Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 338 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 1) · (t5 − t4 + t3 − t2 − 1) |
| (t + 1) · (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-5,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 10 minimal generators of maximal degree 4:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_3, a nilpotent element of degree 2
- b_2_5, an element of degree 2
- a_3_3, a nilpotent element of degree 3
- b_3_8, an element of degree 3
- b_4_11, an element of degree 4
- c_4_12, a Duflot regular element of degree 4
- c_4_13, a Duflot regular element of degree 4
Ring relations
There are 19 minimal relations of maximal degree 8:
- a_1_0·b_1_1
- a_1_0·b_1_2
- b_1_1·b_1_22 + a_1_03
- a_2_3·b_1_2 + a_1_03
- a_2_3·b_1_1 + a_1_03
- b_2_5·b_1_1 + a_1_03
- b_1_2·a_3_3
- a_1_0·a_3_3 + a_2_32
- b_1_1·a_3_3
- a_1_0·b_3_8
- a_2_3·b_3_8 + a_2_32·a_1_0
- b_4_11·a_1_0 + a_2_3·a_3_3 + a_2_3·b_2_5·a_1_0
- b_4_11·b_1_1
- a_3_3·b_3_8 + a_2_3·b_2_5·a_1_02
- a_3_32 + b_2_52·a_1_02 + a_2_32·b_2_5 + a_2_3·b_2_5·a_1_02 + a_2_33
+ c_4_12·a_1_02
- b_3_82 + b_1_26 + b_1_12·b_1_2·b_3_8 + b_2_52·b_1_22 + c_4_13·b_1_22
+ c_4_13·b_1_12 + c_4_12·b_1_12
- a_2_3·b_4_11 + a_3_32 + a_2_32·b_2_5
- b_4_11·a_3_3 + a_2_3·b_2_52·a_1_0 + a_2_3·c_4_12·a_1_0 + c_4_12·a_1_03
- b_1_25·b_3_8 + b_1_28 + b_4_112 + b_2_5·b_4_11·b_1_22 + b_2_52·b_1_2·b_3_8
+ b_2_53·b_1_22 + b_2_53·a_1_02 + a_2_32·b_2_52 + a_2_33·b_2_5 + c_4_12·b_1_24 + b_2_5·c_4_12·a_1_02 + a_2_32·c_4_12 + a_2_3·c_4_12·a_1_02
Data used for Benson′s test
- Benson′s completion test succeeded in degree 8.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_12, a Duflot regular element of degree 4
- c_4_13, a Duflot regular element of degree 4
- b_1_22 + b_1_12 + b_2_5, an element of degree 2
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 3, 6, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- b_3_8 → 0, an element of degree 3
- b_4_11 → 0, an element of degree 4
- c_4_12 → c_1_14, an element of degree 4
- c_4_13 → c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_5 → 0, an element of degree 2
- a_3_3 → 0, an element of degree 3
- b_3_8 → c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_4_11 → 0, an element of degree 4
- c_4_12 → c_1_1·c_1_23 + c_1_14 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
- c_4_13 → c_1_1·c_1_23 + c_1_12·c_1_22 + c_1_0·c_1_23 + c_1_04, an element of degree 4
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- a_2_3 → 0, an element of degree 2
- b_2_5 → c_1_2·c_1_3 + c_1_22, an element of degree 2
- a_3_3 → 0, an element of degree 3
- b_3_8 → c_1_0·c_1_32 + c_1_02·c_1_3, an element of degree 3
- b_4_11 → c_1_2·c_1_33 + c_1_23·c_1_3 + c_1_1·c_1_33 + c_1_12·c_1_32
+ c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3, an element of degree 4
- c_4_12 → c_1_34 + c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_33 + c_1_02·c_1_32, an element of degree 4
- c_4_13 → c_1_34 + c_1_22·c_1_32 + c_1_24 + c_1_02·c_1_32 + c_1_04, an element of degree 4
|