Cohomology of group number 29 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 2 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 2.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    (2) · (t2  −  1/2·t  +  1/2)

    (t  +  1) · (t  −  1)4 · (t2  +  1)2
  • The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 22 minimal generators of maximal degree 6:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_2_0, a nilpotent element of degree 2
  4. b_2_1, an element of degree 2
  5. b_2_2, an element of degree 2
  6. b_2_3, an element of degree 2
  7. a_3_2, a nilpotent element of degree 3
  8. a_3_3, a nilpotent element of degree 3
  9. a_3_5, a nilpotent element of degree 3
  10. a_3_4, a nilpotent element of degree 3
  11. b_3_6, an element of degree 3
  12. b_3_7, an element of degree 3
  13. a_4_3, a nilpotent element of degree 4
  14. a_4_4, a nilpotent element of degree 4
  15. b_4_10, an element of degree 4
  16. b_4_11, an element of degree 4
  17. c_4_12, a Duflot regular element of degree 4
  18. c_4_13, a Duflot regular element of degree 4
  19. a_5_15, a nilpotent element of degree 5
  20. a_5_14, a nilpotent element of degree 5
  21. b_5_19, an element of degree 5
  22. a_6_9, a nilpotent element of degree 6

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 169 minimal relations of maximal degree 12:

  1. a_1_02
  2. a_1_12
  3. a_1_0·a_1_1
  4. a_2_0·a_1_1
  5. a_2_0·a_1_0
  6. b_2_1·a_1_1 + b_2_1·a_1_0
  7. b_2_2·a_1_1
  8. b_2_2·a_1_0
  9. b_2_3·a_1_0 + b_2_1·a_1_1
  10. a_2_02
  11. b_2_22 + b_2_1·b_2_3 + b_2_12
  12. a_2_0·b_2_1 + a_1_1·a_3_2
  13. a_2_0·b_2_1 + a_1_0·a_3_2
  14. a_2_0·b_2_2 + a_2_0·b_2_1 + a_1_1·a_3_3
  15. a_2_0·b_2_1 + a_1_0·a_3_3
  16. a_1_1·a_3_5
  17. a_2_0·b_2_2 + a_1_0·a_3_5
  18. a_2_0·b_2_3 + a_2_0·b_2_2 + a_2_0·b_2_1 + a_1_1·a_3_4
  19. a_2_0·b_2_2 + a_1_0·a_3_4
  20. a_1_1·b_3_6
  21. a_1_0·b_3_6
  22. a_1_1·b_3_7 + a_2_0·b_2_3
  23. a_1_0·b_3_7 + a_2_0·b_2_2 + a_2_0·b_2_1
  24. a_2_0·a_3_2
  25. b_2_2·a_3_2 + b_2_1·a_3_3 + b_2_1·a_3_2 + b_2_12·a_1_0
  26. b_2_3·a_3_2 + b_2_2·a_3_3 + b_2_2·a_3_2 + b_2_1·a_3_2
  27. a_2_0·a_3_3
  28. b_2_2·a_3_5
  29. a_2_0·a_3_5
  30. b_2_3·a_3_2 + b_2_2·a_3_2 + b_2_1·a_3_4 + b_2_1·a_3_5 + b_2_1·a_3_2 + b_2_12·a_1_0
  31. b_2_3·a_3_5 + b_2_3·a_3_3 + b_2_2·a_3_4 + b_2_2·a_3_2 + b_2_1·a_3_5 + b_2_1·a_3_2
       + b_2_12·a_1_0
  32. a_2_0·a_3_4
  33. a_2_0·b_3_6
  34. b_2_3·b_3_7 + b_2_3·b_3_6 + b_2_2·b_3_6 + b_2_1·b_3_6 + b_2_3·a_3_4 + b_2_3·a_3_5
       + b_2_3·a_3_3 + b_2_12·a_1_0
  35. b_2_2·b_3_7 + b_2_2·b_3_6 + b_2_1·b_3_7 + b_2_3·a_3_5 + b_2_3·a_3_3 + b_2_1·a_3_5
  36. a_2_0·b_3_7
  37. a_4_3·a_1_1
  38. a_4_3·a_1_0
  39. a_4_4·a_1_1
  40. a_4_4·a_1_0
  41. b_4_10·a_1_1 + b_2_1·a_3_5 + b_2_12·a_1_0
  42. b_4_10·a_1_0 + b_2_1·a_3_5 + b_2_12·a_1_0
  43. b_4_11·a_1_1 + b_2_3·a_3_5 + b_2_1·a_3_5
  44. b_4_11·a_1_0
  45. a_3_22
  46. a_3_2·a_3_3 + b_2_1·a_1_0·a_3_2
  47. a_3_32
  48. a_3_52
  49. a_3_3·a_3_5 + a_3_2·a_3_5
  50. a_3_2·a_3_4 + a_3_2·a_3_5 + b_2_1·a_1_0·a_3_2
  51. a_3_42
  52. a_3_5·a_3_4 + a_3_3·a_3_4 + a_3_2·a_3_5 + b_2_1·a_1_0·a_3_2
  53. a_3_5·b_3_6
  54. b_3_62 + b_2_1·b_2_32 + b_2_12·b_2_3
  55. a_3_5·b_3_7 + a_3_5·a_3_4 + a_3_2·a_3_5
  56. a_3_4·b_3_7 + a_3_4·b_3_6 + a_3_3·b_3_6 + a_3_2·b_3_6 + a_3_2·a_3_5 + b_2_1·a_1_0·a_3_2
  57. a_3_3·b_3_7 + a_3_3·b_3_6 + a_3_2·b_3_6 + a_3_5·a_3_4
  58. b_3_6·b_3_7 + b_2_1·b_2_32 + b_2_1·b_2_2·b_2_3 + b_2_12·b_2_2 + b_2_13 + a_3_4·b_3_6
       + a_3_3·b_3_6
  59. b_3_72 + b_2_1·b_2_32 + b_2_13
  60. a_3_2·b_3_7 + a_3_2·b_3_6 + b_2_1·a_4_3 + a_3_2·a_3_5
  61. a_3_3·b_3_6 + b_2_3·a_4_3 + a_3_5·a_3_4 + a_3_2·a_3_5 + b_2_3·a_1_1·a_3_4
       + b_2_1·a_1_0·a_3_2
  62. a_3_2·b_3_7 + b_2_2·a_4_3 + b_2_1·a_1_0·a_3_2
  63. a_2_0·a_4_3
  64. a_3_2·b_3_6 + b_2_1·a_4_4
  65. a_3_4·b_3_6 + a_3_3·b_3_6 + b_2_3·a_4_4 + b_2_3·a_1_1·a_3_4
  66. a_3_3·b_3_6 + a_3_2·b_3_6 + b_2_2·a_4_4
  67. a_2_0·a_4_4
  68. a_2_0·b_4_10 + a_3_2·a_3_5 + b_2_1·a_1_0·a_3_2
  69. b_2_2·b_4_10 + b_2_1·b_4_11 + b_2_12·b_2_2 + a_3_3·b_3_6 + a_3_2·b_3_7 + a_3_2·b_3_6
       + a_3_2·a_3_5
  70. b_2_3·b_4_10 + b_2_2·b_4_11 + b_2_1·b_4_10 + b_2_12·b_2_3 + b_2_13 + a_3_4·b_3_6
       + a_3_2·b_3_7 + b_2_1·a_1_0·a_3_2
  71. a_2_0·b_4_11 + a_3_5·a_3_4
  72. a_3_2·a_3_5 + a_1_1·a_5_15 + b_2_1·a_1_0·a_3_2
  73. a_3_2·a_3_5 + a_1_0·a_5_15 + b_2_1·a_1_0·a_3_2
  74. a_3_5·a_3_4 + a_1_1·a_5_14 + b_2_3·a_1_1·a_3_4
  75. a_1_0·a_5_14
  76. a_1_1·b_5_19 + a_3_5·a_3_4 + b_2_1·a_1_0·a_3_2
  77. a_1_0·b_5_19 + b_2_1·a_1_0·a_3_2
  78. a_4_3·a_3_2
  79. a_4_3·a_3_5
  80. a_4_3·a_3_4
  81. a_4_3·a_3_3
  82. a_4_3·b_3_6 + b_2_1·b_2_2·a_3_4
  83. a_4_3·b_3_7 + b_2_1·b_2_2·a_3_4 + b_2_12·a_3_4 + b_2_12·a_3_5 + b_2_12·a_3_3
       + b_2_12·a_3_2
  84. a_4_4·a_3_2
  85. a_4_4·a_3_5
  86. a_4_4·a_3_4
  87. a_4_4·a_3_3
  88. a_4_4·b_3_6 + b_2_1·b_2_3·a_3_4 + b_2_1·b_2_2·a_3_4 + b_2_12·a_3_4
  89. a_4_4·b_3_7 + b_2_1·b_2_3·a_3_4 + b_2_12·a_3_4
  90. b_4_10·a_3_5 + b_2_1·c_4_13·a_1_0 + b_2_1·c_4_12·a_1_0
  91. b_4_11·a_3_2 + b_4_10·a_3_3 + b_4_10·a_3_2 + b_2_12·a_3_5 + b_2_12·a_3_3 + b_2_12·a_3_2
  92. b_4_11·a_3_5 + b_2_3·c_4_13·a_1_1 + b_2_1·c_4_13·a_1_0
  93. b_4_11·a_3_3 + b_4_10·a_3_4 + b_2_12·a_3_4 + b_2_3·c_4_13·a_1_1 + b_2_1·c_4_12·a_1_0
  94. b_4_11·b_3_7 + b_4_11·b_3_6 + b_4_10·b_3_7 + b_2_12·b_3_7 + b_4_11·a_3_4 + b_4_10·a_3_3
       + b_2_1·b_2_3·a_3_4 + b_2_1·b_2_2·a_3_4 + b_2_12·a_3_5 + b_2_12·a_3_2
  95. b_4_10·a_3_2 + b_2_1·a_5_15 + b_2_12·a_3_4 + b_2_12·a_3_5 + b_2_13·a_1_0
       + b_2_1·c_4_13·a_1_0 + b_2_1·c_4_12·a_1_0
  96. b_4_10·a_3_4 + b_4_10·a_3_3 + b_2_3·a_5_15 + b_2_1·b_2_3·a_3_4 + b_2_12·a_3_5
       + b_2_13·a_1_0
  97. b_4_10·a_3_3 + b_4_10·a_3_2 + b_2_2·a_5_15 + b_2_1·b_2_2·a_3_4 + b_2_12·a_3_5
       + b_2_13·a_1_0
  98. a_2_0·a_5_15
  99. b_4_10·a_3_3 + b_4_10·a_3_2 + b_2_1·a_5_14 + b_2_1·b_2_3·a_3_4 + b_2_12·a_3_3
       + b_2_12·a_3_2 + b_2_13·a_1_0 + b_2_1·c_4_12·a_1_0
  100. b_4_11·a_3_4 + b_4_10·a_3_4 + b_2_3·a_5_14 + b_2_32·a_3_4 + b_2_12·a_3_4 + b_2_12·a_3_5
       + b_2_13·a_1_0 + b_2_1·c_4_13·a_1_0
  101. b_4_10·a_3_4 + b_4_10·a_3_3 + b_4_10·a_3_2 + b_2_2·a_5_14 + b_2_2·b_2_3·a_3_4
       + b_2_12·a_3_4 + b_2_12·a_3_5 + b_2_12·a_3_3 + b_2_12·a_3_2 + b_2_1·c_4_13·a_1_0
       + b_2_1·c_4_12·a_1_0
  102. a_2_0·a_5_14
  103. b_4_10·b_3_7 + b_4_10·b_3_6 + b_2_1·b_5_19 + b_2_1·b_2_2·b_3_6 + b_2_12·b_3_7
       + b_4_10·a_3_4 + b_4_10·a_3_2 + b_2_12·a_3_4 + b_2_12·a_3_5 + b_2_13·a_1_0
       + b_2_1·c_4_13·a_1_0
  104. b_4_11·b_3_6 + b_4_10·b_3_6 + b_2_3·b_5_19 + b_2_2·b_2_3·b_3_6 + b_2_1·b_2_3·b_3_6
       + b_2_12·b_3_6 + b_4_11·a_3_4 + b_4_10·a_3_4 + b_2_2·b_2_3·a_3_4 + b_2_1·b_2_2·a_3_4
       + b_2_12·a_3_5 + b_2_12·a_3_3 + b_2_13·a_1_0 + b_2_3·c_4_13·a_1_1
  105. b_4_10·b_3_7 + b_2_2·b_5_19 + b_2_1·b_2_3·b_3_6 + b_2_1·b_2_2·b_3_6 + b_2_12·b_3_7
       + b_2_12·b_3_6 + b_4_10·a_3_2 + b_2_12·a_3_5 + b_2_12·a_3_3 + b_2_13·a_1_0
  106. a_2_0·b_5_19
  107. a_6_9·a_1_1
  108. a_6_9·a_1_0
  109. a_4_32
  110. a_4_3·a_4_4
  111. a_4_42
  112. b_4_112 + b_2_1·b_2_33 + b_2_1·b_2_2·b_4_11 + b_2_1·b_2_2·b_2_32
       + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_13·b_2_3 + b_2_14 + a_4_4·b_4_10
       + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_2·b_2_3·a_4_4 + b_2_1·b_2_3·a_4_4 + b_2_1·b_2_2·a_4_4
       + b_2_12·a_4_3 + b_2_32·a_1_1·a_3_4 + b_2_32·c_4_13 + b_2_1·b_2_3·c_4_13
       + b_2_1·b_2_3·c_4_12 + b_2_12·c_4_12 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5
       + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
  113. b_4_10·b_4_11 + b_4_102 + b_2_1·b_2_2·b_2_32 + b_2_12·b_4_10 + b_2_12·b_2_2·b_2_3
       + b_2_13·b_2_3 + b_2_13·b_2_2 + b_2_14 + a_4_4·b_4_11 + a_4_3·b_4_11
       + b_2_1·b_2_3·a_4_4 + b_2_12·a_4_4 + b_2_12·a_4_3 + b_2_2·b_2_3·c_4_13
       + b_2_1·b_2_3·c_4_13 + b_2_1·b_2_2·c_4_12 + b_2_12·c_4_12 + c_4_13·a_1_1·a_3_4
       + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
  114. b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
       + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_3 + b_2_1·a_1_0·a_5_15 + b_2_1·b_2_3·c_4_13
       + b_2_12·c_4_12
  115. a_3_2·a_5_15 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
  116. a_3_5·a_5_15 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_5
       + c_4_12·a_1_0·a_3_2
  117. b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
       + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_3 + a_3_4·a_5_15 + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12
       + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_5 + c_4_12·a_1_0·a_3_2
  118. b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
       + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_3 + a_3_3·a_5_15 + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12
       + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
  119. b_3_6·a_5_15 + a_4_4·b_4_10 + b_2_1·b_2_3·a_4_4 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_4
  120. b_3_7·a_5_15 + a_4_4·b_4_10 + a_4_3·b_4_10 + b_2_1·b_2_3·a_4_4 + b_2_12·a_4_4
       + c_4_12·a_1_0·a_3_5
  121. a_3_2·a_5_14 + c_4_12·a_1_0·a_3_2
  122. a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_12·a_4_4 + b_2_12·a_4_3
       + b_2_3·a_1_1·a_5_14 + b_2_32·a_1_1·a_3_4 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5
       + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
  123. a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_12·a_4_4 + b_2_12·a_4_3 + a_3_5·a_5_14
       + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_5 + c_4_12·a_1_0·a_3_2
  124. a_3_4·a_5_14 + c_4_13·a_1_0·a_3_5
  125. a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_12·a_4_4 + b_2_12·a_4_3 + a_3_3·a_5_14
       + c_4_13·a_1_0·a_3_2
  126. b_3_6·a_5_14 + a_4_4·b_4_11 + a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_32·a_4_4
       + b_2_2·b_2_3·a_4_4 + b_2_1·b_2_3·a_4_4 + b_2_12·a_4_4 + b_2_12·a_4_3
       + b_2_32·a_1_1·a_3_4 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2
       + c_4_12·a_1_0·a_3_2
  127. b_3_7·a_5_14 + a_4_4·b_4_11 + a_4_3·b_4_11 + b_2_32·a_4_4 + b_2_1·b_2_3·a_4_4
       + b_2_32·a_1_1·a_3_4 + c_4_13·a_1_1·a_3_4 + c_4_12·a_1_0·a_3_2
  128. a_3_2·b_5_19 + a_4_3·b_4_10 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_4 + b_2_12·a_4_3
       + b_2_12·a_1_0·a_3_2 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2
  129. b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
       + a_3_5·b_5_19 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_3 + b_2_12·a_1_0·a_3_2
       + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12 + c_4_13·a_1_1·a_3_4
  130. b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
       + a_3_4·b_5_19 + a_4_4·b_4_11 + a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10
       + b_2_2·b_2_3·a_4_4 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_4 + b_2_1·b_2_3·c_4_13
       + b_2_12·c_4_12 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
  131. a_3_3·b_5_19 + a_4_4·b_4_10 + b_2_1·b_2_3·a_4_4 + b_2_12·a_4_4 + c_4_13·a_1_1·a_3_4
       + c_4_12·a_1_0·a_3_2
  132. b_3_6·b_5_19 + b_2_1·b_2_3·b_4_11 + b_2_1·b_2_2·b_4_11 + b_2_1·b_2_2·b_2_32
       + b_2_12·b_4_11 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_13·b_2_3 + a_4_4·b_4_11
       + a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_2·b_2_3·a_4_4 + b_2_1·b_2_2·a_4_4
       + b_2_12·a_4_3 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2
       + c_4_12·a_1_0·a_3_2
  133. b_3_7·b_5_19 + b_2_1·b_2_3·b_4_11 + b_2_1·b_2_2·b_2_32 + b_2_12·b_4_11
       + b_2_12·b_2_2·b_2_3 + a_4_3·b_4_10 + b_2_12·a_4_4 + b_2_12·a_4_3 + c_4_13·a_1_1·a_3_4
       + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2
  134. b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
       + a_4_3·b_4_10 + b_2_1·a_6_9 + b_2_1·b_2_2·a_4_4 + b_2_12·a_1_0·a_3_2
       + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12 + c_4_13·a_1_0·a_3_5 + c_4_12·a_1_0·a_3_2
  135. b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
       + a_4_4·b_4_11 + a_4_4·b_4_10 + b_2_3·a_6_9 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_4
       + b_2_12·a_4_3 + b_2_32·a_1_1·a_3_4 + b_2_12·a_1_0·a_3_2 + b_2_1·b_2_3·c_4_13
       + b_2_12·c_4_12 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2
       + c_4_12·a_1_1·a_3_4
  136. a_4_4·b_4_10 + a_4_3·b_4_10 + b_2_2·a_6_9 + b_2_12·a_4_4 + b_2_12·a_4_3
       + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_5 + c_4_12·a_1_0·a_3_2
  137. a_2_0·a_6_9
  138. a_4_3·a_5_15
  139. a_4_4·a_5_15
  140. a_4_3·a_5_14
  141. b_4_11·a_5_15 + b_4_10·a_5_15 + b_2_1·b_2_3·a_5_14 + b_2_1·b_2_32·a_3_4
       + b_2_1·b_2_2·b_2_3·a_3_4 + b_2_12·a_5_15 + b_2_12·b_2_3·a_3_4 + b_2_12·b_2_2·a_3_4
       + b_2_2·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_5 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_5
       + b_2_1·c_4_12·a_3_3 + b_2_12·c_4_13·a_1_0
  142. b_4_10·a_5_15 + b_2_1·b_2_2·a_5_14 + b_2_1·b_2_2·b_2_3·a_3_4 + b_2_12·a_5_14
       + b_2_12·a_5_15 + b_2_13·a_3_4 + b_2_13·a_3_5 + b_2_13·a_3_3 + b_2_13·a_3_2
       + b_2_1·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_5 + b_2_1·c_4_12·a_3_2
       + b_2_12·c_4_12·a_1_0
  143. a_4_4·a_5_14
  144. b_4_11·a_5_14 + b_4_11·a_5_15 + b_2_32·a_5_14 + b_2_33·a_3_4 + b_2_2·b_2_3·a_5_14
       + b_2_2·b_2_32·a_3_4 + b_2_1·b_2_32·a_3_4 + b_2_1·b_2_2·b_2_3·a_3_4 + b_2_12·a_5_14
       + b_2_12·b_2_3·a_3_4 + b_2_13·a_3_4 + b_2_3·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_5
       + b_2_1·c_4_12·a_3_4 + b_2_1·c_4_12·a_3_5 + b_2_12·c_4_13·a_1_0 + b_2_12·c_4_12·a_1_0
  145. b_4_11·a_5_15 + b_4_10·a_5_14 + b_4_10·a_5_15 + b_2_2·b_2_3·a_5_14 + b_2_2·b_2_32·a_3_4
       + b_2_12·a_5_15 + b_2_13·a_3_4 + b_2_13·a_3_5 + b_2_13·a_3_3 + b_2_13·a_3_2
       + b_2_1·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_2 + b_2_12·c_4_12·a_1_0
  146. b_4_10·a_5_15 + a_4_3·b_5_19 + b_2_12·a_5_14 + b_2_12·a_5_15 + b_2_12·b_2_3·a_3_4
       + b_2_12·b_2_2·a_3_4 + b_2_13·a_3_5 + b_2_13·a_3_3 + b_2_13·a_3_2
       + b_2_1·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_5 + b_2_1·c_4_12·a_3_2
       + b_2_12·c_4_12·a_1_0
  147. b_4_11·a_5_15 + a_4_4·b_5_19 + b_2_12·b_2_2·a_3_4 + b_2_13·a_3_4 + b_2_13·a_3_5
       + b_2_13·a_3_3 + b_2_13·a_3_2 + b_2_2·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_4
       + b_2_1·c_4_13·a_3_5 + b_2_1·c_4_12·a_3_3 + b_2_1·c_4_12·a_3_2 + b_2_12·c_4_13·a_1_0
       + b_2_12·c_4_12·a_1_0
  148. b_4_11·b_5_19 + b_2_2·b_2_3·b_5_19 + b_2_1·b_2_2·b_5_19 + b_2_1·b_2_2·b_2_3·b_3_6
       + b_2_13·b_3_7 + b_4_10·a_5_15 + b_2_12·a_5_15 + b_2_12·b_2_3·a_3_4
       + b_2_12·b_2_2·a_3_4 + b_2_13·a_3_4 + b_2_13·a_3_3 + b_2_3·c_4_13·b_3_6
       + b_2_2·c_4_13·b_3_6 + b_2_1·c_4_13·b_3_6 + b_2_1·c_4_12·b_3_7 + b_2_3·c_4_13·a_3_4
       + b_2_3·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_5 + b_2_12·c_4_12·a_1_0
  149. b_4_10·b_5_19 + b_2_1·b_2_3·b_5_19 + b_2_12·b_2_3·b_3_6 + b_2_13·b_3_7 + b_2_13·b_3_6
       + b_4_11·a_5_15 + b_4_10·a_5_15 + b_2_13·a_3_5 + b_2_14·a_1_0 + b_2_2·c_4_13·b_3_6
       + b_2_1·c_4_13·b_3_6 + b_2_1·c_4_12·b_3_7 + b_2_1·c_4_12·b_3_6 + b_2_1·c_4_13·a_3_4
       + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_4 + b_2_1·c_4_12·a_3_5 + b_2_1·c_4_12·a_3_3
       + b_2_1·c_4_12·a_3_2 + b_2_12·c_4_13·a_1_0
  150. a_6_9·a_3_2
  151. a_6_9·a_3_5
  152. a_6_9·a_3_4
  153. a_6_9·a_3_3
  154. a_6_9·b_3_6 + b_4_11·a_5_15 + b_2_1·b_2_2·b_2_3·a_3_4 + b_2_12·b_2_2·a_3_4
       + b_2_13·a_3_4 + b_2_13·a_3_5 + b_2_13·a_3_3 + b_2_13·a_3_2 + b_2_2·c_4_13·a_3_4
       + b_2_1·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_5 + b_2_1·c_4_12·a_3_3 + b_2_1·c_4_12·a_3_2
       + b_2_12·c_4_13·a_1_0 + b_2_12·c_4_12·a_1_0
  155. a_6_9·b_3_7 + b_4_11·a_5_15 + b_4_10·a_5_15 + b_2_1·b_2_2·b_2_3·a_3_4 + b_2_12·a_5_14
       + b_2_12·a_5_15 + b_2_12·b_2_2·a_3_4 + b_2_2·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_5
       + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_5 + b_2_1·c_4_12·a_3_3 + b_2_12·c_4_13·a_1_0
  156. a_5_152
  157. a_5_15·a_5_14 + c_4_12·a_1_0·a_5_15
  158. a_5_142
  159. b_5_192 + b_2_12·b_2_2·b_4_11 + b_2_12·b_2_2·b_2_32 + b_2_13·b_2_2·b_2_3
       + b_2_14·b_2_3 + b_2_15 + b_2_1·b_2_2·b_2_3·a_4_4 + b_2_12·b_2_3·a_4_4
       + b_2_12·b_2_2·a_4_4 + b_2_13·a_4_4 + b_2_1·b_2_32·c_4_13 + b_2_12·b_2_3·c_4_13
       + b_2_12·b_2_3·c_4_12 + b_2_13·c_4_12
  160. a_4_3·a_6_9
  161. a_5_14·b_5_19 + a_5_15·b_5_19 + b_2_32·a_6_9 + b_2_2·b_2_32·a_4_4 + b_2_1·b_2_3·a_6_9
       + b_2_1·b_2_32·a_4_4 + b_2_12·a_6_9 + b_2_12·b_2_2·a_4_4 + b_2_32·a_1_1·a_5_14
       + b_2_13·a_1_0·a_3_2 + b_2_3·a_4_4·c_4_13 + b_2_1·a_4_4·c_4_12 + c_4_13·a_1_1·a_5_14
       + c_4_12·a_1_0·a_5_15 + b_2_3·c_4_12·a_1_1·a_3_4
  162. a_5_15·b_5_19 + b_2_1·b_2_2·a_6_9 + b_2_12·a_6_9 + b_2_13·a_4_3 + b_2_12·a_1_0·a_5_15
       + b_2_13·a_1_0·a_3_2 + b_2_2·a_4_4·c_4_13 + b_2_1·a_4_4·c_4_13 + b_2_1·a_4_3·c_4_12
       + b_2_1·c_4_12·a_1_0·a_3_2
  163. a_4_4·a_6_9
  164. a_5_15·b_5_19 + b_4_11·a_6_9 + b_2_1·b_2_32·a_4_4 + b_2_12·a_6_9 + b_2_12·b_2_2·a_4_4
       + b_2_32·a_1_1·a_5_14 + b_2_33·a_1_1·a_3_4 + b_2_13·a_1_0·a_3_2 + b_2_3·a_4_4·c_4_13
       + b_2_1·a_4_4·c_4_12 + c_4_13·a_1_1·a_5_14 + c_4_12·a_1_1·a_5_14 + c_4_12·a_1_0·a_5_15
       + b_2_3·c_4_13·a_1_1·a_3_4 + b_2_3·c_4_12·a_1_1·a_3_4 + b_2_1·c_4_12·a_1_0·a_3_2
  165. b_4_10·a_6_9 + b_2_1·b_2_2·b_2_3·a_4_4 + b_2_12·b_2_2·a_4_4 + b_2_13·a_4_4
       + b_2_13·a_4_3 + b_2_12·a_1_0·a_5_15 + b_2_2·a_4_4·c_4_13 + b_2_1·a_4_4·c_4_13
       + b_2_1·a_4_3·c_4_12 + c_4_13·a_1_0·a_5_15 + c_4_12·a_1_0·a_5_15
       + b_2_1·c_4_13·a_1_0·a_3_2 + b_2_1·c_4_12·a_1_0·a_3_2
  166. a_6_9·b_5_19 + b_2_1·b_2_2·b_2_3·a_5_14 + b_2_1·b_2_2·b_2_32·a_3_4
       + b_2_12·b_2_32·a_3_4 + b_2_12·b_2_2·a_5_14 + b_2_12·b_2_2·b_2_3·a_3_4
       + b_2_13·b_2_2·a_3_4 + b_2_14·a_3_5 + b_2_14·a_3_3 + b_2_14·a_3_2
       + b_2_1·b_2_3·c_4_13·a_3_4 + b_2_1·b_2_2·c_4_13·a_3_4 + b_2_12·c_4_13·a_3_4
       + b_2_12·c_4_12·a_3_4 + b_2_12·c_4_12·a_3_5 + b_2_12·c_4_12·a_3_3
       + b_2_12·c_4_12·a_3_2
  167. a_6_9·a_5_15
  168. a_6_9·a_5_14
  169. a_6_92


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 12.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_4_12, a Duflot regular element of degree 4
    2. c_4_13, a Duflot regular element of degree 4
    3. b_2_3 + b_2_2, an element of degree 2
    4. b_3_6, an element of degree 3
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 6, 9].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_10, an element of degree 2
  5. b_2_20, an element of degree 2
  6. b_2_30, an element of degree 2
  7. a_3_20, an element of degree 3
  8. a_3_30, an element of degree 3
  9. a_3_50, an element of degree 3
  10. a_3_40, an element of degree 3
  11. b_3_60, an element of degree 3
  12. b_3_70, an element of degree 3
  13. a_4_30, an element of degree 4
  14. a_4_40, an element of degree 4
  15. b_4_100, an element of degree 4
  16. b_4_110, an element of degree 4
  17. c_4_12c_1_14, an element of degree 4
  18. c_4_13c_1_14 + c_1_04, an element of degree 4
  19. a_5_150, an element of degree 5
  20. a_5_140, an element of degree 5
  21. b_5_190, an element of degree 5
  22. a_6_90, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_1c_1_32, an element of degree 2
  5. b_2_2c_1_32 + c_1_2·c_1_3, an element of degree 2
  6. b_2_3c_1_22, an element of degree 2
  7. a_3_20, an element of degree 3
  8. a_3_30, an element of degree 3
  9. a_3_50, an element of degree 3
  10. a_3_40, an element of degree 3
  11. b_3_6c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  12. b_3_7c_1_33 + c_1_22·c_1_3, an element of degree 3
  13. a_4_30, an element of degree 4
  14. a_4_40, an element of degree 4
  15. b_4_10c_1_34 + c_1_2·c_1_33 + c_1_1·c_1_33 + c_1_1·c_1_2·c_1_32 + c_1_12·c_1_32
       + c_1_12·c_1_2·c_1_3 + c_1_02·c_1_2·c_1_3, an element of degree 4
  16. b_4_11c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_22·c_1_3
       + c_1_12·c_1_32 + c_1_12·c_1_22 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
  17. c_4_12c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_2·c_1_32
       + c_1_12·c_1_2·c_1_3 + c_1_14 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
  18. c_4_13c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_12·c_1_32 + c_1_14
       + c_1_02·c_1_32 + c_1_04, an element of degree 4
  19. a_5_150, an element of degree 5
  20. a_5_140, an element of degree 5
  21. b_5_19c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32
       + c_1_12·c_1_33 + c_1_12·c_1_22·c_1_3 + c_1_02·c_1_2·c_1_32
       + c_1_02·c_1_22·c_1_3, an element of degree 5
  22. a_6_90, an element of degree 6


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009