92·a_1_12·b_1_2
- a_8_25·b_1_25·a_3_6 + a_8_252 + a_6_19·a_8_25·b_1_22 + a_6_192·b_1_2·a_3_6
+ a_6_192·a_1_1·b_1_23 + c_4_9·a_1_12·b_1_23·a_7_17 + c_4_9·a_6_19·a_1_1·b_1_22·a_3_6 + a_2_4·c_8_29·a_1_1·a_5_14 + a_2_4·c_4_9·a_5_13·a_5_14
- a_8_25·b_1_25·a_3_6 + a_8_25·a_8_26 + a_8_252 + a_6_19·a_1_1·b_1_22·a_7_17
+ c_4_9·a_8_25·b_1_2·a_3_6 + c_4_9·a_6_19·a_1_1·b_1_22·a_3_6 + c_4_9·a_6_19·a_1_12·b_1_24 + a_2_4·c_8_29·a_1_1·a_5_14
- a_8_262 + a_6_192·b_1_24 + c_4_92·a_1_1·b_1_24·a_3_6 + c_4_92·a_1_12·b_1_26
Data used for Benson′s test
- Benson′s completion test succeeded in degree 16.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_9, a Duflot regular element of degree 4
- c_8_29, a Duflot regular element of degree 8
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_4_7 → 0, an element of degree 4
- a_4_8 → 0, an element of degree 4
- c_4_9 → c_1_04, an element of degree 4
- a_5_11 → 0, an element of degree 5
- a_5_13 → 0, an element of degree 5
- a_5_14 → 0, an element of degree 5
- a_6_19 → 0, an element of degree 6
- a_7_22 → 0, an element of degree 7
- a_7_17 → 0, an element of degree 7
- a_8_25 → 0, an element of degree 8
- a_8_26 → 0, an element of degree 8
- c_8_29 → c_1_18, an element of degree 8
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- a_4_7 → 0, an element of degree 4
- a_4_8 → 0, an element of degree 4
- c_4_9 → c_1_04, an element of degree 4
- a_5_11 → 0, an element of degree 5
- a_5_13 → 0, an element of degree 5
- a_5_14 → 0, an element of degree 5
- a_6_19 → 0, an element of degree 6
- a_7_22 → 0, an element of degree 7
- a_7_17 → 0, an element of degree 7
- a_8_25 → 0, an element of degree 8
- a_8_26 → 0, an element of degree 8
- c_8_29 → c_1_14·c_1_24 + c_1_18 + c_1_04·c_1_24, an element of degree 8
|