Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 29 of order 128
General information on the group
- The group has 2 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
(2) · (t2 − 1/2·t + 1/2) |
| (t + 1) · (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 22 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_2_0, a nilpotent element of degree 2
- b_2_1, an element of degree 2
- b_2_2, an element of degree 2
- b_2_3, an element of degree 2
- a_3_2, a nilpotent element of degree 3
- a_3_3, a nilpotent element of degree 3
- a_3_5, a nilpotent element of degree 3
- a_3_4, a nilpotent element of degree 3
- b_3_6, an element of degree 3
- b_3_7, an element of degree 3
- a_4_3, a nilpotent element of degree 4
- a_4_4, a nilpotent element of degree 4
- b_4_10, an element of degree 4
- b_4_11, an element of degree 4
- c_4_12, a Duflot regular element of degree 4
- c_4_13, a Duflot regular element of degree 4
- a_5_15, a nilpotent element of degree 5
- a_5_14, a nilpotent element of degree 5
- b_5_19, an element of degree 5
- a_6_9, a nilpotent element of degree 6
Ring relations
There are 169 minimal relations of maximal degree 12:
- a_1_02
- a_1_12
- a_1_0·a_1_1
- a_2_0·a_1_1
- a_2_0·a_1_0
- b_2_1·a_1_1 + b_2_1·a_1_0
- b_2_2·a_1_1
- b_2_2·a_1_0
- b_2_3·a_1_0 + b_2_1·a_1_1
- a_2_02
- b_2_22 + b_2_1·b_2_3 + b_2_12
- a_2_0·b_2_1 + a_1_1·a_3_2
- a_2_0·b_2_1 + a_1_0·a_3_2
- a_2_0·b_2_2 + a_2_0·b_2_1 + a_1_1·a_3_3
- a_2_0·b_2_1 + a_1_0·a_3_3
- a_1_1·a_3_5
- a_2_0·b_2_2 + a_1_0·a_3_5
- a_2_0·b_2_3 + a_2_0·b_2_2 + a_2_0·b_2_1 + a_1_1·a_3_4
- a_2_0·b_2_2 + a_1_0·a_3_4
- a_1_1·b_3_6
- a_1_0·b_3_6
- a_1_1·b_3_7 + a_2_0·b_2_3
- a_1_0·b_3_7 + a_2_0·b_2_2 + a_2_0·b_2_1
- a_2_0·a_3_2
- b_2_2·a_3_2 + b_2_1·a_3_3 + b_2_1·a_3_2 + b_2_12·a_1_0
- b_2_3·a_3_2 + b_2_2·a_3_3 + b_2_2·a_3_2 + b_2_1·a_3_2
- a_2_0·a_3_3
- b_2_2·a_3_5
- a_2_0·a_3_5
- b_2_3·a_3_2 + b_2_2·a_3_2 + b_2_1·a_3_4 + b_2_1·a_3_5 + b_2_1·a_3_2 + b_2_12·a_1_0
- b_2_3·a_3_5 + b_2_3·a_3_3 + b_2_2·a_3_4 + b_2_2·a_3_2 + b_2_1·a_3_5 + b_2_1·a_3_2
+ b_2_12·a_1_0
- a_2_0·a_3_4
- a_2_0·b_3_6
- b_2_3·b_3_7 + b_2_3·b_3_6 + b_2_2·b_3_6 + b_2_1·b_3_6 + b_2_3·a_3_4 + b_2_3·a_3_5
+ b_2_3·a_3_3 + b_2_12·a_1_0
- b_2_2·b_3_7 + b_2_2·b_3_6 + b_2_1·b_3_7 + b_2_3·a_3_5 + b_2_3·a_3_3 + b_2_1·a_3_5
- a_2_0·b_3_7
- a_4_3·a_1_1
- a_4_3·a_1_0
- a_4_4·a_1_1
- a_4_4·a_1_0
- b_4_10·a_1_1 + b_2_1·a_3_5 + b_2_12·a_1_0
- b_4_10·a_1_0 + b_2_1·a_3_5 + b_2_12·a_1_0
- b_4_11·a_1_1 + b_2_3·a_3_5 + b_2_1·a_3_5
- b_4_11·a_1_0
- a_3_22
- a_3_2·a_3_3 + b_2_1·a_1_0·a_3_2
- a_3_32
- a_3_52
- a_3_3·a_3_5 + a_3_2·a_3_5
- a_3_2·a_3_4 + a_3_2·a_3_5 + b_2_1·a_1_0·a_3_2
- a_3_42
- a_3_5·a_3_4 + a_3_3·a_3_4 + a_3_2·a_3_5 + b_2_1·a_1_0·a_3_2
- a_3_5·b_3_6
- b_3_62 + b_2_1·b_2_32 + b_2_12·b_2_3
- a_3_5·b_3_7 + a_3_5·a_3_4 + a_3_2·a_3_5
- a_3_4·b_3_7 + a_3_4·b_3_6 + a_3_3·b_3_6 + a_3_2·b_3_6 + a_3_2·a_3_5 + b_2_1·a_1_0·a_3_2
- a_3_3·b_3_7 + a_3_3·b_3_6 + a_3_2·b_3_6 + a_3_5·a_3_4
- b_3_6·b_3_7 + b_2_1·b_2_32 + b_2_1·b_2_2·b_2_3 + b_2_12·b_2_2 + b_2_13 + a_3_4·b_3_6
+ a_3_3·b_3_6
- b_3_72 + b_2_1·b_2_32 + b_2_13
- a_3_2·b_3_7 + a_3_2·b_3_6 + b_2_1·a_4_3 + a_3_2·a_3_5
- a_3_3·b_3_6 + b_2_3·a_4_3 + a_3_5·a_3_4 + a_3_2·a_3_5 + b_2_3·a_1_1·a_3_4
+ b_2_1·a_1_0·a_3_2
- a_3_2·b_3_7 + b_2_2·a_4_3 + b_2_1·a_1_0·a_3_2
- a_2_0·a_4_3
- a_3_2·b_3_6 + b_2_1·a_4_4
- a_3_4·b_3_6 + a_3_3·b_3_6 + b_2_3·a_4_4 + b_2_3·a_1_1·a_3_4
- a_3_3·b_3_6 + a_3_2·b_3_6 + b_2_2·a_4_4
- a_2_0·a_4_4
- a_2_0·b_4_10 + a_3_2·a_3_5 + b_2_1·a_1_0·a_3_2
- b_2_2·b_4_10 + b_2_1·b_4_11 + b_2_12·b_2_2 + a_3_3·b_3_6 + a_3_2·b_3_7 + a_3_2·b_3_6
+ a_3_2·a_3_5
- b_2_3·b_4_10 + b_2_2·b_4_11 + b_2_1·b_4_10 + b_2_12·b_2_3 + b_2_13 + a_3_4·b_3_6
+ a_3_2·b_3_7 + b_2_1·a_1_0·a_3_2
- a_2_0·b_4_11 + a_3_5·a_3_4
- a_3_2·a_3_5 + a_1_1·a_5_15 + b_2_1·a_1_0·a_3_2
- a_3_2·a_3_5 + a_1_0·a_5_15 + b_2_1·a_1_0·a_3_2
- a_3_5·a_3_4 + a_1_1·a_5_14 + b_2_3·a_1_1·a_3_4
- a_1_0·a_5_14
- a_1_1·b_5_19 + a_3_5·a_3_4 + b_2_1·a_1_0·a_3_2
- a_1_0·b_5_19 + b_2_1·a_1_0·a_3_2
- a_4_3·a_3_2
- a_4_3·a_3_5
- a_4_3·a_3_4
- a_4_3·a_3_3
- a_4_3·b_3_6 + b_2_1·b_2_2·a_3_4
- a_4_3·b_3_7 + b_2_1·b_2_2·a_3_4 + b_2_12·a_3_4 + b_2_12·a_3_5 + b_2_12·a_3_3
+ b_2_12·a_3_2
- a_4_4·a_3_2
- a_4_4·a_3_5
- a_4_4·a_3_4
- a_4_4·a_3_3
- a_4_4·b_3_6 + b_2_1·b_2_3·a_3_4 + b_2_1·b_2_2·a_3_4 + b_2_12·a_3_4
- a_4_4·b_3_7 + b_2_1·b_2_3·a_3_4 + b_2_12·a_3_4
- b_4_10·a_3_5 + b_2_1·c_4_13·a_1_0 + b_2_1·c_4_12·a_1_0
- b_4_11·a_3_2 + b_4_10·a_3_3 + b_4_10·a_3_2 + b_2_12·a_3_5 + b_2_12·a_3_3 + b_2_12·a_3_2
- b_4_11·a_3_5 + b_2_3·c_4_13·a_1_1 + b_2_1·c_4_13·a_1_0
- b_4_11·a_3_3 + b_4_10·a_3_4 + b_2_12·a_3_4 + b_2_3·c_4_13·a_1_1 + b_2_1·c_4_12·a_1_0
- b_4_11·b_3_7 + b_4_11·b_3_6 + b_4_10·b_3_7 + b_2_12·b_3_7 + b_4_11·a_3_4 + b_4_10·a_3_3
+ b_2_1·b_2_3·a_3_4 + b_2_1·b_2_2·a_3_4 + b_2_12·a_3_5 + b_2_12·a_3_2
- b_4_10·a_3_2 + b_2_1·a_5_15 + b_2_12·a_3_4 + b_2_12·a_3_5 + b_2_13·a_1_0
+ b_2_1·c_4_13·a_1_0 + b_2_1·c_4_12·a_1_0
- b_4_10·a_3_4 + b_4_10·a_3_3 + b_2_3·a_5_15 + b_2_1·b_2_3·a_3_4 + b_2_12·a_3_5
+ b_2_13·a_1_0
- b_4_10·a_3_3 + b_4_10·a_3_2 + b_2_2·a_5_15 + b_2_1·b_2_2·a_3_4 + b_2_12·a_3_5
+ b_2_13·a_1_0
- a_2_0·a_5_15
- b_4_10·a_3_3 + b_4_10·a_3_2 + b_2_1·a_5_14 + b_2_1·b_2_3·a_3_4 + b_2_12·a_3_3
+ b_2_12·a_3_2 + b_2_13·a_1_0 + b_2_1·c_4_12·a_1_0
- b_4_11·a_3_4 + b_4_10·a_3_4 + b_2_3·a_5_14 + b_2_32·a_3_4 + b_2_12·a_3_4 + b_2_12·a_3_5
+ b_2_13·a_1_0 + b_2_1·c_4_13·a_1_0
- b_4_10·a_3_4 + b_4_10·a_3_3 + b_4_10·a_3_2 + b_2_2·a_5_14 + b_2_2·b_2_3·a_3_4
+ b_2_12·a_3_4 + b_2_12·a_3_5 + b_2_12·a_3_3 + b_2_12·a_3_2 + b_2_1·c_4_13·a_1_0 + b_2_1·c_4_12·a_1_0
- a_2_0·a_5_14
- b_4_10·b_3_7 + b_4_10·b_3_6 + b_2_1·b_5_19 + b_2_1·b_2_2·b_3_6 + b_2_12·b_3_7
+ b_4_10·a_3_4 + b_4_10·a_3_2 + b_2_12·a_3_4 + b_2_12·a_3_5 + b_2_13·a_1_0 + b_2_1·c_4_13·a_1_0
- b_4_11·b_3_6 + b_4_10·b_3_6 + b_2_3·b_5_19 + b_2_2·b_2_3·b_3_6 + b_2_1·b_2_3·b_3_6
+ b_2_12·b_3_6 + b_4_11·a_3_4 + b_4_10·a_3_4 + b_2_2·b_2_3·a_3_4 + b_2_1·b_2_2·a_3_4 + b_2_12·a_3_5 + b_2_12·a_3_3 + b_2_13·a_1_0 + b_2_3·c_4_13·a_1_1
- b_4_10·b_3_7 + b_2_2·b_5_19 + b_2_1·b_2_3·b_3_6 + b_2_1·b_2_2·b_3_6 + b_2_12·b_3_7
+ b_2_12·b_3_6 + b_4_10·a_3_2 + b_2_12·a_3_5 + b_2_12·a_3_3 + b_2_13·a_1_0
- a_2_0·b_5_19
- a_6_9·a_1_1
- a_6_9·a_1_0
- a_4_32
- a_4_3·a_4_4
- a_4_42
- b_4_112 + b_2_1·b_2_33 + b_2_1·b_2_2·b_4_11 + b_2_1·b_2_2·b_2_32
+ b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_13·b_2_3 + b_2_14 + a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_2·b_2_3·a_4_4 + b_2_1·b_2_3·a_4_4 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_3 + b_2_32·a_1_1·a_3_4 + b_2_32·c_4_13 + b_2_1·b_2_3·c_4_13 + b_2_1·b_2_3·c_4_12 + b_2_12·c_4_12 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
- b_4_10·b_4_11 + b_4_102 + b_2_1·b_2_2·b_2_32 + b_2_12·b_4_10 + b_2_12·b_2_2·b_2_3
+ b_2_13·b_2_3 + b_2_13·b_2_2 + b_2_14 + a_4_4·b_4_11 + a_4_3·b_4_11 + b_2_1·b_2_3·a_4_4 + b_2_12·a_4_4 + b_2_12·a_4_3 + b_2_2·b_2_3·c_4_13 + b_2_1·b_2_3·c_4_13 + b_2_1·b_2_2·c_4_12 + b_2_12·c_4_12 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
- b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
+ b_2_1·b_2_2·a_4_4 + b_2_12·a_4_3 + b_2_1·a_1_0·a_5_15 + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12
- a_3_2·a_5_15 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
- a_3_5·a_5_15 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_5
+ c_4_12·a_1_0·a_3_2
- b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
+ b_2_1·b_2_2·a_4_4 + b_2_12·a_4_3 + a_3_4·a_5_15 + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_5 + c_4_12·a_1_0·a_3_2
- b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
+ b_2_1·b_2_2·a_4_4 + b_2_12·a_4_3 + a_3_3·a_5_15 + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
- b_3_6·a_5_15 + a_4_4·b_4_10 + b_2_1·b_2_3·a_4_4 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_4
- b_3_7·a_5_15 + a_4_4·b_4_10 + a_4_3·b_4_10 + b_2_1·b_2_3·a_4_4 + b_2_12·a_4_4
+ c_4_12·a_1_0·a_3_5
- a_3_2·a_5_14 + c_4_12·a_1_0·a_3_2
- a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_12·a_4_4 + b_2_12·a_4_3
+ b_2_3·a_1_1·a_5_14 + b_2_32·a_1_1·a_3_4 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
- a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_12·a_4_4 + b_2_12·a_4_3 + a_3_5·a_5_14
+ c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_5 + c_4_12·a_1_0·a_3_2
- a_3_4·a_5_14 + c_4_13·a_1_0·a_3_5
- a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_12·a_4_4 + b_2_12·a_4_3 + a_3_3·a_5_14
+ c_4_13·a_1_0·a_3_2
- b_3_6·a_5_14 + a_4_4·b_4_11 + a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_32·a_4_4
+ b_2_2·b_2_3·a_4_4 + b_2_1·b_2_3·a_4_4 + b_2_12·a_4_4 + b_2_12·a_4_3 + b_2_32·a_1_1·a_3_4 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
- b_3_7·a_5_14 + a_4_4·b_4_11 + a_4_3·b_4_11 + b_2_32·a_4_4 + b_2_1·b_2_3·a_4_4
+ b_2_32·a_1_1·a_3_4 + c_4_13·a_1_1·a_3_4 + c_4_12·a_1_0·a_3_2
- a_3_2·b_5_19 + a_4_3·b_4_10 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_4 + b_2_12·a_4_3
+ b_2_12·a_1_0·a_3_2 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2
- b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
+ a_3_5·b_5_19 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_3 + b_2_12·a_1_0·a_3_2 + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12 + c_4_13·a_1_1·a_3_4
- b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
+ a_3_4·b_5_19 + a_4_4·b_4_11 + a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_2·b_2_3·a_4_4 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_4 + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
- a_3_3·b_5_19 + a_4_4·b_4_10 + b_2_1·b_2_3·a_4_4 + b_2_12·a_4_4 + c_4_13·a_1_1·a_3_4
+ c_4_12·a_1_0·a_3_2
- b_3_6·b_5_19 + b_2_1·b_2_3·b_4_11 + b_2_1·b_2_2·b_4_11 + b_2_1·b_2_2·b_2_32
+ b_2_12·b_4_11 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_13·b_2_3 + a_4_4·b_4_11 + a_4_4·b_4_10 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_2·b_2_3·a_4_4 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_3 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_2
- b_3_7·b_5_19 + b_2_1·b_2_3·b_4_11 + b_2_1·b_2_2·b_2_32 + b_2_12·b_4_11
+ b_2_12·b_2_2·b_2_3 + a_4_3·b_4_10 + b_2_12·a_4_4 + b_2_12·a_4_3 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2
- b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
+ a_4_3·b_4_10 + b_2_1·a_6_9 + b_2_1·b_2_2·a_4_4 + b_2_12·a_1_0·a_3_2 + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12 + c_4_13·a_1_0·a_3_5 + c_4_12·a_1_0·a_3_2
- b_4_102 + b_2_12·b_4_10 + b_2_12·b_2_32 + b_2_12·b_2_2·b_2_3 + b_2_14
+ a_4_4·b_4_11 + a_4_4·b_4_10 + b_2_3·a_6_9 + b_2_1·b_2_2·a_4_4 + b_2_12·a_4_4 + b_2_12·a_4_3 + b_2_32·a_1_1·a_3_4 + b_2_12·a_1_0·a_3_2 + b_2_1·b_2_3·c_4_13 + b_2_12·c_4_12 + c_4_13·a_1_1·a_3_4 + c_4_13·a_1_0·a_3_5 + c_4_13·a_1_0·a_3_2 + c_4_12·a_1_1·a_3_4
- a_4_4·b_4_10 + a_4_3·b_4_10 + b_2_2·a_6_9 + b_2_12·a_4_4 + b_2_12·a_4_3
+ c_4_13·a_1_0·a_3_2 + c_4_12·a_1_0·a_3_5 + c_4_12·a_1_0·a_3_2
- a_2_0·a_6_9
- a_4_3·a_5_15
- a_4_4·a_5_15
- a_4_3·a_5_14
- b_4_11·a_5_15 + b_4_10·a_5_15 + b_2_1·b_2_3·a_5_14 + b_2_1·b_2_32·a_3_4
+ b_2_1·b_2_2·b_2_3·a_3_4 + b_2_12·a_5_15 + b_2_12·b_2_3·a_3_4 + b_2_12·b_2_2·a_3_4 + b_2_2·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_5 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_5 + b_2_1·c_4_12·a_3_3 + b_2_12·c_4_13·a_1_0
- b_4_10·a_5_15 + b_2_1·b_2_2·a_5_14 + b_2_1·b_2_2·b_2_3·a_3_4 + b_2_12·a_5_14
+ b_2_12·a_5_15 + b_2_13·a_3_4 + b_2_13·a_3_5 + b_2_13·a_3_3 + b_2_13·a_3_2 + b_2_1·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_5 + b_2_1·c_4_12·a_3_2 + b_2_12·c_4_12·a_1_0
- a_4_4·a_5_14
- b_4_11·a_5_14 + b_4_11·a_5_15 + b_2_32·a_5_14 + b_2_33·a_3_4 + b_2_2·b_2_3·a_5_14
+ b_2_2·b_2_32·a_3_4 + b_2_1·b_2_32·a_3_4 + b_2_1·b_2_2·b_2_3·a_3_4 + b_2_12·a_5_14 + b_2_12·b_2_3·a_3_4 + b_2_13·a_3_4 + b_2_3·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_5 + b_2_1·c_4_12·a_3_4 + b_2_1·c_4_12·a_3_5 + b_2_12·c_4_13·a_1_0 + b_2_12·c_4_12·a_1_0
- b_4_11·a_5_15 + b_4_10·a_5_14 + b_4_10·a_5_15 + b_2_2·b_2_3·a_5_14 + b_2_2·b_2_32·a_3_4
+ b_2_12·a_5_15 + b_2_13·a_3_4 + b_2_13·a_3_5 + b_2_13·a_3_3 + b_2_13·a_3_2 + b_2_1·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_2 + b_2_12·c_4_12·a_1_0
- b_4_10·a_5_15 + a_4_3·b_5_19 + b_2_12·a_5_14 + b_2_12·a_5_15 + b_2_12·b_2_3·a_3_4
+ b_2_12·b_2_2·a_3_4 + b_2_13·a_3_5 + b_2_13·a_3_3 + b_2_13·a_3_2 + b_2_1·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_5 + b_2_1·c_4_12·a_3_2 + b_2_12·c_4_12·a_1_0
- b_4_11·a_5_15 + a_4_4·b_5_19 + b_2_12·b_2_2·a_3_4 + b_2_13·a_3_4 + b_2_13·a_3_5
+ b_2_13·a_3_3 + b_2_13·a_3_2 + b_2_2·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_5 + b_2_1·c_4_12·a_3_3 + b_2_1·c_4_12·a_3_2 + b_2_12·c_4_13·a_1_0 + b_2_12·c_4_12·a_1_0
- b_4_11·b_5_19 + b_2_2·b_2_3·b_5_19 + b_2_1·b_2_2·b_5_19 + b_2_1·b_2_2·b_2_3·b_3_6
+ b_2_13·b_3_7 + b_4_10·a_5_15 + b_2_12·a_5_15 + b_2_12·b_2_3·a_3_4 + b_2_12·b_2_2·a_3_4 + b_2_13·a_3_4 + b_2_13·a_3_3 + b_2_3·c_4_13·b_3_6 + b_2_2·c_4_13·b_3_6 + b_2_1·c_4_13·b_3_6 + b_2_1·c_4_12·b_3_7 + b_2_3·c_4_13·a_3_4 + b_2_3·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_5 + b_2_12·c_4_12·a_1_0
- b_4_10·b_5_19 + b_2_1·b_2_3·b_5_19 + b_2_12·b_2_3·b_3_6 + b_2_13·b_3_7 + b_2_13·b_3_6
+ b_4_11·a_5_15 + b_4_10·a_5_15 + b_2_13·a_3_5 + b_2_14·a_1_0 + b_2_2·c_4_13·b_3_6 + b_2_1·c_4_13·b_3_6 + b_2_1·c_4_12·b_3_7 + b_2_1·c_4_12·b_3_6 + b_2_1·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_4 + b_2_1·c_4_12·a_3_5 + b_2_1·c_4_12·a_3_3 + b_2_1·c_4_12·a_3_2 + b_2_12·c_4_13·a_1_0
- a_6_9·a_3_2
- a_6_9·a_3_5
- a_6_9·a_3_4
- a_6_9·a_3_3
- a_6_9·b_3_6 + b_4_11·a_5_15 + b_2_1·b_2_2·b_2_3·a_3_4 + b_2_12·b_2_2·a_3_4
+ b_2_13·a_3_4 + b_2_13·a_3_5 + b_2_13·a_3_3 + b_2_13·a_3_2 + b_2_2·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_5 + b_2_1·c_4_12·a_3_3 + b_2_1·c_4_12·a_3_2 + b_2_12·c_4_13·a_1_0 + b_2_12·c_4_12·a_1_0
- a_6_9·b_3_7 + b_4_11·a_5_15 + b_4_10·a_5_15 + b_2_1·b_2_2·b_2_3·a_3_4 + b_2_12·a_5_14
+ b_2_12·a_5_15 + b_2_12·b_2_2·a_3_4 + b_2_2·c_4_13·a_3_4 + b_2_1·c_4_13·a_3_5 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_12·a_3_5 + b_2_1·c_4_12·a_3_3 + b_2_12·c_4_13·a_1_0
- a_5_152
- a_5_15·a_5_14 + c_4_12·a_1_0·a_5_15
- a_5_142
- b_5_192 + b_2_12·b_2_2·b_4_11 + b_2_12·b_2_2·b_2_32 + b_2_13·b_2_2·b_2_3
+ b_2_14·b_2_3 + b_2_15 + b_2_1·b_2_2·b_2_3·a_4_4 + b_2_12·b_2_3·a_4_4 + b_2_12·b_2_2·a_4_4 + b_2_13·a_4_4 + b_2_1·b_2_32·c_4_13 + b_2_12·b_2_3·c_4_13 + b_2_12·b_2_3·c_4_12 + b_2_13·c_4_12
- a_4_3·a_6_9
- a_5_14·b_5_19 + a_5_15·b_5_19 + b_2_32·a_6_9 + b_2_2·b_2_32·a_4_4 + b_2_1·b_2_3·a_6_9
+ b_2_1·b_2_32·a_4_4 + b_2_12·a_6_9 + b_2_12·b_2_2·a_4_4 + b_2_32·a_1_1·a_5_14 + b_2_13·a_1_0·a_3_2 + b_2_3·a_4_4·c_4_13 + b_2_1·a_4_4·c_4_12 + c_4_13·a_1_1·a_5_14 + c_4_12·a_1_0·a_5_15 + b_2_3·c_4_12·a_1_1·a_3_4
- a_5_15·b_5_19 + b_2_1·b_2_2·a_6_9 + b_2_12·a_6_9 + b_2_13·a_4_3 + b_2_12·a_1_0·a_5_15
+ b_2_13·a_1_0·a_3_2 + b_2_2·a_4_4·c_4_13 + b_2_1·a_4_4·c_4_13 + b_2_1·a_4_3·c_4_12 + b_2_1·c_4_12·a_1_0·a_3_2
- a_4_4·a_6_9
- a_5_15·b_5_19 + b_4_11·a_6_9 + b_2_1·b_2_32·a_4_4 + b_2_12·a_6_9 + b_2_12·b_2_2·a_4_4
+ b_2_32·a_1_1·a_5_14 + b_2_33·a_1_1·a_3_4 + b_2_13·a_1_0·a_3_2 + b_2_3·a_4_4·c_4_13 + b_2_1·a_4_4·c_4_12 + c_4_13·a_1_1·a_5_14 + c_4_12·a_1_1·a_5_14 + c_4_12·a_1_0·a_5_15 + b_2_3·c_4_13·a_1_1·a_3_4 + b_2_3·c_4_12·a_1_1·a_3_4 + b_2_1·c_4_12·a_1_0·a_3_2
- b_4_10·a_6_9 + b_2_1·b_2_2·b_2_3·a_4_4 + b_2_12·b_2_2·a_4_4 + b_2_13·a_4_4
+ b_2_13·a_4_3 + b_2_12·a_1_0·a_5_15 + b_2_2·a_4_4·c_4_13 + b_2_1·a_4_4·c_4_13 + b_2_1·a_4_3·c_4_12 + c_4_13·a_1_0·a_5_15 + c_4_12·a_1_0·a_5_15 + b_2_1·c_4_13·a_1_0·a_3_2 + b_2_1·c_4_12·a_1_0·a_3_2
- a_6_9·b_5_19 + b_2_1·b_2_2·b_2_3·a_5_14 + b_2_1·b_2_2·b_2_32·a_3_4
+ b_2_12·b_2_32·a_3_4 + b_2_12·b_2_2·a_5_14 + b_2_12·b_2_2·b_2_3·a_3_4 + b_2_13·b_2_2·a_3_4 + b_2_14·a_3_5 + b_2_14·a_3_3 + b_2_14·a_3_2 + b_2_1·b_2_3·c_4_13·a_3_4 + b_2_1·b_2_2·c_4_13·a_3_4 + b_2_12·c_4_13·a_3_4 + b_2_12·c_4_12·a_3_4 + b_2_12·c_4_12·a_3_5 + b_2_12·c_4_12·a_3_3 + b_2_12·c_4_12·a_3_2
- a_6_9·a_5_15
- a_6_9·a_5_14
- a_6_92
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_12, a Duflot regular element of degree 4
- c_4_13, a Duflot regular element of degree 4
- b_2_3 + b_2_2, an element of degree 2
- b_3_6, an element of degree 3
- The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 6, 9].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → 0, an element of degree 2
- b_2_2 → 0, an element of degree 2
- b_2_3 → 0, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_3_7 → 0, an element of degree 3
- a_4_3 → 0, an element of degree 4
- a_4_4 → 0, an element of degree 4
- b_4_10 → 0, an element of degree 4
- b_4_11 → 0, an element of degree 4
- c_4_12 → c_1_14, an element of degree 4
- c_4_13 → c_1_14 + c_1_04, an element of degree 4
- a_5_15 → 0, an element of degree 5
- a_5_14 → 0, an element of degree 5
- b_5_19 → 0, an element of degree 5
- a_6_9 → 0, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_2_0 → 0, an element of degree 2
- b_2_1 → c_1_32, an element of degree 2
- b_2_2 → c_1_32 + c_1_2·c_1_3, an element of degree 2
- b_2_3 → c_1_22, an element of degree 2
- a_3_2 → 0, an element of degree 3
- a_3_3 → 0, an element of degree 3
- a_3_5 → 0, an element of degree 3
- a_3_4 → 0, an element of degree 3
- b_3_6 → c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
- b_3_7 → c_1_33 + c_1_22·c_1_3, an element of degree 3
- a_4_3 → 0, an element of degree 4
- a_4_4 → 0, an element of degree 4
- b_4_10 → c_1_34 + c_1_2·c_1_33 + c_1_1·c_1_33 + c_1_1·c_1_2·c_1_32 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_02·c_1_2·c_1_3, an element of degree 4
- b_4_11 → c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_22·c_1_3
+ c_1_12·c_1_32 + c_1_12·c_1_22 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- c_4_12 → c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_1·c_1_33 + c_1_1·c_1_2·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_14 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- c_4_13 → c_1_34 + c_1_2·c_1_33 + c_1_22·c_1_32 + c_1_12·c_1_32 + c_1_14
+ c_1_02·c_1_32 + c_1_04, an element of degree 4
- a_5_15 → 0, an element of degree 5
- a_5_14 → 0, an element of degree 5
- b_5_19 → c_1_2·c_1_34 + c_1_23·c_1_32 + c_1_1·c_1_34 + c_1_1·c_1_22·c_1_32
+ c_1_12·c_1_33 + c_1_12·c_1_22·c_1_3 + c_1_02·c_1_2·c_1_32 + c_1_02·c_1_22·c_1_3, an element of degree 5
- a_6_9 → 0, an element of degree 6
|