Cohomology of group number 30 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 2 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 2.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    (2) · (t2  −  1/2·t  +  1/2)

    (t  +  1) · (t  −  1)4 · (t2  +  1)2
  • The a-invariants are -∞,-∞,-4,-4,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 22 minimal generators of maximal degree 6:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. a_2_0, a nilpotent element of degree 2
  4. b_2_1, an element of degree 2
  5. b_2_2, an element of degree 2
  6. b_2_3, an element of degree 2
  7. a_3_2, a nilpotent element of degree 3
  8. a_3_3, a nilpotent element of degree 3
  9. b_3_4, an element of degree 3
  10. b_3_5, an element of degree 3
  11. b_3_6, an element of degree 3
  12. b_3_7, an element of degree 3
  13. a_4_3, a nilpotent element of degree 4
  14. a_4_5, a nilpotent element of degree 4
  15. b_4_10, an element of degree 4
  16. b_4_11, an element of degree 4
  17. c_4_12, a Duflot regular element of degree 4
  18. c_4_13, a Duflot regular element of degree 4
  19. b_5_17, an element of degree 5
  20. b_5_18, an element of degree 5
  21. b_5_19, an element of degree 5
  22. a_6_7, a nilpotent element of degree 6

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 169 minimal relations of maximal degree 12:

  1. a_1_02
  2. a_1_12
  3. a_1_0·a_1_1
  4. a_2_0·a_1_1
  5. a_2_0·a_1_0
  6. b_2_1·a_1_0
  7. b_2_2·a_1_1 + b_2_2·a_1_0
  8. b_2_3·a_1_1 + b_2_2·a_1_1
  9. b_2_3·a_1_0 + b_2_2·a_1_1
  10. a_2_02
  11. b_2_32 + b_2_22 + b_2_1·b_2_2
  12. a_2_0·b_2_3 + a_2_0·b_2_2 + a_1_1·a_3_2
  13. a_1_0·a_3_2
  14. a_1_1·a_3_3
  15. a_2_0·b_2_3 + a_2_0·b_2_2 + a_1_0·a_3_3
  16. a_1_1·b_3_4 + a_2_0·b_2_2
  17. a_1_0·b_3_4 + a_2_0·b_2_2
  18. a_1_1·b_3_5 + a_2_0·b_2_2
  19. a_1_0·b_3_5 + a_2_0·b_2_2
  20. a_1_1·b_3_6 + a_2_0·b_2_3 + a_2_0·b_2_1
  21. a_1_0·b_3_6 + a_2_0·b_2_2
  22. a_1_1·b_3_7 + a_2_0·b_2_2
  23. a_1_0·b_3_7 + a_2_0·b_2_3
  24. a_2_0·a_3_2
  25. b_2_3·a_3_3 + b_2_2·a_3_3
  26. a_2_0·a_3_3
  27. b_2_22·a_1_0 + a_2_0·b_3_4
  28. b_2_3·b_3_5 + b_2_2·b_3_4 + b_2_1·b_3_5 + b_2_3·a_3_2 + b_2_1·a_3_3
  29. b_2_22·a_1_0 + a_2_0·b_3_5
  30. b_2_3·b_3_6 + b_2_3·b_3_4 + b_2_2·b_3_5 + b_2_2·b_3_4 + b_2_1·b_3_5 + b_2_1·b_3_4
       + b_2_2·a_3_2 + b_2_22·a_1_0 + b_2_1·a_3_3 + b_2_1·a_3_2
  31. b_2_3·b_3_4 + b_2_2·b_3_6 + b_2_1·b_3_5 + b_2_22·a_1_0 + b_2_1·a_3_3
  32. b_2_22·a_1_0 + b_2_12·a_1_1 + a_2_0·b_3_6
  33. b_2_3·b_3_4 + b_2_2·b_3_5 + b_2_1·b_3_7 + b_2_1·b_3_4 + b_2_2·a_3_2
  34. b_2_3·b_3_7 + b_2_3·b_3_4 + b_2_2·b_3_5 + b_2_2·b_3_4 + b_2_22·a_1_0
  35. b_2_2·b_3_7 + b_2_2·b_3_5 + b_2_1·b_3_5 + b_2_3·a_3_2 + b_2_2·a_3_2 + b_2_22·a_1_0
       + b_2_1·a_3_3
  36. b_2_22·a_1_0 + a_2_0·b_3_7
  37. a_4_3·a_1_1
  38. a_4_3·a_1_0
  39. a_4_5·a_1_1
  40. a_4_5·a_1_0
  41. b_4_10·a_1_1 + b_2_3·a_3_3
  42. b_4_10·a_1_0 + b_2_3·a_3_3
  43. b_4_11·a_1_1 + b_2_1·a_3_3
  44. b_4_11·a_1_0
  45. a_3_22
  46. a_3_2·a_3_3
  47. a_3_32
  48. b_3_42 + b_2_23 + b_2_1·b_2_22 + b_2_12·b_2_2
  49. a_3_3·b_3_5 + a_3_3·b_3_4
  50. b_3_52 + b_2_23
  51. b_3_4·b_3_6 + b_2_22·b_2_3 + b_2_12·b_2_3 + b_2_12·b_2_2 + a_3_2·b_3_6 + a_3_2·b_3_5
       + a_2_0·b_2_22
  52. b_3_5·b_3_6 + b_3_4·b_3_5 + b_2_22·b_2_3 + b_2_23 + b_2_1·b_2_2·b_2_3 + b_2_1·b_2_22
       + a_3_3·b_3_6 + a_3_3·b_3_4 + a_3_2·b_3_5 + a_3_2·b_3_4 + a_2_0·b_2_22
  53. b_3_62 + b_2_23 + b_2_12·b_2_2 + b_2_13
  54. b_3_4·b_3_5 + b_2_22·b_2_3 + b_2_1·b_2_22 + a_3_2·b_3_7 + a_3_2·b_3_5 + a_3_2·b_3_4
  55. a_3_3·b_3_7 + a_3_3·b_3_4
  56. b_3_4·b_3_7 + b_2_22·b_2_3 + b_2_1·b_2_2·b_2_3 + b_2_1·b_2_22 + b_2_12·b_2_2
       + a_3_2·b_3_5 + a_2_0·b_2_22
  57. b_3_5·b_3_7 + b_3_4·b_3_5 + b_2_22·b_2_3 + b_2_23 + a_3_2·b_3_5 + a_2_0·b_2_22
  58. b_3_6·b_3_7 + b_2_23 + b_2_1·b_2_2·b_2_3 + b_2_1·b_2_22 + b_2_12·b_2_3 + a_3_2·b_3_6
       + a_3_2·b_3_5 + a_3_2·b_3_4
  59. b_3_72 + b_2_23 + b_2_12·b_2_2
  60. b_3_4·b_3_5 + b_2_22·b_2_3 + b_2_1·b_2_22 + a_3_2·b_3_6 + a_3_2·b_3_5 + a_3_2·b_3_4
       + b_2_1·a_4_3 + a_2_0·b_2_12
  61. a_3_3·b_3_4 + a_3_2·b_3_5 + a_3_2·b_3_4 + b_2_3·a_4_3 + a_2_0·b_2_22
  62. b_3_4·b_3_5 + b_2_22·b_2_3 + b_2_1·b_2_22 + a_3_3·b_3_4 + a_3_2·b_3_5 + b_2_2·a_4_3
       + a_2_0·b_2_22
  63. a_2_0·a_4_3
  64. b_3_4·b_3_5 + b_2_22·b_2_3 + b_2_1·b_2_22 + a_3_3·b_3_6 + a_3_3·b_3_4 + a_3_2·b_3_4
       + b_2_1·a_4_5
  65. b_3_4·b_3_5 + b_2_22·b_2_3 + b_2_1·b_2_22 + a_3_3·b_3_4 + b_2_3·a_4_5
  66. a_3_3·b_3_4 + a_3_2·b_3_5 + b_2_2·a_4_5
  67. a_2_0·a_4_5
  68. a_3_3·b_3_4 + a_2_0·b_4_10
  69. b_3_4·b_3_5 + b_2_3·b_4_11 + b_2_3·b_4_10 + b_2_2·b_4_10 + b_2_23 + b_2_1·b_4_10
       + b_2_1·b_2_2·b_2_3 + b_2_12·b_2_3 + a_3_3·b_3_6 + a_3_3·b_3_4 + a_3_2·b_3_6 + a_3_2·b_3_5
       + a_2_0·b_2_22
  70. b_3_4·b_3_5 + b_2_3·b_4_10 + b_2_2·b_4_11 + b_2_2·b_4_10 + b_2_23 + b_2_12·b_2_2
       + a_3_2·b_3_5 + a_3_2·b_3_4 + a_2_0·b_2_22
  71. a_3_3·b_3_6 + a_3_3·b_3_4 + a_2_0·b_4_11
  72. a_3_3·b_3_4 + a_1_1·b_5_17
  73. a_3_3·b_3_4 + a_1_0·b_5_17
  74. a_3_3·b_3_4 + a_1_1·b_5_18 + a_2_0·b_2_22
  75. a_3_3·b_3_4 + a_1_0·b_5_18 + a_2_0·b_2_22
  76. a_3_3·b_3_6 + a_3_3·b_3_4 + a_1_1·b_5_19
  77. a_1_0·b_5_19
  78. a_4_3·a_3_2
  79. a_4_3·a_3_3
  80. a_4_3·b_3_4 + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_3 + b_2_22·a_3_2 + b_2_1·b_2_3·a_3_2
       + a_2_0·b_2_2·b_3_4
  81. a_4_3·b_3_5 + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_3 + b_2_22·a_3_2 + a_2_0·b_2_2·b_3_4
  82. a_4_3·b_3_6 + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_3 + b_2_22·a_3_2 + b_2_1·b_2_3·a_3_2
       + b_2_1·b_2_2·a_3_2 + b_2_12·a_3_2 + a_2_0·b_2_2·b_3_4 + a_2_0·b_2_1·b_3_6
  83. a_4_3·b_3_7 + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_3 + b_2_22·a_3_2 + b_2_1·b_2_3·a_3_2
       + b_2_1·b_2_2·a_3_2 + a_2_0·b_2_2·b_3_4
  84. a_4_5·a_3_2
  85. a_4_5·a_3_3
  86. a_4_5·b_3_4 + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_3 + b_2_1·b_2_2·a_3_2
  87. a_4_5·b_3_5 + b_2_22·a_3_3 + b_2_22·a_3_2
  88. a_4_5·b_3_6 + b_2_22·a_3_3 + b_2_22·a_3_2 + b_2_1·b_2_3·a_3_2 + b_2_12·a_3_3
  89. a_4_5·b_3_7 + b_2_22·a_3_3 + b_2_22·a_3_2 + b_2_1·b_2_2·a_3_2
  90. b_4_10·a_3_3 + b_2_2·c_4_13·a_1_0
  91. b_4_11·a_3_3 + b_2_12·a_3_3 + a_2_0·b_2_1·b_3_6 + b_2_1·c_4_13·a_1_1
       + b_2_1·c_4_12·a_1_1
  92. b_4_11·b_3_4 + b_4_10·b_3_7 + b_4_10·b_3_6 + b_4_10·b_3_5 + b_4_10·b_3_4 + b_2_22·b_3_5
       + b_2_22·b_3_4 + b_2_1·b_2_2·b_3_5 + b_2_12·b_3_5 + b_2_12·b_3_4 + b_4_11·a_3_2
       + b_2_1·b_2_2·a_3_2 + a_2_0·b_2_2·b_3_4
  93. b_4_11·b_3_5 + b_4_10·b_3_7 + b_4_10·b_3_4 + b_2_22·b_3_5 + b_2_22·b_3_4 + b_2_12·b_3_5
       + b_4_10·a_3_2 + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_3 + b_2_22·a_3_2 + b_2_1·b_2_2·a_3_2
       + a_2_0·b_2_2·b_3_4 + a_2_0·b_2_1·b_3_6 + b_2_1·c_4_13·a_1_1 + b_2_1·c_4_12·a_1_1
  94. b_4_11·b_3_7 + b_4_10·b_3_6 + b_4_10·b_3_4 + b_2_22·b_3_5 + b_2_22·b_3_4
       + b_2_1·b_2_2·b_3_5 + b_2_1·b_2_2·b_3_4 + b_2_12·b_3_7 + b_4_11·a_3_2 + b_2_22·a_3_3
       + b_2_1·b_2_2·a_3_2 + b_2_12·a_3_3 + a_2_0·b_2_2·b_3_4
  95. b_4_10·b_3_6 + b_4_10·b_3_5 + b_2_1·b_5_17 + b_4_10·a_3_2 + b_2_22·a_3_3
       + b_2_1·b_2_3·a_3_2 + b_2_1·b_2_2·a_3_2
  96. b_4_10·b_3_7 + b_2_3·b_5_17 + b_4_10·a_3_2 + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_3
       + b_2_22·a_3_2 + b_2_1·b_2_2·a_3_2 + a_2_0·b_2_2·b_3_4 + b_2_2·c_4_13·a_1_0
  97. b_4_10·b_3_7 + b_4_10·b_3_5 + b_4_10·b_3_4 + b_2_2·b_5_17 + b_2_2·b_2_3·a_3_2
       + b_2_22·a_3_3 + b_2_22·a_3_2 + a_2_0·b_2_2·b_3_4 + b_2_2·c_4_13·a_1_0
  98. b_2_22·a_3_3 + a_2_0·b_5_17
  99. b_4_10·b_3_7 + b_4_10·b_3_5 + b_2_1·b_5_18 + b_2_1·b_2_2·b_3_4 + b_2_12·b_3_7
       + b_2_12·b_3_5 + b_4_11·a_3_2 + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_3 + b_2_22·a_3_2
       + b_2_12·a_3_3 + b_2_12·a_3_2 + a_2_0·b_2_1·b_3_6
  100. b_4_10·b_3_7 + b_4_10·b_3_5 + b_4_10·b_3_4 + b_2_3·b_5_18 + b_2_22·b_3_5
       + b_2_1·b_2_2·b_3_5 + b_2_1·b_2_2·b_3_4 + b_2_12·b_3_7 + b_2_12·b_3_4 + b_4_10·a_3_2
       + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_2 + a_2_0·b_2_2·b_3_4 + b_2_2·c_4_12·a_1_0
  101. b_4_10·b_3_5 + b_2_2·b_5_18 + b_2_22·b_3_4 + b_2_12·b_3_5 + b_2_22·a_3_3
       + b_2_22·a_3_2 + b_2_1·b_2_3·a_3_2 + b_2_1·b_2_2·a_3_2 + b_2_12·a_3_3
       + a_2_0·b_2_2·b_3_4 + b_2_2·c_4_12·a_1_0
  102. b_2_22·a_3_3 + a_2_0·b_5_18 + a_2_0·b_2_2·b_3_4
  103. b_4_11·b_3_6 + b_4_10·b_3_7 + b_4_10·b_3_4 + b_2_22·b_3_5 + b_2_22·b_3_4 + b_2_1·b_5_19
       + b_2_1·b_2_2·b_3_5 + b_2_1·b_2_2·b_3_4 + b_2_12·b_3_4 + b_4_11·a_3_2 + b_4_10·a_3_2
       + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_3 + b_2_22·a_3_2 + b_2_1·b_2_2·a_3_2 + b_2_12·a_3_3
       + a_2_0·b_2_2·b_3_4 + b_2_1·c_4_12·a_1_1
  104. b_4_10·b_3_6 + b_4_10·b_3_4 + b_2_3·b_5_19 + b_2_1·b_2_2·b_3_4 + b_2_12·b_3_4
       + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_2 + b_2_1·b_2_2·a_3_2 + b_2_12·a_3_3
  105. b_4_10·b_3_5 + b_4_10·b_3_4 + b_2_2·b_5_19 + b_2_1·b_2_2·b_3_5 + b_2_12·b_3_7
       + b_2_12·b_3_4 + b_4_10·a_3_2 + b_2_2·b_2_3·a_3_2 + b_2_22·a_3_3 + b_2_22·a_3_2
       + b_2_1·b_2_2·a_3_2
  106. b_2_12·a_3_3 + a_2_0·b_5_19
  107. a_6_7·a_1_1
  108. a_6_7·a_1_0
  109. a_4_32
  110. a_4_3·a_4_5
  111. a_4_52
  112. b_4_112 + b_2_1·b_2_23 + b_2_12·b_4_11 + b_2_13·b_2_3 + b_2_14 + b_2_1·b_2_2·a_4_3
       + b_2_12·a_4_3 + a_2_0·b_2_13 + b_2_1·b_2_2·c_4_13 + b_2_12·c_4_13 + b_2_12·c_4_12
  113. b_4_102 + b_2_1·b_2_2·b_4_11 + b_2_1·b_2_23 + b_2_12·b_2_2·b_2_3 + b_2_22·a_4_3
       + b_2_1·b_2_2·a_4_3 + b_2_22·c_4_13 + b_2_1·b_2_2·c_4_13 + b_2_1·b_2_2·c_4_12
  114. a_4_5·b_4_11 + a_4_3·b_4_10 + b_2_22·a_4_3 + b_2_1·b_2_2·a_4_5 + b_2_12·a_4_5
       + a_2_0·b_2_23 + a_2_0·b_2_13 + a_2_0·b_2_2·c_4_13 + a_2_0·b_2_1·c_4_13
       + a_2_0·b_2_1·c_4_12
  115. b_4_10·b_4_11 + b_2_22·b_4_11 + b_2_23·b_2_3 + b_2_24 + b_2_1·b_2_2·b_4_10
       + b_2_1·b_2_22·b_2_3 + b_2_13·b_2_3 + a_4_5·b_4_10 + a_4_3·b_4_11 + b_2_22·a_4_5
       + b_2_1·b_2_2·a_4_5 + b_2_12·a_4_5 + a_2_0·b_2_23 + a_2_0·b_2_1·b_4_11
       + a_2_0·b_2_13 + b_2_2·b_2_3·c_4_13 + b_2_22·c_4_13 + b_2_1·b_2_3·c_4_13
       + b_2_1·b_2_3·c_4_12 + b_2_1·b_2_2·c_4_13 + b_2_1·b_2_2·c_4_12 + a_2_0·b_2_2·c_4_13
       + a_2_0·b_2_1·c_4_13 + a_2_0·b_2_1·c_4_12
  116. a_3_2·b_5_17 + a_4_5·b_4_10 + a_4_3·b_4_10 + a_2_0·b_2_2·b_4_10
  117. a_3_3·b_5_17 + a_2_0·b_2_2·c_4_13
  118. b_3_4·b_5_17 + b_4_102 + b_2_22·b_4_10 + b_2_1·b_2_22·b_2_3 + b_2_12·b_2_2·b_2_3
       + b_2_12·b_2_22 + b_2_13·b_2_2 + a_4_3·b_4_10 + b_2_12·a_4_5 + a_2_0·b_2_1·b_4_11
       + b_2_22·c_4_13 + b_2_1·b_2_2·c_4_13 + b_2_1·b_2_2·c_4_12 + c_4_13·a_1_0·a_3_3
       + c_4_12·a_1_0·a_3_3
  119. b_3_5·b_5_17 + b_2_22·b_4_11 + b_2_22·b_4_10 + b_2_23·b_2_3 + b_2_24 + b_2_1·b_2_23
       + b_2_12·b_2_22 + a_4_5·b_4_10 + b_2_22·a_4_5 + b_2_22·a_4_3 + b_2_1·b_2_2·a_4_5
       + a_2_0·b_2_23 + c_4_13·a_1_0·a_3_3 + c_4_12·a_1_0·a_3_3
  120. b_3_6·b_5_17 + b_2_22·b_4_11 + b_2_22·b_4_10 + b_2_23·b_2_3 + b_2_24
       + b_2_1·b_2_2·b_4_10 + b_2_1·b_2_23 + b_2_12·b_4_10 + b_2_12·b_2_22 + a_4_3·b_4_10
       + b_2_22·a_4_5 + b_2_22·a_4_3 + b_2_1·b_2_2·a_4_5 + b_2_1·b_2_2·a_4_3 + b_2_12·a_4_5
       + a_2_0·b_2_23 + a_2_0·b_2_1·b_4_11 + c_4_13·a_1_0·a_3_3 + c_4_12·a_1_0·a_3_3
  121. b_3_7·b_5_17 + b_4_102 + b_2_22·b_4_11 + b_2_22·b_4_10 + b_2_23·b_2_3 + b_2_24
       + b_2_1·b_2_2·b_4_10 + b_2_1·b_2_22·b_2_3 + b_2_1·b_2_23 + b_2_12·b_2_2·b_2_3
       + b_2_13·b_2_2 + a_4_5·b_4_10 + a_4_3·b_4_10 + b_2_22·a_4_5 + b_2_12·a_4_5
       + a_2_0·b_2_23 + a_2_0·b_2_1·b_4_11 + b_2_22·c_4_13 + b_2_1·b_2_2·c_4_13
       + b_2_1·b_2_2·c_4_12 + a_2_0·b_2_2·c_4_13 + c_4_13·a_1_0·a_3_3 + c_4_12·a_1_0·a_3_3
  122. a_3_2·b_5_18 + a_4_5·b_4_10 + b_2_22·a_4_5 + b_2_22·a_4_3 + b_2_1·b_2_2·a_4_5
       + b_2_12·a_4_5 + a_2_0·b_2_23 + a_2_0·b_2_1·b_4_11 + a_2_0·b_2_2·c_4_13
  123. a_3_3·b_5_18 + a_2_0·b_2_2·b_4_10 + a_2_0·b_2_2·c_4_13 + c_4_12·a_1_0·a_3_3
  124. b_3_4·b_5_18 + b_2_22·b_4_11 + b_2_22·b_4_10 + b_2_23·b_2_3 + b_2_1·b_2_2·b_4_10
       + b_2_12·b_2_2·b_2_3 + b_2_13·b_2_2 + a_4_5·b_4_10 + a_4_3·b_4_10 + b_2_22·a_4_3
       + b_2_1·b_2_2·a_4_3 + a_2_0·b_2_2·b_4_10 + a_2_0·b_2_23 + a_2_0·b_2_2·c_4_12
  125. b_3_5·b_5_18 + b_2_22·b_4_10 + b_2_23·b_2_3 + b_2_1·b_2_23 + b_2_12·b_2_22
       + b_2_22·a_4_3 + b_2_1·b_2_2·a_4_3 + a_2_0·b_2_2·c_4_12
  126. b_3_6·b_5_18 + b_4_102 + b_2_22·b_4_10 + b_2_23·b_2_3 + b_2_1·b_2_2·b_4_10
       + b_2_1·b_2_22·b_2_3 + b_2_12·b_2_22 + b_2_13·b_2_3 + b_2_13·b_2_2 + a_4_5·b_4_10
       + a_4_3·b_4_11 + b_2_22·a_4_5 + b_2_22·a_4_3 + b_2_1·b_2_2·a_4_3 + a_2_0·b_2_2·b_4_10
       + a_2_0·b_2_1·b_4_11 + a_2_0·b_2_13 + b_2_22·c_4_13 + b_2_1·b_2_2·c_4_13
       + b_2_1·b_2_2·c_4_12 + a_2_0·b_2_2·c_4_13 + a_2_0·b_2_2·c_4_12 + c_4_13·a_1_0·a_3_3
  127. b_3_7·b_5_18 + b_2_22·b_4_10 + b_2_23·b_2_3 + b_2_1·b_2_2·b_4_10 + b_2_1·b_2_22·b_2_3
       + b_2_1·b_2_23 + b_2_13·b_2_2 + a_4_3·b_4_10 + b_2_1·b_2_2·a_4_5 + b_2_1·b_2_2·a_4_3
       + a_2_0·b_2_2·b_4_10 + a_2_0·b_2_2·c_4_13 + a_2_0·b_2_2·c_4_12 + c_4_12·a_1_0·a_3_3
  128. a_3_2·b_5_19 + a_4_3·b_4_11 + a_4_3·b_4_10 + b_2_1·b_2_2·a_4_3 + a_2_0·b_2_2·b_4_10
       + a_2_0·b_2_1·b_4_11 + a_2_0·b_2_2·c_4_13 + c_4_13·a_1_0·a_3_3
  129. a_3_3·b_5_19 + a_2_0·b_2_1·b_4_11 + a_2_0·b_2_13 + a_2_0·b_2_1·c_4_13
       + a_2_0·b_2_1·c_4_12 + c_4_13·a_1_0·a_3_3
  130. b_3_4·b_5_19 + b_2_22·b_4_11 + b_2_23·b_2_3 + b_2_24 + b_2_1·b_2_22·b_2_3
       + b_2_1·b_2_23 + b_2_12·b_4_10 + b_2_12·b_2_2·b_2_3 + b_2_12·b_2_22
       + b_2_13·b_2_3 + a_4_3·b_4_11 + b_2_22·a_4_5 + b_2_22·a_4_3 + b_2_1·b_2_2·a_4_5
       + b_2_12·a_4_3 + a_2_0·b_2_2·b_4_10 + a_2_0·b_2_13
  131. b_3_5·b_5_19 + b_2_22·b_4_11 + b_2_23·b_2_3 + b_2_24 + b_2_1·b_2_2·b_4_10
       + b_2_12·b_2_2·b_2_3 + a_4_3·b_4_10 + b_2_22·a_4_5 + b_2_22·a_4_3 + b_2_12·a_4_5
       + a_2_0·b_2_13 + a_2_0·b_2_2·c_4_13 + a_2_0·b_2_1·c_4_13 + a_2_0·b_2_1·c_4_12
  132. b_3_6·b_5_19 + b_4_112 + b_4_102 + b_2_22·b_4_11 + b_2_23·b_2_3 + b_2_24
       + b_2_1·b_2_2·b_4_10 + b_2_1·b_2_22·b_2_3 + b_2_1·b_2_23 + b_2_13·b_2_2 + b_2_14
       + a_4_3·b_4_11 + b_2_22·a_4_5 + b_2_1·b_2_2·a_4_5 + a_2_0·b_2_2·b_4_10 + b_2_22·c_4_13
       + b_2_1·b_2_2·c_4_12 + b_2_12·c_4_13 + b_2_12·c_4_12 + a_2_0·b_2_1·c_4_12
  133. b_3_7·b_5_19 + b_4_102 + b_2_22·b_4_11 + b_2_23·b_2_3 + b_2_24 + b_2_1·b_2_2·b_4_10
       + b_2_1·b_2_22·b_2_3 + b_2_12·b_4_10 + b_2_13·b_2_3 + a_4_3·b_4_11 + a_4_3·b_4_10
       + b_2_22·a_4_5 + b_2_12·a_4_5 + b_2_12·a_4_3 + a_2_0·b_2_1·b_4_11 + a_2_0·b_2_13
       + b_2_22·c_4_13 + b_2_1·b_2_2·c_4_13 + b_2_1·b_2_2·c_4_12 + a_2_0·b_2_2·c_4_13
       + c_4_13·a_1_0·a_3_3
  134. a_4_3·b_4_11 + b_2_1·a_6_7 + b_2_1·b_2_2·a_4_5 + b_2_1·b_2_2·a_4_3 + b_2_12·a_4_3
       + a_2_0·b_2_1·b_4_11 + a_2_0·b_2_13 + a_2_0·b_2_1·c_4_13 + c_4_13·a_1_0·a_3_3
  135. a_4_5·b_4_10 + a_4_3·b_4_10 + b_2_3·a_6_7 + a_2_0·b_2_2·b_4_10 + c_4_12·a_1_0·a_3_3
  136. a_4_5·b_4_10 + b_2_2·a_6_7 + a_2_0·b_2_2·c_4_13 + c_4_13·a_1_0·a_3_3
       + c_4_12·a_1_0·a_3_3
  137. a_2_0·a_6_7
  138. a_4_3·b_5_17 + b_2_2·b_4_11·a_3_2 + b_2_22·b_2_3·a_3_2 + b_2_23·a_3_2
       + b_2_1·b_4_10·a_3_2 + b_2_1·b_2_22·a_3_2 + b_2_12·b_2_2·a_3_2 + a_2_0·b_2_2·b_5_17
       + a_2_0·c_4_13·b_3_4
  139. a_4_5·b_5_17 + b_2_2·b_4_11·a_3_2 + b_2_2·b_4_10·a_3_2 + b_2_22·b_2_3·a_3_2
       + b_2_23·a_3_2 + b_2_1·b_2_22·a_3_2 + b_2_12·b_2_2·a_3_2 + a_2_0·c_4_13·b_3_4
  140. a_4_3·b_5_18 + b_2_2·b_4_11·a_3_2 + b_2_1·b_2_2·b_2_3·a_3_2 + b_2_1·b_2_22·a_3_2
       + b_2_12·b_2_3·a_3_2 + a_2_0·b_2_22·b_3_4 + a_2_0·c_4_13·b_3_4
  141. b_4_11·b_5_18 + b_2_23·b_3_5 + b_2_23·b_3_4 + b_2_1·b_2_2·b_5_18 + b_2_1·b_2_2·b_5_17
       + b_2_12·b_5_18 + b_2_12·b_5_17 + b_2_12·b_2_2·b_3_4 + b_2_13·b_3_7 + b_2_13·b_3_4
       + a_4_3·b_5_17 + b_2_2·b_4_11·a_3_2 + b_2_2·b_4_10·a_3_2 + b_2_22·b_2_3·a_3_2
       + b_2_23·a_3_2 + b_2_1·b_2_2·b_2_3·a_3_2 + b_2_12·b_2_3·a_3_2 + b_2_12·b_2_2·a_3_2
       + a_2_0·b_2_22·b_3_4 + a_2_0·b_2_12·b_3_6 + b_2_2·c_4_13·b_3_5 + b_2_2·c_4_13·b_3_4
       + b_2_1·c_4_13·b_3_7 + b_2_1·c_4_13·b_3_5 + b_2_1·c_4_13·b_3_4 + b_2_1·c_4_12·b_3_7
       + b_2_1·c_4_12·b_3_4 + b_2_3·c_4_13·a_3_2 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_13·a_3_2
       + b_2_1·c_4_12·a_3_2 + a_2_0·c_4_13·b_3_4
  142. b_4_11·b_5_17 + b_4_10·b_5_17 + b_2_22·b_5_18 + b_2_22·b_5_17 + b_2_23·b_3_4
       + b_2_1·b_2_22·b_3_4 + b_2_12·b_5_18 + b_2_12·b_2_2·b_3_5 + b_2_12·b_2_2·b_3_4
       + b_2_13·b_3_7 + b_2_13·b_3_5 + b_2_13·b_3_4 + b_2_2·b_4_11·a_3_2
       + b_2_22·b_2_3·a_3_2 + b_2_1·b_4_10·a_3_2 + b_2_1·b_2_2·b_2_3·a_3_2
       + b_2_12·b_2_3·a_3_2 + a_2_0·b_2_22·b_3_4 + b_2_2·c_4_13·b_3_5 + b_2_1·c_4_13·b_3_7
       + b_2_1·c_4_13·b_3_5 + b_2_1·c_4_12·b_3_7 + b_2_3·c_4_13·a_3_2 + b_2_2·c_4_13·a_3_3
       + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_13·a_3_2 + b_2_1·c_4_12·a_3_2 + a_2_0·c_4_13·b_3_6
       + a_2_0·c_4_12·b_3_6
  143. a_4_5·b_5_18 + a_4_3·b_5_17 + b_2_2·b_4_11·a_3_2 + b_2_2·b_4_10·a_3_2 + b_2_23·a_3_2
       + b_2_1·b_4_10·a_3_2
  144. b_4_11·b_5_18 + b_4_10·b_5_18 + b_4_10·b_5_17 + b_2_22·b_5_17 + b_2_23·b_3_5
       + b_2_23·b_3_4 + b_2_1·b_2_2·b_5_17 + b_2_1·b_2_22·b_3_5 + b_2_12·b_5_18
       + b_2_12·b_5_17 + b_2_12·b_2_2·b_3_4 + a_4_3·b_5_17 + b_2_2·b_4_11·a_3_2
       + b_2_1·b_2_22·a_3_2 + b_2_12·b_2_2·a_3_2 + a_2_0·b_2_12·b_3_6 + b_2_2·c_4_13·a_3_3
       + b_2_2·c_4_13·a_3_2 + b_2_2·c_4_12·a_3_3 + b_2_1·c_4_13·a_3_2 + b_2_1·c_4_12·a_3_2
       + a_2_0·c_4_13·b_3_4
  145. b_4_11·b_5_18 + b_4_10·b_5_17 + b_2_23·b_3_5 + b_2_23·b_3_4 + b_2_1·b_2_22·b_3_5
       + b_2_1·b_2_22·b_3_4 + b_2_12·b_5_17 + b_2_12·b_2_2·b_3_4 + b_2_13·b_3_7
       + b_2_13·b_3_5 + a_4_3·b_5_19 + a_4_3·b_5_17 + b_2_2·b_4_10·a_3_2 + b_2_22·b_2_3·a_3_2
       + b_2_23·a_3_2 + b_2_12·b_2_3·a_3_2 + b_2_13·a_3_2 + b_2_2·c_4_13·b_3_5
       + b_2_1·c_4_13·b_3_5 + b_2_1·c_4_12·b_3_5 + b_2_2·c_4_13·a_3_3 + b_2_2·c_4_13·a_3_2
       + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_13·a_3_2 + b_2_1·c_4_12·a_3_3 + b_2_1·c_4_12·a_3_2
       + a_2_0·c_4_13·b_3_4
  146. b_4_11·b_5_19 + b_4_11·b_5_18 + b_4_10·b_5_17 + b_2_23·b_3_5 + b_2_23·b_3_4
       + b_2_1·b_2_2·b_5_17 + b_2_12·b_5_19 + b_2_12·b_2_2·b_3_5 + b_2_12·b_2_2·b_3_4
       + b_2_13·b_3_6 + b_2_13·b_3_5 + a_4_3·b_5_17 + b_2_2·b_4_11·a_3_2 + b_2_2·b_4_10·a_3_2
       + b_2_1·b_4_10·a_3_2 + b_2_12·b_2_3·a_3_2 + a_2_0·b_2_12·b_3_6 + b_2_2·c_4_13·b_3_5
       + b_2_1·c_4_13·b_3_7 + b_2_1·c_4_13·b_3_6 + b_2_1·c_4_13·b_3_5 + b_2_1·c_4_13·b_3_4
       + b_2_1·c_4_12·b_3_6 + b_2_2·c_4_13·a_3_3 + b_2_2·c_4_13·a_3_2 + b_2_1·c_4_13·a_3_3
       + b_2_1·c_4_12·a_3_3 + a_2_0·c_4_13·b_3_6
  147. b_4_11·b_5_18 + b_4_10·b_5_17 + b_2_23·b_3_5 + b_2_23·b_3_4 + b_2_1·b_2_22·b_3_5
       + b_2_1·b_2_22·b_3_4 + b_2_12·b_5_17 + b_2_12·b_2_2·b_3_4 + b_2_13·b_3_7
       + b_2_13·b_3_5 + a_4_3·b_5_17 + b_2_2·b_4_10·a_3_2 + b_2_22·b_2_3·a_3_2 + b_2_23·a_3_2
       + b_2_1·b_4_11·a_3_2 + b_2_1·b_4_10·a_3_2 + b_2_12·b_2_3·a_3_2 + b_2_12·b_2_2·a_3_2
       + b_2_13·a_3_2 + a_2_0·b_2_1·b_5_19 + b_2_2·c_4_13·b_3_5 + b_2_1·c_4_13·b_3_5
       + b_2_1·c_4_12·b_3_5 + b_2_2·c_4_13·a_3_3 + b_2_2·c_4_13·a_3_2 + b_2_1·c_4_13·a_3_3
       + b_2_1·c_4_13·a_3_2 + b_2_1·c_4_12·a_3_3 + b_2_1·c_4_12·a_3_2 + a_2_0·c_4_13·b_3_4
  148. b_4_11·b_5_18 + b_4_10·b_5_17 + b_2_23·b_3_5 + b_2_23·b_3_4 + b_2_1·b_2_22·b_3_5
       + b_2_1·b_2_22·b_3_4 + b_2_12·b_5_17 + b_2_12·b_2_2·b_3_4 + b_2_13·b_3_7
       + b_2_13·b_3_5 + a_4_5·b_5_19 + a_4_3·b_5_17 + b_2_2·b_4_11·a_3_2 + b_2_2·b_4_10·a_3_2
       + b_2_1·b_4_11·a_3_2 + b_2_12·b_2_2·a_3_2 + b_2_13·a_3_2 + a_2_0·b_2_12·b_3_6
       + b_2_2·c_4_13·b_3_5 + b_2_1·c_4_13·b_3_5 + b_2_1·c_4_12·b_3_5 + b_2_2·c_4_13·a_3_3
       + b_2_2·c_4_13·a_3_2 + b_2_1·c_4_13·a_3_3 + b_2_1·c_4_13·a_3_2 + b_2_1·c_4_12·a_3_3
       + b_2_1·c_4_12·a_3_2 + a_2_0·c_4_13·b_3_6 + a_2_0·c_4_12·b_3_6 + a_2_0·c_4_12·b_3_4
  149. b_4_11·b_5_18 + b_4_10·b_5_19 + b_2_23·b_3_5 + b_2_23·b_3_4 + b_2_1·b_2_2·b_5_17
       + b_2_1·b_2_22·b_3_5 + b_2_12·b_5_17 + b_2_12·b_2_2·b_3_4 + b_2_13·b_3_7
       + b_2_13·b_3_5 + b_2_13·b_3_4 + a_4_3·b_5_17 + b_2_2·b_4_10·a_3_2 + b_2_1·b_4_10·a_3_2
       + b_2_1·b_2_2·b_2_3·a_3_2 + b_2_12·b_2_3·a_3_2 + b_2_12·b_2_2·a_3_2
       + a_2_0·b_2_22·b_3_4 + a_2_0·b_2_12·b_3_6 + b_2_1·c_4_13·b_3_7 + b_2_1·c_4_12·b_3_7
       + b_2_1·c_4_12·b_3_5 + b_2_3·c_4_13·a_3_2 + b_2_2·c_4_13·a_3_2 + b_2_1·c_4_12·a_3_3
       + a_2_0·c_4_13·b_3_6 + a_2_0·c_4_13·b_3_4 + a_2_0·c_4_12·b_3_6 + a_2_0·c_4_12·b_3_4
  150. a_6_7·a_3_2
  151. a_6_7·a_3_3
  152. a_6_7·b_3_4 + b_2_2·b_4_11·a_3_2 + b_2_2·b_4_10·a_3_2 + b_2_22·b_2_3·a_3_2
       + b_2_23·a_3_2 + b_2_1·b_4_10·a_3_2 + b_2_1·b_2_22·a_3_2 + b_2_12·b_2_2·a_3_2
  153. a_6_7·b_3_5 + b_2_2·b_4_10·a_3_2
  154. a_6_7·b_3_6 + b_2_2·b_4_10·a_3_2 + b_2_1·b_4_11·a_3_2 + b_2_1·b_4_10·a_3_2
       + b_2_1·b_2_2·b_2_3·a_3_2 + b_2_1·b_2_22·a_3_2 + b_2_12·b_2_2·a_3_2 + b_2_13·a_3_2
       + a_2_0·c_4_13·b_3_6 + a_2_0·c_4_13·b_3_4
  155. a_6_7·b_3_7 + b_2_2·b_4_10·a_3_2 + b_2_1·b_4_10·a_3_2
  156. b_5_172 + b_2_1·b_2_22·b_4_11 + b_2_1·b_2_24 + b_2_12·b_2_2·b_4_11
       + b_2_12·b_2_22·b_2_3 + b_2_12·b_2_23 + b_2_13·b_2_2·b_2_3 + b_2_23·a_4_3
       + b_2_12·b_2_2·a_4_3 + b_2_23·c_4_13 + b_2_1·b_2_22·c_4_12 + b_2_12·b_2_2·c_4_13
       + b_2_12·b_2_2·c_4_12
  157. b_5_182 + b_2_25 + b_2_1·b_2_22·b_4_11 + b_2_12·b_2_22·b_2_3 + b_2_12·b_2_23
       + b_2_14·b_2_2 + b_2_23·a_4_3 + b_2_1·b_2_22·a_4_3 + b_2_23·c_4_13
       + b_2_1·b_2_22·c_4_13 + b_2_1·b_2_22·c_4_12
  158. b_5_192 + b_2_12·b_2_2·b_4_11 + b_2_13·b_4_11 + b_2_13·b_2_2·b_2_3
       + b_2_13·b_2_22 + b_2_14·b_2_3 + b_2_15 + b_2_1·b_2_22·a_4_3 + b_2_13·a_4_3
       + a_2_0·b_2_14 + b_2_1·b_2_22·c_4_13 + b_2_12·b_2_2·c_4_12 + b_2_13·c_4_13
       + b_2_13·c_4_12
  159. b_5_18·b_5_19 + b_5_17·b_5_19 + b_2_23·b_4_11 + b_2_24·b_2_3 + b_2_25
       + b_2_1·b_2_22·b_4_11 + b_2_12·b_2_2·b_4_10 + b_2_12·b_2_22·b_2_3
       + b_2_12·b_2_23 + b_2_13·b_4_10 + b_4_11·a_6_7 + b_2_23·a_4_5 + b_2_23·a_4_3
       + b_2_1·b_2_22·a_4_3 + b_2_12·b_2_2·a_4_5 + b_2_12·b_2_2·a_4_3 + b_2_13·a_4_3
       + a_2_0·b_2_22·b_4_10 + a_2_0·b_2_12·b_4_11 + b_2_1·b_2_2·b_2_3·c_4_13
       + b_2_12·b_2_3·c_4_13 + b_2_12·b_2_3·c_4_12 + a_2_0·b_4_11·c_4_13
       + a_2_0·b_2_12·c_4_13 + a_2_0·b_2_12·c_4_12
  160. a_4_3·a_6_7
  161. b_5_17·b_5_18 + b_2_23·b_4_10 + b_2_1·b_2_24 + b_2_12·b_2_2·b_4_11
       + b_2_12·b_2_23 + b_2_13·b_2_2·b_2_3 + b_2_14·b_2_2 + b_2_2·b_2_3·a_6_7
       + b_2_12·b_2_2·a_4_5 + b_2_12·b_2_2·a_4_3 + a_2_0·b_2_22·b_4_10
       + b_2_22·b_2_3·c_4_13 + b_2_1·b_2_2·b_2_3·c_4_13 + b_2_1·b_2_2·b_2_3·c_4_12
       + b_2_2·a_4_5·c_4_13 + b_2_1·a_4_5·c_4_13 + b_2_1·a_4_5·c_4_12 + a_2_0·b_4_11·c_4_13
       + a_2_0·b_4_11·c_4_12 + a_2_0·b_4_10·c_4_12
  162. b_5_18·b_5_19 + b_2_23·b_4_11 + b_2_24·b_2_3 + b_2_25 + b_2_1·b_2_22·b_4_10
       + b_2_12·b_2_2·b_4_11 + b_2_12·b_2_22·b_2_3 + b_2_12·b_2_23 + b_2_13·b_4_10
       + b_2_13·b_2_2·b_2_3 + b_2_13·b_2_22 + b_2_14·b_2_3 + b_2_14·b_2_2 + b_2_23·a_4_5
       + b_2_23·a_4_3 + b_2_1·b_2_2·a_6_7 + b_2_12·a_6_7 + b_2_12·b_2_2·a_4_3 + b_2_13·a_4_3
       + a_2_0·b_2_22·b_4_10 + a_2_0·b_2_14 + b_2_22·b_2_3·c_4_13 + b_2_23·c_4_13
       + b_2_1·b_2_2·b_2_3·c_4_13 + b_2_1·b_2_2·b_2_3·c_4_12 + b_2_1·b_2_22·c_4_12
       + b_2_12·b_2_2·c_4_13 + b_2_12·b_2_2·c_4_12 + b_2_2·a_4_3·c_4_13 + b_2_1·a_4_3·c_4_13
       + b_2_1·a_4_3·c_4_12 + a_2_0·b_4_10·c_4_13 + a_2_0·b_2_12·c_4_12
  163. b_5_17·b_5_19 + b_5_17·b_5_18 + b_2_23·b_4_10 + b_2_1·b_2_22·b_4_11
       + b_2_1·b_2_22·b_4_10 + b_2_1·b_2_24 + b_2_12·b_2_2·b_4_10 + b_2_12·b_2_23
       + b_2_13·b_2_22 + b_2_14·b_2_3 + b_2_22·a_6_7 + b_2_12·a_6_7 + b_2_12·b_2_2·a_4_5
       + b_2_12·b_2_2·a_4_3 + b_2_13·a_4_5 + b_2_13·a_4_3 + a_2_0·b_2_22·b_4_10
       + b_2_23·c_4_13 + b_2_1·b_2_2·b_2_3·c_4_13 + b_2_1·b_2_22·c_4_12
       + b_2_12·b_2_3·c_4_13 + b_2_12·b_2_3·c_4_12 + b_2_12·b_2_2·c_4_13
       + b_2_12·b_2_2·c_4_12 + b_2_2·a_4_5·c_4_13 + b_2_1·a_4_5·c_4_13 + b_2_1·a_4_5·c_4_12
       + a_2_0·b_4_11·c_4_13 + a_2_0·b_4_11·c_4_12 + a_2_0·b_4_10·c_4_12
       + a_2_0·b_2_22·c_4_13 + a_2_0·b_2_12·c_4_12
  164. a_4_5·a_6_7
  165. b_5_18·b_5_19 + b_2_23·b_4_11 + b_2_24·b_2_3 + b_2_25 + b_2_1·b_2_22·b_4_10
       + b_2_12·b_2_2·b_4_11 + b_2_12·b_2_22·b_2_3 + b_2_12·b_2_23 + b_2_13·b_4_10
       + b_2_13·b_2_2·b_2_3 + b_2_13·b_2_22 + b_2_14·b_2_3 + b_2_14·b_2_2 + b_4_10·a_6_7
       + b_2_23·a_4_5 + b_2_23·a_4_3 + b_2_1·b_2_3·a_6_7 + b_2_1·b_2_22·a_4_5
       + b_2_1·b_2_22·a_4_3 + b_2_12·a_6_7 + b_2_13·a_4_5 + b_2_13·a_4_3
       + a_2_0·b_2_22·b_4_10 + a_2_0·b_2_12·b_4_11 + a_2_0·b_2_14 + b_2_22·b_2_3·c_4_13
       + b_2_23·c_4_13 + b_2_1·b_2_2·b_2_3·c_4_13 + b_2_1·b_2_2·b_2_3·c_4_12
       + b_2_1·b_2_22·c_4_12 + b_2_12·b_2_2·c_4_13 + b_2_12·b_2_2·c_4_12
       + b_2_2·a_4_5·c_4_13 + b_2_2·a_4_3·c_4_13 + b_2_1·a_4_5·c_4_13 + b_2_1·a_4_5·c_4_12
       + b_2_1·a_4_3·c_4_13 + b_2_1·a_4_3·c_4_12 + a_2_0·b_4_11·c_4_13 + a_2_0·b_4_11·c_4_12
       + a_2_0·b_2_12·c_4_12
  166. a_6_7·b_5_18 + b_2_22·b_4_11·a_3_2 + b_2_22·b_4_10·a_3_2 + b_2_23·b_2_3·a_3_2
       + b_2_24·a_3_2 + b_2_1·b_2_2·b_4_11·a_3_2 + b_2_1·b_2_2·b_4_10·a_3_2
       + b_2_12·b_4_10·a_3_2 + b_2_12·b_2_2·b_2_3·a_3_2 + b_2_12·b_2_22·a_3_2
       + b_2_22·c_4_13·a_3_2 + b_2_1·b_2_2·c_4_13·a_3_2 + b_2_1·b_2_2·c_4_12·a_3_2
  167. a_6_7·b_5_19 + b_2_1·b_2_2·b_4_10·a_3_2 + b_2_1·b_2_22·b_2_3·a_3_2
       + b_2_1·b_2_23·a_3_2 + b_2_12·b_4_10·a_3_2 + b_2_12·b_2_2·b_2_3·a_3_2
       + b_2_12·b_2_22·a_3_2 + b_2_13·b_2_2·a_3_2 + b_2_14·a_3_2
       + b_2_2·b_2_3·c_4_13·a_3_2 + b_2_22·c_4_13·a_3_2 + b_2_1·b_2_3·c_4_13·a_3_2
       + b_2_1·b_2_3·c_4_12·a_3_2 + b_2_1·b_2_2·c_4_12·a_3_2 + b_2_12·c_4_13·a_3_2
       + b_2_12·c_4_12·a_3_2 + a_2_0·c_4_13·b_5_19
  168. a_6_7·b_5_17 + b_2_1·b_2_2·b_4_11·a_3_2 + b_2_1·b_2_22·b_2_3·a_3_2
       + b_2_12·b_4_10·a_3_2 + b_2_12·b_2_2·b_2_3·a_3_2 + b_2_12·b_2_22·a_3_2
       + b_2_13·b_2_3·a_3_2 + b_2_2·b_2_3·c_4_13·a_3_2 + b_2_1·b_2_3·c_4_13·a_3_2
       + b_2_1·b_2_3·c_4_12·a_3_2
  169. a_6_72


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 12.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_4_12, a Duflot regular element of degree 4
    2. c_4_13, a Duflot regular element of degree 4
    3. b_2_3 + b_2_1, an element of degree 2
    4. b_3_5 + b_3_4, an element of degree 3
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 4, 6, 9].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_10, an element of degree 2
  5. b_2_20, an element of degree 2
  6. b_2_30, an element of degree 2
  7. a_3_20, an element of degree 3
  8. a_3_30, an element of degree 3
  9. b_3_40, an element of degree 3
  10. b_3_50, an element of degree 3
  11. b_3_60, an element of degree 3
  12. b_3_70, an element of degree 3
  13. a_4_30, an element of degree 4
  14. a_4_50, an element of degree 4
  15. b_4_100, an element of degree 4
  16. b_4_110, an element of degree 4
  17. c_4_12c_1_14, an element of degree 4
  18. c_4_13c_1_04, an element of degree 4
  19. b_5_170, an element of degree 5
  20. b_5_180, an element of degree 5
  21. b_5_190, an element of degree 5
  22. a_6_70, an element of degree 6

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. a_2_00, an element of degree 2
  4. b_2_1c_1_22, an element of degree 2
  5. b_2_2c_1_32 + c_1_22, an element of degree 2
  6. b_2_3c_1_32 + c_1_2·c_1_3, an element of degree 2
  7. a_3_20, an element of degree 3
  8. a_3_30, an element of degree 3
  9. b_3_4c_1_33 + c_1_23, an element of degree 3
  10. b_3_5c_1_33 + c_1_2·c_1_32 + c_1_22·c_1_3 + c_1_23, an element of degree 3
  11. b_3_6c_1_33 + c_1_2·c_1_32 + c_1_23, an element of degree 3
  12. b_3_7c_1_33 + c_1_2·c_1_32, an element of degree 3
  13. a_4_30, an element of degree 4
  14. a_4_50, an element of degree 4
  15. b_4_10c_1_34 + c_1_2·c_1_33 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_23 + c_1_12·c_1_2·c_1_3
       + c_1_12·c_1_22 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
  16. b_4_11c_1_23·c_1_3 + c_1_24 + c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_12·c_1_22
       + c_1_02·c_1_2·c_1_3, an element of degree 4
  17. c_4_12c_1_34 + c_1_2·c_1_33 + c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_12·c_1_32
       + c_1_14 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3, an element of degree 4
  18. c_4_13c_1_34 + c_1_23·c_1_3 + c_1_24 + c_1_02·c_1_22 + c_1_04, an element of degree 4
  19. b_5_17c_1_35 + c_1_2·c_1_34 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_23·c_1_3
       + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_22·c_1_3 + c_1_02·c_1_33
       + c_1_02·c_1_2·c_1_32, an element of degree 5
  20. b_5_18c_1_23·c_1_32 + c_1_24·c_1_3 + c_1_1·c_1_2·c_1_33 + c_1_1·c_1_22·c_1_32
       + c_1_1·c_1_23·c_1_3 + c_1_1·c_1_24 + c_1_12·c_1_2·c_1_32 + c_1_12·c_1_23
       + c_1_02·c_1_33 + c_1_02·c_1_22·c_1_3, an element of degree 5
  21. b_5_19c_1_2·c_1_34 + c_1_22·c_1_33 + c_1_23·c_1_32 + c_1_24·c_1_3
       + c_1_1·c_1_22·c_1_32 + c_1_1·c_1_23·c_1_3 + c_1_12·c_1_22·c_1_3
       + c_1_02·c_1_2·c_1_32, an element of degree 5
  22. a_6_70, an element of degree 6


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009