Cohomology of group number 266 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 3 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 3.
  • Its center has rank 2.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 3 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t7  +  t5  +  t4  +  t2  +  1)

    (t  −  1)3 · (t2  +  1)2 · (t4  +  1)
  • The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 18 minimal generators of maximal degree 8:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. b_1_2, an element of degree 1
  4. a_2_4, a nilpotent element of degree 2
  5. a_3_5, a nilpotent element of degree 3
  6. a_3_6, a nilpotent element of degree 3
  7. a_4_7, a nilpotent element of degree 4
  8. a_4_8, a nilpotent element of degree 4
  9. c_4_9, a Duflot regular element of degree 4
  10. a_5_11, a nilpotent element of degree 5
  11. a_5_13, a nilpotent element of degree 5
  12. a_5_14, a nilpotent element of degree 5
  13. a_6_19, a nilpotent element of degree 6
  14. a_7_22, a nilpotent element of degree 7
  15. a_7_17, a nilpotent element of degree 7
  16. a_8_25, a nilpotent element of degree 8
  17. a_8_26, a nilpotent element of degree 8
  18. c_8_29, a Duflot regular element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 119 minimal relations of maximal degree 16:

  1. a_1_02
  2. a_1_0·a_1_1
  3. a_1_13
  4. a_1_0·b_1_22 + a_2_4·a_1_1
  5. a_2_4·a_1_0
  6. a_2_42
  7. a_1_1·a_3_5
  8. a_1_0·a_3_5
  9. a_2_4·b_1_22 + a_1_1·a_3_6 + a_2_4·a_1_1·b_1_2
  10. a_1_0·a_3_6
  11. a_2_4·a_3_5
  12. a_1_12·a_3_6
  13. a_2_4·a_3_6
  14. b_1_22·a_3_5 + a_4_7·a_1_1
  15. a_4_7·a_1_0
  16. a_4_8·a_1_0
  17. a_3_52
  18. a_3_62 + a_1_1·b_1_22·a_3_6 + a_1_12·b_1_24
  19. a_3_5·a_3_6 + a_2_4·a_4_7
  20. a_3_5·a_3_6 + a_4_8·a_1_12
  21. a_3_5·a_3_6 + a_2_4·a_4_8
  22. a_1_1·a_5_11
  23. a_1_0·a_5_11
  24. a_1_0·a_5_13
  25. a_4_7·b_1_22 + a_1_1·a_5_14 + a_1_1·a_5_13 + a_4_7·a_1_1·b_1_2 + c_4_9·a_1_12
  26. a_3_5·a_3_6 + a_1_0·a_5_14
  27. a_4_7·a_3_5
  28. a_4_8·a_1_1·b_1_22 + a_4_7·a_3_6 + a_4_8·a_1_12·b_1_2
  29. a_4_8·a_3_5
  30. a_2_4·a_5_11
  31. a_4_8·a_3_6 + a_4_7·a_3_6 + a_1_12·a_5_13
  32. b_1_22·a_5_11 + a_1_1·b_1_23·a_3_6 + a_4_8·a_3_6 + a_4_7·a_3_6 + a_2_4·a_5_13
  33. a_1_12·a_5_14
  34. b_1_22·a_5_11 + a_1_1·b_1_23·a_3_6 + a_4_8·a_3_6 + a_2_4·a_5_14 + a_2_4·c_4_9·a_1_1
  35. b_1_22·a_5_11 + a_1_1·b_1_2·a_5_14 + a_1_1·b_1_2·a_5_13 + a_1_1·b_1_23·a_3_6
       + a_6_19·a_1_1 + a_4_7·a_3_6 + c_4_9·a_1_12·b_1_2
  36. a_6_19·a_1_0 + a_4_8·a_1_1·b_1_22 + a_4_7·a_3_6
  37. a_4_72
  38. a_4_82
  39. a_3_5·a_5_11 + a_4_7·a_4_8
  40. a_3_6·a_5_11
  41. a_3_5·a_5_13 + a_4_7·a_4_8
  42. a_3_5·a_5_14 + a_4_7·a_4_8
  43. a_4_7·a_4_8 + a_2_4·a_1_1·a_5_14
  44. a_4_8·b_1_24 + a_3_6·a_5_14 + a_3_6·a_5_13 + a_1_1·b_1_24·a_3_6 + c_4_9·a_1_1·a_3_6
  45. b_1_23·a_5_14 + b_1_23·a_5_13 + a_6_19·b_1_22 + a_4_8·b_1_24 + a_3_6·a_5_13
       + a_1_1·b_1_22·a_5_13 + a_1_1·b_1_24·a_3_6 + a_2_4·b_1_2·a_5_14 + a_6_19·a_1_12
       + c_4_9·a_1_1·b_1_23
  46. a_4_7·a_4_8 + a_2_4·b_1_2·a_5_14 + a_2_4·b_1_2·a_5_13 + a_2_4·a_6_19
       + a_2_4·c_4_9·a_1_1·b_1_2
  47. a_1_1·a_7_22 + a_1_1·b_1_22·a_5_13 + a_1_1·b_1_24·a_3_6 + a_6_19·a_1_1·b_1_2
       + a_4_7·a_4_8 + c_4_9·a_1_1·a_3_6
  48. a_1_0·a_7_22
  49. b_1_23·a_5_14 + b_1_23·a_5_13 + a_6_19·b_1_22 + a_1_1·a_7_17 + a_1_1·b_1_22·a_5_13
       + a_1_1·b_1_24·a_3_6 + a_6_19·a_1_1·b_1_2 + a_4_7·a_4_8 + a_2_4·b_1_2·a_5_13
       + c_4_9·a_1_1·b_1_23 + c_4_9·a_1_1·a_3_6 + c_4_9·a_1_12·b_1_22
  50. a_1_0·a_7_17
  51. a_4_8·a_5_11 + a_4_7·a_5_11
  52. a_4_7·a_5_14 + a_4_7·a_5_13 + a_6_19·a_1_12·b_1_2 + a_4_7·c_4_9·a_1_1
  53. a_6_19·a_3_5
  54. a_4_8·a_5_11 + a_2_4·a_6_19·a_1_1
  55. b_1_22·a_7_22 + b_1_24·a_5_13 + b_1_26·a_3_6 + a_6_19·b_1_23 + a_1_1·b_1_23·a_5_13
       + a_6_19·a_1_1·b_1_22 + a_4_7·a_5_14 + a_1_1·a_3_6·a_5_13 + c_4_9·b_1_22·a_3_6
       + c_4_9·a_1_12·b_1_23
  56. a_4_8·a_5_14 + a_4_8·a_5_13 + a_2_4·a_7_22 + a_4_8·c_4_9·a_1_1
  57. b_1_2·a_3_6·a_5_13 + a_1_1·b_1_2·a_7_17 + a_1_1·b_1_25·a_3_6 + a_6_19·a_3_6
       + a_6_19·a_1_1·b_1_22 + a_4_8·a_5_11 + a_4_7·a_5_14 + a_4_7·a_5_13
       + c_4_9·a_1_1·b_1_2·a_3_6 + c_4_9·a_1_12·b_1_23 + a_4_7·c_4_9·a_1_1
  58. a_4_8·a_5_14 + a_4_8·a_5_13 + a_4_7·a_5_14 + a_4_7·a_5_13 + a_1_12·a_7_17
       + a_4_8·c_4_9·a_1_1 + a_4_7·c_4_9·a_1_1
  59. a_4_8·a_5_11 + a_2_4·a_7_17 + a_1_1·a_3_6·a_5_13
  60. a_1_1·b_1_25·a_3_6 + a_8_25·a_1_1 + a_6_19·a_1_1·b_1_22 + a_4_8·a_5_14 + a_4_8·a_5_13
       + a_4_8·a_5_11 + a_4_7·a_5_13 + a_4_8·c_4_9·a_1_1 + a_4_7·c_4_9·a_1_1
  61. a_8_25·a_1_0 + a_4_8·a_5_11
  62. a_8_26·a_1_1 + a_6_19·a_1_1·b_1_22 + a_4_8·a_5_14 + a_4_7·a_5_14 + a_1_1·a_3_6·a_5_13
       + c_4_9·a_1_1·b_1_2·a_3_6 + a_4_7·c_4_9·a_1_1
  63. a_8_26·a_1_0
  64. a_5_112
  65. a_5_11·a_5_14 + a_4_8·a_6_19 + a_4_8·a_1_1·a_5_13
  66. a_5_11·a_5_14 + a_5_11·a_5_13 + a_6_19·a_1_1·a_3_6 + a_4_8·a_1_1·a_5_13
  67. a_4_7·a_6_19 + a_6_19·a_1_12·b_1_22 + a_4_8·a_1_1·a_5_13
  68. a_3_5·a_7_22 + a_4_8·c_4_9·a_1_12
  69. a_5_11·a_5_14 + a_3_6·a_7_22 + a_1_1·b_1_22·a_7_17 + a_1_12·b_1_28
       + a_6_19·a_1_1·b_1_23 + a_6_19·a_1_12·b_1_22 + a_4_8·c_4_9·a_1_12
  70. a_5_11·a_5_14 + a_1_12·b_1_2·a_7_17 + a_6_19·a_1_12·b_1_22 + a_4_8·a_1_1·a_5_13
  71. a_3_5·a_7_17 + a_4_8·a_1_1·a_5_13 + a_4_8·c_4_9·a_1_12
  72. a_5_11·a_5_14 + a_5_11·a_5_13 + a_3_6·a_7_17 + a_3_6·a_7_22 + a_1_1·b_1_24·a_5_13
       + a_6_19·b_1_2·a_3_6 + a_6_19·a_1_1·b_1_23 + a_4_8·a_1_1·a_5_13
       + c_4_9·a_1_1·b_1_22·a_3_6 + a_4_8·c_4_9·a_1_12
  73. a_5_142 + a_6_19·a_1_12·b_1_22 + c_8_29·a_1_12 + c_4_9·a_1_1·b_1_22·a_3_6
       + c_4_9·a_1_12·b_1_24 + a_4_8·c_4_9·a_1_12 + c_4_92·a_1_12
  74. b_1_27·a_3_6 + a_8_25·b_1_22 + a_6_19·b_1_24 + a_5_13·a_5_14 + a_5_132
       + a_3_6·a_7_22 + a_1_12·b_1_28 + a_4_7·b_1_2·a_5_13 + a_6_19·a_1_12·b_1_22
       + c_4_9·a_1_1·a_5_14 + c_4_9·a_1_12·b_1_24 + a_4_8·c_4_9·a_1_12 + c_4_92·a_1_12
  75. a_5_142 + a_5_132 + a_5_11·a_5_14 + a_1_1·b_1_24·a_5_13 + a_8_25·a_1_1·b_1_2
       + a_6_19·a_1_1·b_1_23 + a_4_7·b_1_2·a_5_13 + a_4_8·a_1_1·a_5_13
       + c_4_9·a_1_1·b_1_22·a_3_6 + a_4_7·c_4_9·a_1_1·b_1_2 + c_4_92·a_1_12
  76. a_5_11·a_5_14 + a_5_11·a_5_13 + a_2_4·a_8_25 + a_4_8·c_4_9·a_1_12
  77. a_5_11·a_5_14 + a_5_11·a_5_13 + a_2_4·a_8_26 + a_4_8·a_1_1·a_5_13 + a_4_8·c_4_9·a_1_12
  78. a_6_19·a_5_11 + a_6_19·a_1_1·b_1_2·a_3_6 + a_4_8·a_1_1·b_1_2·a_5_13
  79. a_4_7·a_7_22 + a_1_1·a_5_13·a_5_14 + a_6_19·a_1_1·b_1_2·a_3_6
       + a_4_8·a_1_1·b_1_2·a_5_13 + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13
       + c_4_9·a_1_12·a_5_13 + a_2_4·c_4_92·a_1_1
  80. a_4_8·a_7_17 + a_4_8·b_1_22·a_5_13 + a_1_1·a_5_13·a_5_14 + a_6_19·a_1_1·b_1_2·a_3_6
       + a_6_19·a_1_12·b_1_23 + a_4_8·c_4_9·a_1_12·b_1_2
  81. a_4_8·a_7_22 + a_4_8·b_1_22·a_5_13 + a_1_12·b_1_22·a_7_17
       + a_6_19·a_1_1·b_1_2·a_3_6 + a_4_8·a_1_1·b_1_2·a_5_13 + a_2_4·c_4_9·a_5_14
       + a_2_4·c_4_9·a_5_13 + c_4_9·a_1_12·a_5_13 + a_4_8·c_4_9·a_1_12·b_1_2
       + a_2_4·c_4_92·a_1_1
  82. a_4_8·b_1_22·a_5_13 + a_4_7·a_7_17 + a_6_19·a_1_1·b_1_2·a_3_6
       + a_6_19·a_1_12·b_1_23 + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13
       + c_4_9·a_1_12·a_5_13 + a_4_8·c_4_9·a_1_12·b_1_2 + a_2_4·c_4_92·a_1_1
  83. b_1_2·a_5_13·a_5_14 + a_6_19·a_5_14 + a_1_1·a_5_13·a_5_14 + a_6_19·a_1_12·b_1_23
       + c_8_29·a_1_12·b_1_2 + c_4_9·a_1_1·b_1_2·a_5_13 + c_4_9·a_1_1·b_1_23·a_3_6
       + c_4_9·a_1_12·b_1_25 + c_4_9·a_6_19·a_1_1 + a_2_4·c_8_29·a_1_1
       + c_4_9·a_1_12·a_5_13
  84. a_1_1·b_1_25·a_5_13 + a_8_25·a_1_1·b_1_22 + a_6_19·a_5_14 + a_6_19·a_5_13
       + a_6_19·a_1_1·b_1_24 + a_4_8·a_7_22 + a_6_19·a_1_1·b_1_2·a_3_6
       + a_6_19·a_1_12·b_1_23 + c_4_9·a_1_1·b_1_23·a_3_6 + c_4_9·a_6_19·a_1_1
       + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13 + a_2_4·c_4_92·a_1_1
  85. a_8_25·a_3_5
  86. a_1_1·b_1_25·a_5_13 + a_1_12·b_1_29 + a_8_25·a_3_6 + a_6_19·a_5_14 + a_6_19·a_5_13
       + a_6_19·b_1_22·a_3_6 + a_1_1·a_5_13·a_5_14 + a_6_19·a_1_1·b_1_2·a_3_6
       + a_6_19·a_1_12·b_1_23 + c_4_9·a_1_1·b_1_23·a_3_6 + c_4_9·a_6_19·a_1_1
       + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13 + c_4_9·a_1_12·a_5_13 + a_2_4·c_4_92·a_1_1
  87. a_8_26·a_3_5 + a_4_8·c_4_9·a_1_12·b_1_2
  88. a_8_26·a_3_6 + a_6_19·b_1_22·a_3_6 + a_1_1·a_5_13·a_5_14 + a_6_19·a_1_1·b_1_2·a_3_6
       + a_6_19·a_1_12·b_1_23 + a_4_8·a_1_1·b_1_2·a_5_13 + c_4_9·a_1_1·b_1_23·a_3_6
       + c_4_9·a_1_12·b_1_25 + a_2_4·c_4_9·a_5_14 + a_2_4·c_4_9·a_5_13
       + a_2_4·c_4_92·a_1_1
  89. a_5_11·a_7_22 + a_1_12·b_1_23·a_7_17 + a_6_19·a_1_12·b_1_24 + a_2_4·a_5_13·a_5_14
       + a_2_4·c_4_9·a_1_1·a_5_14
  90. a_6_19·b_1_2·a_5_14 + a_6_19·b_1_2·a_5_13 + a_6_192 + a_4_7·b_1_2·a_7_17
       + a_6_19·a_1_1·a_5_13 + a_6_19·a_1_1·b_1_22·a_3_6 + a_6_19·a_1_12·b_1_24
       + c_4_9·a_6_19·a_1_1·b_1_2 + a_2_4·c_4_9·a_6_19 + c_4_9·a_6_19·a_1_12
  91. a_5_11·a_7_17 + a_5_11·a_7_22 + a_6_19·a_1_1·b_1_22·a_3_6 + a_2_4·c_4_9·a_1_1·a_5_14
  92. a_5_14·a_7_17 + a_5_13·a_7_22 + a_5_11·a_7_22 + a_6_19·b_1_23·a_3_6
       + a_6_19·a_1_1·a_5_13 + a_6_19·a_1_12·b_1_24 + a_2_4·a_5_13·a_5_14
       + c_8_29·a_1_1·a_3_6 + c_8_29·a_1_12·b_1_22 + c_4_9·a_3_6·a_5_13
       + c_4_9·a_1_1·b_1_22·a_5_13 + a_2_4·c_4_9·a_6_19 + c_4_9·a_6_19·a_1_12
       + c_4_92·a_1_1·a_3_6 + c_4_92·a_1_12·b_1_22 + a_2_4·c_4_92·a_1_1·b_1_2
  93. a_5_14·a_7_22 + a_5_13·a_7_22 + a_6_19·b_1_2·a_5_13 + a_6_19·b_1_23·a_3_6 + a_6_192
       + a_6_19·a_1_1·b_1_22·a_3_6 + c_4_9·a_3_6·a_5_13 + c_4_9·a_1_1·a_7_17
       + c_4_9·a_1_1·b_1_22·a_5_13 + a_2_4·c_8_29·a_1_1·b_1_2 + a_2_4·c_4_9·a_6_19
       + c_4_92·a_1_12·b_1_22 + a_2_4·c_4_92·a_1_1·b_1_2
  94. a_5_11·a_7_22 + a_4_8·a_8_25 + a_6_19·a_1_1·b_1_22·a_3_6 + a_6_19·a_1_12·b_1_24
       + a_2_4·a_5_13·a_5_14 + a_2_4·c_4_9·a_1_1·a_5_14
  95. a_5_13·a_7_22 + a_5_11·a_7_22 + a_1_1·b_1_24·a_7_17 + a_8_25·a_1_1·b_1_23
       + a_6_19·b_1_2·a_5_13 + a_6_19·b_1_23·a_3_6 + a_6_192 + a_6_19·a_1_12·b_1_24
       + c_8_29·a_1_12·b_1_22 + c_4_9·a_3_6·a_5_13 + a_2_4·c_4_9·a_1_1·a_5_14
  96. a_4_7·a_8_25 + a_6_19·a_1_1·b_1_22·a_3_6 + a_6_19·a_1_12·b_1_24
       + a_2_4·c_4_9·a_1_1·a_5_14
  97. a_5_11·a_7_22 + a_4_8·a_8_26 + a_2_4·a_5_13·a_5_14 + a_2_4·c_4_9·a_6_19
       + c_4_9·a_6_19·a_1_12
  98. a_8_26·b_1_24 + a_6_19·b_1_26 + a_5_14·a_7_17 + a_5_14·a_7_22 + a_5_13·a_7_17
       + a_1_1·b_1_24·a_7_17 + a_8_25·b_1_2·a_3_6 + a_6_19·b_1_2·a_5_14
       + a_6_19·b_1_23·a_3_6 + a_6_19·a_1_1·b_1_25 + a_6_192 + c_4_9·b_1_25·a_3_6
       + c_8_29·a_1_12·b_1_22 + c_4_9·a_1_1·b_1_22·a_5_13 + c_4_9·a_1_1·b_1_24·a_3_6
       + a_2_4·c_4_9·b_1_2·a_5_13 + c_4_9·a_6_19·a_1_12 + c_4_92·a_1_12·b_1_22
       + a_2_4·c_4_92·a_1_1·b_1_2
  99. a_4_7·a_8_26 + a_6_19·a_1_12·b_1_24 + a_2_4·c_4_9·a_6_19
  100. a_6_19·a_7_22 + a_6_19·b_1_22·a_5_13 + a_6_19·b_1_24·a_3_6 + a_6_192·b_1_2
       + a_6_19·a_1_1·b_1_2·a_5_13 + a_6_192·a_1_1 + a_2_4·a_6_19·a_5_13 + c_4_9·a_6_19·a_3_6
       + c_4_9·a_6_19·a_1_12·b_1_2
  101. b_1_2·a_5_13·a_7_17 + a_1_1·b_1_25·a_7_17 + a_8_25·a_1_1·b_1_24 + a_6_19·a_7_17
       + a_6_19·b_1_22·a_5_13 + a_6_192·b_1_2 + a_6_19·a_1_1·b_1_23·a_3_6
       + a_2_4·a_6_19·a_5_13 + c_8_29·a_1_1·b_1_2·a_3_6 + c_4_9·a_1_1·b_1_2·a_7_17
       + c_4_9·a_1_1·b_1_23·a_5_13 + c_4_9·a_1_12·a_7_17 + c_4_9·a_6_19·a_1_12·b_1_2
       + a_2_4·c_4_9·a_6_19·a_1_1 + c_4_92·a_1_1·b_1_2·a_3_6 + c_4_92·a_1_12·b_1_23
  102. a_8_25·a_5_11 + a_6_19·a_1_1·b_1_23·a_3_6
  103. b_1_2·a_5_13·a_7_17 + a_8_25·a_5_13 + a_6_19·a_7_17 + a_6_19·b_1_24·a_3_6
       + a_6_192·b_1_2 + a_1_1·a_5_13·a_7_17 + a_1_12·b_1_24·a_7_17
       + a_6_19·a_1_1·b_1_2·a_5_13 + c_8_29·a_1_1·b_1_2·a_3_6 + c_4_9·a_1_1·b_1_2·a_7_17
       + c_4_9·a_1_1·b_1_23·a_5_13 + c_4_9·a_1_12·b_1_27 + c_4_9·a_8_25·a_1_1
       + c_4_9·a_6_19·a_1_1·b_1_22 + a_4_7·c_8_29·a_1_1 + c_4_9·a_6_19·a_1_12·b_1_2
       + c_4_92·a_1_1·b_1_2·a_3_6 + c_4_92·a_1_12·b_1_23 + a_4_7·c_4_92·a_1_1
  104. b_1_2·a_5_13·a_7_17 + a_8_25·a_5_14 + a_6_19·a_7_17 + a_1_1·a_5_13·a_7_17
       + a_6_19·a_1_1·b_1_23·a_3_6 + a_2_4·a_6_19·a_5_13 + c_8_29·a_1_1·b_1_2·a_3_6
       + c_4_9·a_1_1·b_1_2·a_7_17 + c_4_9·a_1_1·b_1_23·a_5_13 + c_4_9·a_1_12·b_1_27
       + c_4_9·a_6_19·a_1_1·b_1_22 + a_4_7·c_8_29·a_1_1 + c_4_9·a_1_12·a_7_17
       + c_4_9·a_6_19·a_1_12·b_1_2 + a_2_4·c_4_9·a_6_19·a_1_1 + c_4_92·a_1_1·b_1_2·a_3_6
       + c_4_92·a_1_12·b_1_23 + a_4_7·c_4_92·a_1_1
  105. a_8_26·a_5_11 + a_6_19·a_1_1·b_1_23·a_3_6 + a_2_4·a_6_19·a_5_13
       + a_2_4·c_4_9·a_6_19·a_1_1
  106. a_8_26·a_5_13 + a_6_19·b_1_22·a_5_13 + a_1_12·b_1_24·a_7_17
       + a_6_19·a_1_1·b_1_2·a_5_13 + a_6_19·a_1_1·b_1_23·a_3_6 + a_6_192·a_1_1
       + c_4_9·a_1_1·b_1_2·a_7_17 + c_4_9·a_8_25·a_1_1 + c_4_9·a_6_19·a_3_6
       + a_4_8·c_8_29·a_1_1 + a_4_8·c_4_9·a_5_13 + a_4_7·c_8_29·a_1_1 + a_4_7·c_4_9·a_5_13
       + c_4_9·a_1_1·a_3_6·a_5_13 + c_4_9·a_6_19·a_1_12·b_1_2 + a_2_4·c_4_9·a_6_19·a_1_1
       + c_4_92·a_1_1·b_1_2·a_3_6 + c_4_92·a_1_12·b_1_23 + a_4_7·c_4_92·a_1_1
  107. a_8_26·a_5_14 + a_6_19·b_1_22·a_5_13 + a_6_192·b_1_2 + a_6_19·a_1_1·b_1_2·a_5_13
       + c_4_9·a_1_1·b_1_2·a_7_17 + c_4_9·a_8_25·a_1_1 + c_4_9·a_6_19·a_1_1·b_1_22
       + a_4_8·c_8_29·a_1_1 + a_4_7·c_8_29·a_1_1 + c_4_9·a_1_1·a_3_6·a_5_13
       + c_4_9·a_1_12·a_7_17 + c_4_9·a_6_19·a_1_12·b_1_2 + c_4_92·a_1_12·b_1_23
       + a_4_8·c_4_92·a_1_1 + a_4_7·c_4_92·a_1_1
  108. a_7_172 + a_7_222 + a_6_192·b_1_22 + a_6_19·a_3_6·a_5_13 + a_6_19·a_1_1·a_7_17
       + a_6_19·a_1_1·b_1_24·a_3_6 + a_6_192·a_1_1·b_1_2 + c_8_29·a_1_1·b_1_22·a_3_6
       + c_4_9·a_1_12·b_1_28 + c_4_9·a_6_19·a_1_1·a_3_6 + c_4_9·a_6_19·a_1_12·b_1_22
       + c_4_92·a_1_12·b_1_24
  109. a_7_172 + a_7_22·a_7_17 + a_8_25·a_1_1·b_1_25 + a_6_19·b_1_23·a_5_13
       + a_6_19·b_1_25·a_3_6 + a_6_192·b_1_22 + a_6_19·a_3_6·a_5_13 + a_6_19·a_1_1·a_7_17
       + a_6_19·a_1_1·b_1_22·a_5_13 + a_6_19·a_1_1·b_1_24·a_3_6 + a_1_12·a_5_13·a_7_17
       + c_8_29·a_1_12·b_1_24 + c_4_9·a_1_12·b_1_28 + c_4_9·a_8_25·a_1_1·b_1_2
       + c_4_9·a_6_19·b_1_2·a_3_6 + c_4_9·a_6_19·a_1_1·b_1_23 + a_4_7·c_4_9·b_1_2·a_5_13
       + c_4_9·a_1_12·b_1_2·a_7_17 + a_4_8·c_8_29·a_1_12 + a_4_8·c_4_9·a_1_1·a_5_13
       + c_4_92·a_1_1·b_1_22·a_3_6 + c_4_92·a_1_12·b_1_24 + a_4_7·c_4_92·a_1_1·b_1_2
       + a_4_8·c_4_92·a_1_12
  110. a_7_172 + a_7_22·a_7_17 + a_7_222 + a_8_25·b_1_23·a_3_6 + a_8_25·a_1_1·b_1_25
       + a_6_19·b_1_23·a_5_13 + a_6_192·b_1_22 + a_6_19·a_3_6·a_5_13
       + a_6_19·a_1_1·b_1_22·a_5_13 + a_6_19·a_1_1·b_1_24·a_3_6 + a_1_12·a_5_13·a_7_17
       + c_4_9·a_6_19·b_1_2·a_3_6 + a_4_8·c_8_29·a_1_12 + a_4_8·c_4_9·a_1_1·a_5_13
       + a_4_8·c_4_92·a_1_12
  111. a_6_19·b_1_25·a_3_6 + a_6_19·a_8_25 + a_6_192·b_1_22 + a_6_19·a_3_6·a_5_13
       + a_6_19·a_1_1·b_1_24·a_3_6 + a_6_192·a_1_1·b_1_2 + c_4_9·a_1_12·b_1_2·a_7_17
       + a_4_8·c_8_29·a_1_12 + a_4_8·c_4_9·a_1_1·a_5_13
  112. a_6_19·a_8_26 + a_6_192·b_1_22 + a_6_19·a_3_6·a_5_13 + a_6_19·a_1_1·b_1_22·a_5_13
       + c_4_9·a_6_19·b_1_2·a_3_6 + c_4_9·a_1_12·b_1_2·a_7_17
       + c_4_9·a_6_19·a_1_12·b_1_22 + a_4_8·c_8_29·a_1_12
  113. a_8_25·a_7_17 + a_8_25·a_7_22 + a_8_25·a_1_1·b_1_26 + a_6_19·b_1_22·a_7_17
       + a_6_19·b_1_24·a_5_13 + a_6_19·a_1_1·b_1_23·a_5_13 + a_6_19·a_8_25·a_1_1
       + c_4_9·a_6_19·b_1_22·a_3_6 + a_4_7·c_4_9·a_7_17 + a_2_4·c_8_29·a_5_14
       + a_2_4·c_8_29·a_5_13 + c_8_29·a_1_12·a_5_13 + c_4_9·a_6_19·a_1_12·b_1_23
       + a_4_8·c_4_9·a_1_1·b_1_2·a_5_13 + a_2_4·c_4_9·c_8_29·a_1_1 + a_2_4·c_4_92·a_5_14
       + a_2_4·c_4_92·a_5_13 + a_2_4·c_4_93·a_1_1
  114. a_8_25·a_7_17 + a_8_25·b_1_22·a_5_13 + a_8_25·b_1_24·a_3_6 + a_8_25·a_1_1·b_1_26
       + a_6_19·b_1_22·a_7_17 + a_6_19·b_1_24·a_5_13 + a_6_19·a_8_25·b_1_2 + a_6_192·a_3_6
       + a_6_19·a_1_12·a_7_17 + c_4_9·a_8_25·a_3_6 + c_4_9·a_6_19·b_1_22·a_3_6
       + a_4_7·c_4_9·a_7_17 + a_2_4·c_8_29·a_5_14 + a_2_4·c_8_29·a_5_13
       + c_8_29·a_1_12·a_5_13 + a_4_8·c_4_9·a_1_1·b_1_2·a_5_13 + a_2_4·c_4_9·c_8_29·a_1_1
       + a_2_4·c_4_92·a_5_14 + a_2_4·c_4_92·a_5_13 + a_2_4·c_4_93·a_1_1
  115. a_8_26·a_7_17 + a_6_19·b_1_22·a_7_17 + a_6_19·a_1_1·b_1_23·a_5_13
       + a_6_192·a_1_1·b_1_22 + c_4_9·a_1_1·b_1_23·a_7_17 + c_4_9·a_8_25·a_3_6
       + c_4_9·a_6_19·a_5_14 + c_4_9·a_6_19·a_5_13 + c_8_29·a_1_12·a_5_13
       + c_4_9·a_1_12·b_1_22·a_7_17 + a_4_8·c_8_29·a_1_12·b_1_2
       + a_4_8·c_4_9·a_1_1·b_1_2·a_5_13 + c_4_92·a_6_19·a_1_1 + a_2_4·c_4_92·a_5_14
       + a_2_4·c_4_92·a_5_13 + c_4_92·a_1_12·a_5_13 + a_4_8·c_4_92·a_1_12·b_1_2
       + a_2_4·c_4_93·a_1_1
  116. a_8_26·a_7_22 + a_6_19·b_1_24·a_5_13 + a_6_19·a_8_25·b_1_2 + a_6_192·a_3_6
       + c_4_9·a_1_1·b_1_23·a_7_17 + c_4_9·a_8_25·a_3_6 + c_4_9·a_8_25·a_1_1·b_1_22
       + a_2_4·c_8_29·a_5_14 + a_2_4·c_8_29·a_5_13 + c_8_29·a_1_12·a_5_13
       + a_2_4·c_4_9·c_8_29·a_1_1 + a_4_8·c_4_92·a_1_12·b_1_2
  117. a_8_25·b_1_25·a_3_6 + a_8_252 + a_6_19·a_8_25·b_1_22 + a_6_192·b_1_2·a_3_6
       + a_6_192·a_1_1·b_1_23 + c_4_9·a_1_12·b_1_23·a_7_17
       + c_4_9·a_6_19·a_1_1·b_1_22·a_3_6 + a_2_4·c_8_29·a_1_1·a_5_14
       + a_2_4·c_4_9·a_5_13·a_5_14
  118. a_8_25·b_1_25·a_3_6 + a_8_25·a_8_26 + a_8_252 + a_6_19·a_1_1·b_1_22·a_7_17
       + c_4_9·a_8_25·b_1_2·a_3_6 + c_4_9·a_6_19·a_1_1·b_1_22·a_3_6
       + c_4_9·a_6_19·a_1_12·b_1_24 + a_2_4·c_8_29·a_1_1·a_5_14
  119. a_8_262 + a_6_192·b_1_24 + c_4_92·a_1_1·b_1_24·a_3_6 + c_4_92·a_1_12·b_1_26


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 16.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_4_9, a Duflot regular element of degree 4
    2. c_8_29, a Duflot regular element of degree 8
    3. b_1_22, an element of degree 2
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. b_1_20, an element of degree 1
  4. a_2_40, an element of degree 2
  5. a_3_50, an element of degree 3
  6. a_3_60, an element of degree 3
  7. a_4_70, an element of degree 4
  8. a_4_80, an element of degree 4
  9. c_4_9c_1_04, an element of degree 4
  10. a_5_110, an element of degree 5
  11. a_5_130, an element of degree 5
  12. a_5_140, an element of degree 5
  13. a_6_190, an element of degree 6
  14. a_7_220, an element of degree 7
  15. a_7_170, an element of degree 7
  16. a_8_250, an element of degree 8
  17. a_8_260, an element of degree 8
  18. c_8_29c_1_18, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 3

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. b_1_2c_1_2, an element of degree 1
  4. a_2_40, an element of degree 2
  5. a_3_50, an element of degree 3
  6. a_3_60, an element of degree 3
  7. a_4_70, an element of degree 4
  8. a_4_80, an element of degree 4
  9. c_4_9c_1_04, an element of degree 4
  10. a_5_110, an element of degree 5
  11. a_5_130, an element of degree 5
  12. a_5_140, an element of degree 5
  13. a_6_190, an element of degree 6
  14. a_7_220, an element of degree 7
  15. a_7_170, an element of degree 7
  16. a_8_250, an element of degree 8
  17. a_8_260, an element of degree 8
  18. c_8_29c_1_14·c_1_24 + c_1_18 + c_1_04·c_1_24, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009