Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 343 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
( − 2) · (t7 + 3/2·t6 + t5 + t3 + t2 + t + 1/2) |
| (t + 1)2 · (t − 1)3 · (t2 + 1)2 · (t4 + 1) |
- The a-invariants are -∞,-∞,-3,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 18 minimal generators of maximal degree 9:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- b_2_4, an element of degree 2
- a_3_5, a nilpotent element of degree 3
- a_3_6, a nilpotent element of degree 3
- c_4_7, a Duflot regular element of degree 4
- a_5_7, a nilpotent element of degree 5
- a_5_8, a nilpotent element of degree 5
- a_5_9, a nilpotent element of degree 5
- a_5_10, a nilpotent element of degree 5
- a_5_11, a nilpotent element of degree 5
- b_6_16, an element of degree 6
- a_7_19, a nilpotent element of degree 7
- a_7_20, a nilpotent element of degree 7
- c_8_21, a Duflot regular element of degree 8
- a_9_27, a nilpotent element of degree 9
- a_9_28, a nilpotent element of degree 9
Ring relations
There are 119 minimal relations of maximal degree 18:
- a_1_0·a_1_1
- a_1_0·a_1_2
- a_1_03
- a_1_13
- b_2_4·a_1_1 + a_1_23 + a_1_1·a_1_22 + a_1_12·a_1_2
- a_1_24
- a_1_1·a_3_5
- a_1_2·a_3_5 + a_1_12·a_1_22
- a_1_1·a_3_6
- a_1_2·a_3_6 + b_2_4·a_1_22 + b_2_4·a_1_02 + a_1_1·a_1_23 + a_1_12·a_1_22
- b_2_4·a_1_23
- a_1_02·a_3_5
- a_1_02·a_3_6
- a_3_52 + c_4_7·a_1_02
- a_1_1·a_5_7 + c_4_7·a_1_1·a_1_2
- a_3_62 + a_3_52 + a_1_0·a_5_7 + b_2_4·a_1_0·a_3_6 + b_2_4·a_1_0·a_3_5
+ b_2_42·a_1_02
- a_1_2·a_5_7 + b_2_42·a_1_22 + c_4_7·a_1_22
- a_3_62 + a_1_0·a_5_8 + b_2_4·a_1_0·a_3_6 + b_2_4·a_1_0·a_3_5
- a_3_52 + a_1_0·a_5_9
- a_1_1·a_5_10 + a_1_1·a_5_9 + a_1_1·a_5_8 + c_4_7·a_1_1·a_1_2
- a_3_52 + a_1_0·a_5_10 + b_2_4·a_1_0·a_3_6
- a_1_2·a_5_10 + a_1_2·a_5_9 + a_1_1·a_5_9 + a_1_1·a_5_8 + b_2_42·a_1_22
+ b_2_42·a_1_02
- a_1_1·a_5_11 + a_1_1·a_5_8 + c_4_7·a_1_1·a_1_2
- a_3_62 + a_3_5·a_3_6 + a_3_52 + a_1_0·a_5_11 + b_2_4·a_1_0·a_3_6 + b_2_4·a_1_0·a_3_5
+ b_2_42·a_1_02
- a_1_2·a_5_11 + a_1_1·a_5_9 + a_1_1·a_5_8 + b_2_4·a_1_0·a_3_5
- a_1_02·a_5_7
- a_1_22·a_5_8 + a_1_1·a_1_2·a_5_9 + a_1_12·a_5_9 + c_4_7·a_1_23
+ c_4_7·a_1_1·a_1_22 + c_4_7·a_1_12·a_1_2
- b_2_4·a_5_10 + b_2_4·a_5_9 + b_2_42·a_3_6 + a_1_22·a_5_9 + a_1_12·a_5_9 + a_1_12·a_5_8
+ c_4_7·a_1_23
- a_1_12·a_5_8 + a_1_02·a_5_11 + c_4_7·a_1_12·a_1_2
- b_6_16·a_1_1 + a_1_12·a_5_9 + a_1_12·a_5_8 + c_4_7·a_1_1·a_1_22
- b_6_16·a_1_0 + b_2_42·a_3_5
- b_6_16·a_1_2 + b_2_4·a_5_8 + b_2_4·a_5_7 + b_2_43·a_1_0 + a_1_22·a_5_9 + a_1_22·a_5_8
+ b_2_4·c_4_7·a_1_0 + c_4_7·a_1_23 + c_4_7·a_1_12·a_1_2
- a_3_5·a_5_8 + a_3_5·a_5_7 + b_2_42·a_1_0·a_3_5 + c_4_7·a_1_0·a_3_5
- a_3_6·a_5_8 + a_3_6·a_5_7 + b_2_4·a_1_2·a_5_8 + b_2_42·a_1_0·a_3_6
+ b_2_42·a_1_0·a_3_5 + b_2_43·a_1_22 + a_1_1·a_1_22·a_5_9 + c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_22 + c_4_7·a_1_1·a_1_23
- a_3_6·a_5_8 + a_3_6·a_5_7 + b_2_4·a_1_2·a_5_8 + b_2_42·a_1_0·a_3_6
+ b_2_42·a_1_0·a_3_5 + b_2_43·a_1_22 + a_1_23·a_5_9 + a_1_12·a_1_2·a_5_9 + c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_22 + c_4_7·a_1_12·a_1_22
- a_3_5·a_5_9 + a_1_12·a_1_2·a_5_9 + c_4_7·a_1_0·a_3_5
- a_3_6·a_5_9 + b_2_4·a_1_2·a_5_9 + b_2_4·a_1_0·a_5_7 + b_2_42·a_1_0·a_3_5
+ b_2_43·a_1_02 + c_4_7·a_1_0·a_3_6 + c_4_7·a_1_1·a_1_23 + c_4_7·a_1_12·a_1_22
- a_3_6·a_5_10 + a_3_6·a_5_9 + b_2_4·a_1_0·a_5_7 + b_2_42·a_1_0·a_3_6
+ b_2_42·a_1_0·a_3_5 + b_2_43·a_1_02 + b_2_4·c_4_7·a_1_02
- a_3_6·a_5_11 + a_3_6·a_5_8 + a_3_5·a_5_10 + a_3_5·a_5_7 + b_2_42·a_1_0·a_3_6
+ b_2_42·a_1_0·a_3_5 + b_2_43·a_1_22 + b_2_43·a_1_02 + a_1_12·a_1_2·a_5_9 + c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_22 + c_4_7·a_1_1·a_1_23
- a_3_5·a_5_11 + a_3_5·a_5_7 + c_4_7·a_1_0·a_3_6 + c_4_7·a_1_12·a_1_22
- a_3_5·a_5_10 + b_2_4·a_1_0·a_5_11 + b_2_4·a_1_0·a_5_7 + a_1_12·a_1_2·a_5_9
+ c_4_7·a_1_0·a_3_5
- a_3_6·a_5_8 + a_3_6·a_5_7 + a_1_1·a_7_19 + b_2_4·a_1_2·a_5_8 + b_2_42·a_1_0·a_3_6
+ b_2_42·a_1_0·a_3_5 + b_2_43·a_1_22 + c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_22
- a_3_5·a_5_10 + a_3_5·a_5_7 + a_1_0·a_7_19 + b_2_4·a_1_0·a_5_7 + b_2_42·a_1_0·a_3_5
+ a_1_12·a_1_2·a_5_9 + b_2_4·c_4_7·a_1_02 + c_4_7·a_1_12·a_1_22
- a_1_2·a_7_19 + b_2_4·a_1_2·a_5_8 + b_2_42·a_1_0·a_3_5 + c_4_7·a_1_1·a_1_23
- a_3_6·a_5_8 + a_3_6·a_5_7 + a_1_1·a_7_20 + b_2_4·a_1_2·a_5_8 + b_2_42·a_1_0·a_3_6
+ b_2_42·a_1_0·a_3_5 + b_2_43·a_1_22 + c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_22 + c_4_7·a_1_1·a_1_23
- a_3_6·a_5_7 + a_3_5·a_5_7 + a_1_0·a_7_20 + b_2_4·a_1_0·a_5_7 + b_2_42·a_1_0·a_3_6
+ b_2_43·a_1_22 + c_4_7·a_1_0·a_3_5 + b_2_4·c_4_7·a_1_22 + b_2_4·c_4_7·a_1_02 + c_4_7·a_1_1·a_1_23
- a_3_6·a_5_9 + a_3_6·a_5_8 + a_3_6·a_5_7 + a_1_2·a_7_20 + b_2_4·a_1_2·a_5_8
+ b_2_42·a_1_0·a_3_6 + b_2_43·a_1_22 + c_4_7·a_1_1·a_1_23
- b_6_16·a_3_6 + b_2_42·a_5_11 + b_2_42·a_5_8 + b_2_44·a_1_2 + b_2_44·a_1_0
+ b_2_42·c_4_7·a_1_2 + b_2_42·c_4_7·a_1_0
- b_6_16·a_3_5 + a_1_12·a_1_22·a_5_9 + b_2_42·c_4_7·a_1_0
- a_1_02·a_7_19
- a_1_02·a_7_20 + b_2_4·a_1_22·a_5_9
- a_5_7·a_5_8 + a_5_72 + b_2_42·a_1_2·a_5_8 + b_2_42·a_1_0·a_5_7 + b_2_44·a_1_22
+ c_4_7·a_1_2·a_5_8 + c_4_7·a_1_0·a_5_7 + c_4_72·a_1_22
- a_5_7·a_5_9 + b_2_42·a_1_2·a_5_9 + c_4_7·a_1_2·a_5_9 + c_4_7·a_1_0·a_5_7
- a_5_8·a_5_10 + a_5_8·a_5_9 + a_5_82 + a_5_7·a_5_10 + a_5_7·a_5_9 + a_5_72
+ b_2_42·a_1_2·a_5_8 + b_2_43·a_1_0·a_3_6 + b_2_43·a_1_0·a_3_5 + b_2_44·a_1_22 + b_2_44·a_1_02 + b_2_4·c_4_7·a_1_0·a_3_6 + c_4_72·a_1_02
- a_5_102 + a_5_92 + a_5_82 + a_5_72 + b_2_42·a_1_0·a_5_7 + b_2_43·a_1_0·a_3_6
+ b_2_43·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_22 + b_2_42·c_4_7·a_1_02 + c_4_72·a_1_02
- a_5_112 + a_5_82 + b_2_44·a_1_22 + b_2_44·a_1_02 + c_4_7·a_1_0·a_5_7
+ b_2_4·c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_02 + c_4_72·a_1_22
- a_5_10·a_5_11 + a_5_9·a_5_10 + a_5_92 + a_5_8·a_5_11 + a_5_7·a_5_11 + a_5_7·a_5_10
+ a_5_7·a_5_9 + b_2_42·a_1_2·a_5_9 + b_2_42·a_1_2·a_5_8 + c_4_7·a_1_1·a_5_9 + c_4_7·a_1_1·a_5_8 + b_2_4·c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_0·a_3_5
- a_5_8·a_5_11 + a_5_82 + a_5_7·a_5_11 + a_5_72 + b_2_42·a_1_0·a_5_11
+ b_2_44·a_1_02 + c_4_7·a_1_0·a_5_11 + b_2_42·c_4_7·a_1_22 + b_2_42·c_4_7·a_1_02 + c_4_72·a_1_02
- a_5_9·a_5_11 + a_5_9·a_5_10 + a_5_92 + a_5_7·a_5_11 + a_5_7·a_5_10 + a_5_7·a_5_9
+ a_5_72 + a_3_6·a_7_19 + b_2_42·a_1_2·a_5_9 + b_2_42·a_1_0·a_5_7 + b_2_44·a_1_22 + b_2_44·a_1_02 + c_4_7·a_1_0·a_5_7 + c_4_72·a_1_22
- a_5_9·a_5_11 + a_5_9·a_5_10 + a_5_92 + a_5_8·a_5_11 + a_5_82 + a_5_7·a_5_11 + a_5_72
+ a_3_5·a_7_19 + b_2_42·a_1_2·a_5_9 + b_2_42·a_1_0·a_5_11 + b_2_42·a_1_0·a_5_7 + c_4_7·a_1_0·a_5_7 + b_2_4·c_4_7·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_22 + b_2_42·c_4_7·a_1_02
- a_5_9·a_5_11 + a_5_9·a_5_10 + a_5_92 + a_5_8·a_5_11 + a_5_82 + a_5_7·a_5_11 + a_5_72
+ b_2_4·a_1_0·a_7_19 + b_2_42·a_1_2·a_5_9 + b_2_42·a_1_0·a_5_7 + b_2_43·a_1_0·a_3_5 + b_2_4·c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_22 + b_2_42·c_4_7·a_1_02 + c_4_72·a_1_02
- a_5_9·a_5_11 + a_5_9·a_5_10 + a_5_92 + a_5_7·a_5_11 + a_3_6·a_7_20 + b_2_42·a_1_2·a_5_9
+ b_2_42·a_1_2·a_5_8 + b_2_42·a_1_0·a_5_7 + b_2_43·a_1_0·a_3_5 + b_2_44·a_1_22 + c_4_7·a_1_1·a_5_9 + c_4_7·a_1_1·a_5_8 + b_2_4·c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_02
- a_5_9·a_5_11 + a_5_9·a_5_10 + a_5_92 + a_5_8·a_5_11 + a_5_82 + a_3_5·a_7_20
+ b_2_42·a_1_2·a_5_9 + b_2_44·a_1_22 + c_4_7·a_1_1·a_5_9 + c_4_7·a_1_1·a_5_8 + c_4_7·a_1_0·a_5_7 + b_2_4·c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_22 + c_4_72·a_1_22
- a_5_9·a_5_11 + a_5_9·a_5_10 + a_5_92 + a_5_8·a_5_11 + a_5_82 + a_5_7·a_5_11
+ a_5_7·a_5_10 + a_5_7·a_5_9 + a_5_72 + b_2_4·a_1_0·a_7_20 + b_2_42·a_1_2·a_5_9 + b_2_42·a_1_0·a_5_11 + b_2_43·a_1_0·a_3_6 + b_2_44·a_1_22 + c_4_7·a_1_1·a_5_9 + c_4_7·a_1_1·a_5_8 + b_2_4·c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_02 + c_4_72·a_1_02
- a_5_82 + a_5_72 + b_2_44·a_1_02 + c_8_21·a_1_12 + b_2_42·c_4_7·a_1_22
+ c_4_72·a_1_02
- a_5_72 + b_2_44·a_1_22 + c_8_21·a_1_02 + c_4_72·a_1_22 + c_4_72·a_1_02
- a_5_9·a_5_10 + a_5_92 + a_5_82 + a_5_72 + b_2_42·a_1_2·a_5_9 + b_2_42·a_1_0·a_5_7
+ b_2_43·a_1_0·a_3_5 + c_8_21·a_1_1·a_1_2 + c_4_7·a_1_1·a_5_9 + c_4_7·a_1_1·a_5_8 + b_2_4·c_4_7·a_1_0·a_3_6 + b_2_42·c_4_7·a_1_22 + c_4_72·a_1_02
- a_5_92 + a_5_82 + a_5_72 + b_2_44·a_1_22 + b_2_44·a_1_02 + c_8_21·a_1_22
+ c_4_72·a_1_22
- a_1_1·a_9_27 + c_4_7·a_1_1·a_5_8 + c_4_72·a_1_1·a_1_2 + c_4_72·a_1_12
- a_5_7·a_5_10 + a_5_7·a_5_9 + a_5_72 + a_1_0·a_9_27 + b_2_42·a_1_0·a_5_11
+ b_2_42·a_1_0·a_5_7 + b_2_43·a_1_0·a_3_5 + c_4_7·a_1_1·a_5_9 + c_4_7·a_1_1·a_5_8 + b_2_4·c_4_7·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_22 + c_4_72·a_1_22 + c_4_72·a_1_02
- a_5_9·a_5_10 + a_5_92 + a_5_8·a_5_9 + a_5_7·a_5_9 + a_5_7·a_5_8 + a_5_72 + a_1_2·a_9_27
+ b_2_42·a_1_2·a_5_9 + b_2_42·a_1_2·a_5_8 + b_2_42·a_1_0·a_5_7 + b_2_44·a_1_22 + b_2_44·a_1_02 + c_4_7·a_1_0·a_5_7 + b_2_4·c_4_7·a_1_0·a_3_6 + b_2_42·c_4_7·a_1_22 + c_4_72·a_1_1·a_1_2 + c_4_72·a_1_02
- a_5_9·a_5_10 + a_5_92 + a_1_1·a_9_28 + b_2_42·a_1_2·a_5_9 + b_2_42·a_1_0·a_5_7
+ b_2_43·a_1_0·a_3_5 + b_2_44·a_1_02 + c_4_7·a_1_1·a_5_9 + c_4_7·a_1_1·a_5_8 + b_2_4·c_4_7·a_1_0·a_3_6 + c_4_72·a_1_1·a_1_2 + c_4_72·a_1_12
- a_5_9·a_5_11 + a_5_9·a_5_10 + a_5_92 + a_5_7·a_5_11 + a_5_7·a_5_10 + a_5_7·a_5_9
+ a_5_72 + a_1_0·a_9_28 + b_2_42·a_1_2·a_5_9 + b_2_42·a_1_0·a_5_7 + b_2_4·c_4_7·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_22 + c_4_72·a_1_22 + c_4_72·a_1_02
- a_5_9·a_5_11 + a_5_92 + a_5_8·a_5_11 + a_5_82 + a_5_7·a_5_11 + a_5_7·a_5_8
+ a_1_2·a_9_28 + b_2_42·a_1_2·a_5_9 + b_2_42·a_1_2·a_5_8 + b_2_42·a_1_0·a_5_11 + b_2_43·a_1_0·a_3_5 + b_2_44·a_1_22 + b_2_44·a_1_02 + c_4_7·a_1_0·a_5_7 + b_2_4·c_4_7·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_22 + b_2_42·c_4_7·a_1_02 + c_4_72·a_1_1·a_1_2
- b_6_16·a_5_11 + b_6_16·a_5_8 + b_2_43·a_5_8 + b_2_43·a_5_7 + b_2_44·a_3_5
+ b_2_45·a_1_0 + b_2_42·a_1_22·a_5_9 + b_2_4·c_4_7·a_5_8 + b_2_4·c_4_7·a_5_7 + b_2_42·c_4_7·a_3_6 + b_2_42·c_4_7·a_3_5 + c_4_7·a_1_22·a_5_9 + c_4_7·a_1_1·a_1_2·a_5_9 + c_4_7·a_1_12·a_5_9 + b_2_4·c_4_72·a_1_0 + c_4_72·a_1_1·a_1_22
- b_6_16·a_5_10 + b_6_16·a_5_9 + b_6_16·a_5_8 + b_6_16·a_5_7 + b_2_43·a_5_11
+ b_2_43·a_5_8 + b_2_44·a_3_5 + b_2_45·a_1_2 + b_2_45·a_1_0 + b_2_42·c_4_7·a_3_5 + b_2_43·c_4_7·a_1_0 + c_4_7·a_1_02·a_5_11
- b_6_16·a_5_7 + b_2_42·a_7_19 + b_2_43·a_5_11 + b_2_44·a_3_5 + b_2_45·a_1_2
+ b_2_42·a_1_22·a_5_9 + b_2_4·c_4_7·a_5_8 + b_2_4·c_4_7·a_5_7 + b_2_42·c_4_7·a_3_5 + b_2_43·c_4_7·a_1_2 + c_4_7·a_1_22·a_5_9 + c_4_7·a_1_1·a_1_2·a_5_9 + c_4_7·a_1_12·a_5_9 + b_2_4·c_4_72·a_1_0 + c_4_72·a_1_1·a_1_22
- b_6_16·a_5_9 + b_6_16·a_5_7 + b_2_4·a_9_27 + b_2_42·a_7_20 + b_2_43·a_5_11
+ b_2_43·a_5_9 + b_2_43·a_5_8 + b_2_43·a_5_7 + b_2_44·a_3_6 + b_2_44·a_3_5 + b_2_45·a_1_2 + b_2_45·a_1_0 + b_2_42·a_1_22·a_5_9 + b_2_4·c_8_21·a_1_0 + b_2_42·c_4_7·a_3_6 + b_2_42·c_4_7·a_3_5 + b_2_43·c_4_7·a_1_0 + c_8_21·a_1_1·a_1_22 + c_4_7·a_1_02·a_5_11 + c_4_72·a_1_23 + c_4_72·a_1_1·a_1_22 + c_4_72·a_1_12·a_1_2
- b_6_16·a_5_8 + b_6_16·a_5_7 + b_2_44·a_3_5 + a_1_22·a_9_27 + b_2_42·c_4_7·a_3_5
+ b_2_43·c_4_7·a_1_2 + c_8_21·a_1_12·a_1_2 + c_4_72·a_1_1·a_1_22
- b_6_16·a_5_8 + b_6_16·a_5_7 + b_2_44·a_3_5 + a_1_02·a_9_28 + b_2_42·a_1_22·a_5_9
+ b_2_42·c_4_7·a_3_5 + b_2_43·c_4_7·a_1_2 + c_8_21·a_1_12·a_1_2 + c_4_7·a_1_1·a_1_2·a_5_9 + c_4_7·a_1_12·a_5_9 + c_4_7·a_1_02·a_5_11 + c_4_72·a_1_1·a_1_22 + c_4_72·a_1_12·a_1_2
- a_5_11·a_7_19 + a_5_10·a_7_19 + a_5_8·a_7_20 + a_5_8·a_7_19 + a_5_7·a_7_20
+ b_2_42·a_1_0·a_7_19 + b_2_43·a_1_2·a_5_9 + b_2_43·a_1_0·a_5_7 + b_2_44·a_1_0·a_3_6 + b_2_44·a_1_0·a_3_5 + c_4_7·a_1_0·a_7_19 + b_2_4·c_4_7·a_1_2·a_5_9 + b_2_4·c_4_7·a_1_2·a_5_8 + b_2_4·c_4_7·a_1_0·a_5_11 + b_2_43·c_4_7·a_1_02 + c_4_72·a_1_0·a_3_6
- a_5_11·a_7_20 + a_5_11·a_7_19 + a_5_10·a_7_20 + a_5_10·a_7_19 + a_5_9·a_7_20
+ a_5_7·a_7_20 + b_2_42·a_1_0·a_7_20 + b_2_43·a_1_2·a_5_8 + b_2_44·a_1_0·a_3_6 + b_2_44·a_1_0·a_3_5 + c_4_7·a_1_0·a_7_19 + b_2_4·c_4_7·a_1_0·a_5_11 + b_2_42·c_4_7·a_1_0·a_3_6 + c_4_7·a_1_12·a_1_2·a_5_9 + b_2_4·c_4_72·a_1_22 + b_2_4·c_4_72·a_1_02 + c_4_72·a_1_1·a_1_23
- a_5_11·a_7_19 + a_5_10·a_7_19 + a_5_9·a_7_19 + a_5_7·a_7_19 + b_2_42·a_1_0·a_7_20
+ b_2_43·a_1_2·a_5_8 + b_2_43·a_1_0·a_5_7 + b_2_44·a_1_0·a_3_6 + b_2_44·a_1_0·a_3_5 + b_2_45·a_1_22 + c_4_7·a_1_0·a_7_20 + c_4_7·a_1_0·a_7_19 + b_2_4·c_4_7·a_1_2·a_5_8 + b_2_4·c_4_7·a_1_0·a_5_11 + b_2_43·c_4_7·a_1_02 + c_4_72·a_1_0·a_3_6 + c_4_72·a_1_1·a_1_23
- b_6_162 + b_2_44·c_4_7 + c_8_21·a_1_12·a_1_22
- b_6_162 + a_5_8·a_7_19 + a_5_7·a_7_19 + b_2_42·a_1_0·a_7_19 + b_2_43·a_1_2·a_5_8
+ b_2_45·a_1_22 + b_2_44·c_4_7 + c_4_7·a_1_0·a_7_19 + b_2_4·c_4_7·a_1_2·a_5_8 + b_2_43·c_4_7·a_1_22 + b_2_43·c_4_7·a_1_02 + c_8_21·a_1_1·a_1_23 + c_4_7·a_1_1·a_1_22·a_5_9 + b_2_4·c_4_72·a_1_22 + c_4_72·a_1_1·a_1_23
- a_5_10·a_7_19 + a_5_9·a_7_19 + a_5_8·a_7_19 + a_5_7·a_7_20 + b_2_42·a_1_0·a_7_19
+ b_2_43·a_1_2·a_5_9 + c_8_21·a_1_0·a_3_6 + c_4_7·a_1_0·a_7_19 + b_2_4·c_4_7·a_1_2·a_5_9 + b_2_4·c_4_7·a_1_0·a_5_11 + b_2_4·c_4_7·a_1_0·a_5_7 + b_2_42·c_4_7·a_1_0·a_3_6 + b_2_43·c_4_7·a_1_22 + c_4_72·a_1_0·a_3_6 + c_4_72·a_1_1·a_1_23 + c_4_72·a_1_12·a_1_22
- a_5_11·a_7_20 + a_5_11·a_7_19 + a_5_10·a_7_19 + a_5_8·a_7_19 + a_5_7·a_7_20
+ b_2_42·a_1_0·a_7_20 + b_2_42·a_1_0·a_7_19 + b_2_44·a_1_0·a_3_6 + b_2_45·a_1_02 + c_8_21·a_1_0·a_3_5 + c_4_7·a_1_0·a_7_19 + b_2_4·c_4_7·a_1_0·a_5_11 + b_2_4·c_4_7·a_1_0·a_5_7 + b_2_42·c_4_7·a_1_0·a_3_6 + b_2_43·c_4_7·a_1_22 + b_2_43·c_4_7·a_1_02 + c_4_72·a_1_12·a_1_22
- a_5_11·a_7_20 + a_5_11·a_7_19 + a_5_9·a_7_19 + a_5_7·a_7_20 + b_2_42·a_1_0·a_7_19
+ b_2_43·a_1_0·a_5_11 + b_2_43·a_1_0·a_5_7 + b_2_44·a_1_0·a_3_5 + b_2_45·a_1_02 + c_4_7·a_1_0·a_7_19 + b_2_4·c_8_21·a_1_02 + b_2_4·c_4_7·a_1_0·a_5_11 + b_2_4·c_4_7·a_1_0·a_5_7 + b_2_42·c_4_7·a_1_0·a_3_5 + b_2_43·c_4_7·a_1_22 + b_2_43·c_4_7·a_1_02 + c_4_7·a_1_1·a_1_22·a_5_9 + b_2_4·c_4_72·a_1_22 + c_4_72·a_1_12·a_1_22
- a_5_11·a_7_20 + a_5_10·a_7_19 + a_5_9·a_7_20 + a_5_8·a_7_19 + a_5_7·a_7_20
+ b_2_42·a_1_0·a_7_20 + b_2_42·a_1_0·a_7_19 + b_2_44·a_1_0·a_3_6 + b_2_45·a_1_22 + c_4_7·a_1_0·a_7_19 + b_2_4·c_8_21·a_1_22 + b_2_4·c_4_7·a_1_2·a_5_9 + b_2_4·c_4_7·a_1_0·a_5_7 + b_2_43·c_4_7·a_1_22 + c_4_72·a_1_0·a_3_6 + b_2_4·c_4_72·a_1_22 + b_2_4·c_4_72·a_1_02
- a_5_11·a_7_20 + a_5_11·a_7_19 + a_5_10·a_7_19 + a_5_9·a_7_19 + a_5_8·a_7_19 + a_3_6·a_9_27
+ b_2_42·a_1_0·a_7_20 + b_2_42·a_1_0·a_7_19 + b_2_43·a_1_2·a_5_9 + b_2_45·a_1_22 + c_4_7·a_1_0·a_7_19 + b_2_4·c_4_7·a_1_2·a_5_8 + b_2_4·c_4_7·a_1_0·a_5_11 + b_2_4·c_4_7·a_1_0·a_5_7 + b_2_42·c_4_7·a_1_0·a_3_6 + b_2_43·c_4_7·a_1_02 + c_4_7·a_1_1·a_1_22·a_5_9 + c_4_7·a_1_12·a_1_2·a_5_9 + c_4_72·a_1_0·a_3_6 + c_4_72·a_1_12·a_1_22
- a_5_11·a_7_20 + a_5_11·a_7_19 + a_5_9·a_7_19 + a_5_7·a_7_20 + a_5_7·a_7_19 + a_3_5·a_9_27
+ b_2_43·a_1_2·a_5_8 + b_2_43·a_1_0·a_5_7 + b_2_45·a_1_02 + b_2_4·c_4_7·a_1_2·a_5_8 + b_2_4·c_4_7·a_1_0·a_5_11 + b_2_4·c_4_7·a_1_0·a_5_7 + b_2_42·c_4_7·a_1_0·a_3_6 + b_2_42·c_4_7·a_1_0·a_3_5 + b_2_43·c_4_7·a_1_22 + b_2_43·c_4_7·a_1_02 + c_4_7·a_1_1·a_1_22·a_5_9 + b_2_4·c_4_72·a_1_22 + b_2_4·c_4_72·a_1_02 + c_4_72·a_1_1·a_1_23 + c_4_72·a_1_12·a_1_22
- a_5_9·a_7_19 + b_2_4·a_1_2·a_9_27 + b_2_42·a_1_0·a_7_19 + b_2_43·a_1_2·a_5_9
+ b_2_43·a_1_0·a_5_11 + b_2_43·a_1_0·a_5_7 + b_2_44·a_1_0·a_3_5 + c_4_7·a_1_0·a_7_19 + b_2_4·c_4_7·a_1_2·a_5_9 + b_2_4·c_4_7·a_1_2·a_5_8 + b_2_42·c_4_7·a_1_0·a_3_5 + b_2_43·c_4_7·a_1_22 + b_2_43·c_4_7·a_1_02 + c_4_7·a_1_1·a_1_22·a_5_9 + c_4_7·a_1_12·a_1_2·a_5_9 + b_2_4·c_4_72·a_1_22 + c_4_72·a_1_1·a_1_23
- a_5_10·a_7_19 + a_5_9·a_7_20 + a_5_8·a_7_19 + a_3_6·a_9_28 + b_2_43·a_1_2·a_5_9
+ b_2_45·a_1_22 + b_2_4·c_4_7·a_1_0·a_5_7 + b_2_42·c_4_7·a_1_0·a_3_6 + b_2_42·c_4_7·a_1_0·a_3_5 + b_2_43·c_4_7·a_1_22 + c_4_7·a_1_12·a_1_2·a_5_9 + c_4_72·a_1_0·a_3_6 + b_2_4·c_4_72·a_1_22 + c_4_72·a_1_1·a_1_23 + c_4_72·a_1_12·a_1_22
- b_6_162 + a_5_11·a_7_19 + a_5_8·a_7_19 + a_3_5·a_9_28 + b_2_42·a_1_0·a_7_19
+ b_2_45·a_1_22 + b_2_44·c_4_7 + b_2_4·c_4_7·a_1_0·a_5_11 + c_4_7·a_1_1·a_1_22·a_5_9 + b_2_4·c_4_72·a_1_22 + c_4_72·a_1_12·a_1_22
- a_5_10·a_7_19 + a_5_9·a_7_19 + a_5_8·a_7_19 + a_5_7·a_7_19 + b_2_4·a_1_0·a_9_28
+ b_2_42·a_1_0·a_7_19 + b_2_43·a_1_2·a_5_8 + b_2_45·a_1_02 + c_4_7·a_1_0·a_7_19 + b_2_4·c_4_7·a_1_2·a_5_8 + b_2_4·c_4_7·a_1_0·a_5_7 + b_2_42·c_4_7·a_1_0·a_3_5 + b_2_43·c_4_7·a_1_02 + c_4_7·a_1_1·a_1_22·a_5_9 + b_2_4·c_4_72·a_1_22 + b_2_4·c_4_72·a_1_02 + c_4_72·a_1_1·a_1_23
- b_6_16·a_7_19 + b_2_43·a_7_19 + b_2_44·a_5_11 + b_2_45·a_3_5 + b_2_46·a_1_2
+ b_2_43·a_1_22·a_5_9 + b_2_42·c_4_7·a_5_8 + b_2_43·c_4_7·a_3_6 + b_2_44·c_4_7·a_1_0 + b_2_4·c_4_7·a_1_22·a_5_9 + b_2_42·c_4_72·a_1_2
- b_6_16·a_7_20 + b_2_42·a_9_28 + b_2_42·a_9_27 + b_2_44·a_5_9 + b_2_45·a_3_5
+ b_2_46·a_1_2 + b_2_46·a_1_0 + b_2_42·c_8_21·a_1_2 + b_2_42·c_8_21·a_1_0 + b_2_42·c_4_7·a_5_11 + b_2_42·c_4_7·a_5_8 + b_2_43·c_4_7·a_3_5 + b_2_44·c_4_7·a_1_2 + b_2_44·c_4_7·a_1_0 + b_2_4·c_4_7·a_1_22·a_5_9 + c_4_7·a_1_12·a_1_22·a_5_9 + b_2_42·c_4_72·a_1_0
- a_7_202 + b_2_44·a_1_0·a_5_7 + b_2_45·a_1_0·a_3_6 + b_2_45·a_1_0·a_3_5
+ c_8_21·a_1_0·a_5_7 + b_2_4·c_8_21·a_1_0·a_3_6 + b_2_4·c_8_21·a_1_0·a_3_5 + b_2_44·c_4_7·a_1_22 + b_2_44·c_4_7·a_1_02 + c_4_72·a_1_0·a_5_7 + b_2_4·c_4_72·a_1_0·a_3_6 + b_2_4·c_4_72·a_1_0·a_3_5 + b_2_42·c_4_72·a_1_22 + c_4_73·a_1_02
- a_7_192 + b_2_46·a_1_22 + b_2_42·c_8_21·a_1_02 + b_2_42·c_4_7·a_1_0·a_5_7
+ b_2_43·c_4_7·a_1_0·a_3_6 + b_2_43·c_4_7·a_1_0·a_3_5 + c_4_7·c_8_21·a_1_02 + b_2_42·c_4_72·a_1_22 + b_2_42·c_4_72·a_1_02
- a_7_192 + a_5_8·a_9_27 + a_5_7·a_9_27 + b_2_43·a_1_0·a_7_20 + b_2_44·a_1_0·a_5_11
+ b_2_45·a_1_0·a_3_6 + b_2_45·a_1_0·a_3_5 + b_2_46·a_1_22 + b_2_4·c_4_7·a_1_0·a_7_20 + b_2_4·c_4_7·a_1_0·a_7_19 + b_2_42·c_4_7·a_1_2·a_5_9 + b_2_42·c_4_7·a_1_0·a_5_7 + b_2_43·c_4_7·a_1_0·a_3_6 + c_4_7·c_8_21·a_1_12 + c_4_72·a_1_1·a_5_8 + b_2_4·c_4_72·a_1_0·a_3_6 + b_2_4·c_4_72·a_1_0·a_3_5 + b_2_42·c_4_72·a_1_02 + c_4_73·a_1_1·a_1_2
- a_7_202 + a_5_11·a_9_27 + b_2_42·a_1_2·a_9_27 + b_2_44·a_1_2·a_5_8
+ b_2_44·a_1_0·a_5_11 + b_2_45·a_1_0·a_3_6 + b_2_46·a_1_22 + c_8_21·a_1_0·a_5_11 + c_8_21·a_1_0·a_5_7 + b_2_4·c_4_7·a_1_0·a_7_20 + b_2_42·c_4_7·a_1_0·a_5_7 + b_2_43·c_4_7·a_1_0·a_3_6 + b_2_43·c_4_7·a_1_0·a_3_5 + b_2_44·c_4_7·a_1_02 + c_4_7·c_8_21·a_1_12 + c_4_72·a_1_1·a_5_8 + c_4_72·a_1_0·a_5_7 + b_2_4·c_4_72·a_1_0·a_3_6 + b_2_42·c_4_72·a_1_22 + b_2_42·c_4_72·a_1_02 + c_4_73·a_1_1·a_1_2 + c_4_73·a_1_02
- a_5_10·a_9_27 + a_5_9·a_9_27 + b_2_42·a_1_2·a_9_27 + b_2_43·a_1_0·a_7_20
+ b_2_44·a_1_2·a_5_9 + b_2_46·a_1_22 + b_2_46·a_1_02 + b_2_4·c_8_21·a_1_0·a_3_6 + b_2_42·c_8_21·a_1_02 + b_2_42·c_4_7·a_1_0·a_5_11 + b_2_42·c_4_7·a_1_0·a_5_7 + b_2_44·c_4_7·a_1_22 + b_2_44·c_4_7·a_1_02 + c_4_7·c_8_21·a_1_12 + c_4_72·a_1_1·a_5_8 + c_4_73·a_1_1·a_1_2
- a_7_192 + a_5_9·a_9_27 + b_2_44·a_1_2·a_5_8 + b_2_44·a_1_0·a_5_7
+ b_2_45·a_1_0·a_3_5 + c_8_21·a_1_2·a_5_8 + c_8_21·a_1_1·a_5_9 + c_8_21·a_1_1·a_5_8 + c_4_7·a_1_2·a_9_27 + b_2_4·c_4_7·a_1_0·a_7_20 + b_2_4·c_4_7·a_1_0·a_7_19 + b_2_42·c_8_21·a_1_22 + b_2_42·c_4_7·a_1_2·a_5_8 + b_2_42·c_4_7·a_1_0·a_5_7 + b_2_43·c_4_7·a_1_0·a_3_5 + c_4_7·c_8_21·a_1_22 + c_4_7·c_8_21·a_1_1·a_1_2 + c_4_7·c_8_21·a_1_12 + c_4_72·a_1_1·a_5_9 + b_2_4·c_4_72·a_1_0·a_3_6 + b_2_4·c_4_72·a_1_0·a_3_5 + b_2_42·c_4_72·a_1_02 + c_4_73·a_1_1·a_1_2
- a_7_19·a_7_20 + a_5_7·a_9_28 + b_2_43·a_1_0·a_7_20 + b_2_43·a_1_0·a_7_19
+ b_2_44·a_1_0·a_5_7 + b_2_45·a_1_0·a_3_6 + b_2_45·a_1_0·a_3_5 + b_2_46·a_1_22 + b_2_4·c_4_7·a_1_0·a_7_20 + b_2_42·c_8_21·a_1_22 + b_2_42·c_8_21·a_1_02 + b_2_42·c_4_7·a_1_0·a_5_11 + b_2_42·c_4_7·a_1_0·a_5_7 + b_2_44·c_4_7·a_1_22 + b_2_44·c_4_7·a_1_02 + c_4_7·c_8_21·a_1_22 + c_4_7·c_8_21·a_1_1·a_1_2 + c_4_72·a_1_2·a_5_8 + c_4_72·a_1_1·a_5_9 + c_4_72·a_1_1·a_5_8 + c_4_72·a_1_0·a_5_7 + b_2_4·c_4_72·a_1_0·a_3_6 + b_2_4·c_4_72·a_1_0·a_3_5 + b_2_42·c_4_72·a_1_22 + b_2_42·c_4_72·a_1_02 + c_4_73·a_1_1·a_1_2 + c_4_73·a_1_02
- a_7_19·a_7_20 + a_5_9·a_9_28 + a_5_9·a_9_27 + b_2_43·a_1_0·a_7_20
+ b_2_43·a_1_0·a_7_19 + b_2_44·a_1_2·a_5_8 + b_2_45·a_1_0·a_3_6 + c_8_21·a_1_2·a_5_9 + c_8_21·a_1_2·a_5_8 + c_8_21·a_1_1·a_5_8 + c_8_21·a_1_0·a_5_11 + c_8_21·a_1_0·a_5_7 + b_2_4·c_8_21·a_1_0·a_3_6 + b_2_42·c_8_21·a_1_02 + b_2_42·c_4_7·a_1_2·a_5_9 + b_2_42·c_4_7·a_1_0·a_5_7 + b_2_43·c_4_7·a_1_0·a_3_6 + b_2_44·c_4_7·a_1_02 + c_4_7·c_8_21·a_1_22 + c_4_7·c_8_21·a_1_1·a_1_2 + c_4_7·c_8_21·a_1_12 + c_4_72·a_1_2·a_5_9 + c_4_72·a_1_2·a_5_8 + c_4_72·a_1_0·a_5_7 + b_2_42·c_4_72·a_1_22 + c_4_73·a_1_22 + c_4_73·a_1_02
- a_7_202 + a_5_9·a_9_27 + a_5_8·a_9_28 + a_5_7·a_9_27 + b_2_43·a_1_0·a_7_20
+ b_2_44·a_1_2·a_5_9 + b_2_46·a_1_22 + b_2_46·a_1_02 + c_8_21·a_1_1·a_5_9 + c_8_21·a_1_0·a_5_11 + c_8_21·a_1_0·a_5_7 + b_2_4·c_8_21·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_0·a_7_19 + b_2_42·c_8_21·a_1_22 + b_2_42·c_8_21·a_1_02 + b_2_42·c_4_7·a_1_2·a_5_9 + b_2_42·c_4_7·a_1_2·a_5_8 + b_2_42·c_4_7·a_1_0·a_5_11 + b_2_43·c_4_7·a_1_0·a_3_6 + b_2_44·c_4_7·a_1_22 + c_4_7·c_8_21·a_1_22 + c_4_7·c_8_21·a_1_1·a_1_2 + c_4_7·c_8_21·a_1_12 + c_4_72·a_1_0·a_5_7 + b_2_4·c_4_72·a_1_0·a_3_6 + b_2_4·c_4_72·a_1_0·a_3_5 + b_2_42·c_4_72·a_1_02 + c_4_73·a_1_22 + c_4_73·a_1_1·a_1_2 + c_4_73·a_1_02
- a_7_192 + a_5_9·a_9_27 + a_5_7·a_9_27 + b_2_42·a_1_2·a_9_27 + b_2_42·a_1_0·a_9_28
+ b_2_43·a_1_0·a_7_20 + b_2_43·a_1_0·a_7_19 + b_2_44·a_1_2·a_5_8 + b_2_44·a_1_0·a_5_11 + b_2_44·a_1_0·a_5_7 + b_2_45·a_1_0·a_3_6 + b_2_45·a_1_0·a_3_5 + b_2_46·a_1_02 + c_8_21·a_1_2·a_5_8 + c_8_21·a_1_1·a_5_9 + c_8_21·a_1_1·a_5_8 + c_8_21·a_1_0·a_5_7 + b_2_4·c_8_21·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_0·a_7_19 + b_2_42·c_8_21·a_1_22 + b_2_42·c_4_7·a_1_2·a_5_8 + b_2_42·c_4_7·a_1_0·a_5_11 + b_2_42·c_4_7·a_1_0·a_5_7 + b_2_43·c_4_7·a_1_0·a_3_5 + c_4_7·c_8_21·a_1_22 + c_4_7·c_8_21·a_1_1·a_1_2 + c_4_7·c_8_21·a_1_12 + c_4_72·a_1_1·a_5_9 + c_4_73·a_1_1·a_1_2
- a_7_202 + a_7_192 + a_5_11·a_9_28 + a_5_9·a_9_27 + a_5_7·a_9_27 + b_2_45·a_1_0·a_3_6
+ b_2_45·a_1_0·a_3_5 + b_2_46·a_1_22 + c_8_21·a_1_2·a_5_8 + c_8_21·a_1_1·a_5_8 + c_8_21·a_1_0·a_5_11 + c_8_21·a_1_0·a_5_7 + b_2_4·c_8_21·a_1_0·a_3_6 + b_2_4·c_4_7·a_1_0·a_7_20 + b_2_4·c_4_7·a_1_0·a_7_19 + b_2_42·c_8_21·a_1_22 + b_2_42·c_4_7·a_1_2·a_5_9 + b_2_42·c_4_7·a_1_0·a_5_11 + b_2_42·c_4_7·a_1_0·a_5_7 + b_2_43·c_4_7·a_1_0·a_3_6 + b_2_44·c_4_7·a_1_22 + b_2_44·c_4_7·a_1_02 + c_4_7·c_8_21·a_1_22 + c_4_7·c_8_21·a_1_12 + b_2_4·c_4_72·a_1_0·a_3_6 + b_2_4·c_4_72·a_1_0·a_3_5 + b_2_42·c_4_72·a_1_22
- a_7_202 + a_7_19·a_7_20 + a_5_10·a_9_28 + a_5_9·a_9_27 + b_2_42·a_1_2·a_9_27
+ b_2_43·a_1_0·a_7_19 + b_2_44·a_1_2·a_5_8 + b_2_44·a_1_0·a_5_11 + b_2_44·a_1_0·a_5_7 + b_2_45·a_1_0·a_3_6 + b_2_45·a_1_0·a_3_5 + b_2_46·a_1_02 + c_8_21·a_1_2·a_5_9 + c_8_21·a_1_2·a_5_8 + c_8_21·a_1_1·a_5_9 + c_8_21·a_1_1·a_5_8 + c_8_21·a_1_0·a_5_11 + b_2_4·c_4_7·a_1_0·a_7_20 + b_2_4·c_4_7·a_1_0·a_7_19 + b_2_42·c_8_21·a_1_22 + b_2_42·c_8_21·a_1_02 + b_2_42·c_4_7·a_1_2·a_5_9 + b_2_42·c_4_7·a_1_2·a_5_8 + b_2_43·c_4_7·a_1_0·a_3_6 + c_4_7·c_8_21·a_1_22 + c_4_7·c_8_21·a_1_12 + c_4_72·a_1_2·a_5_9 + c_4_72·a_1_2·a_5_8 + c_4_72·a_1_1·a_5_9 + b_2_4·c_4_72·a_1_0·a_3_5 + b_2_42·c_4_72·a_1_02 + c_4_73·a_1_22 + c_4_73·a_1_1·a_1_2
- a_7_202 + a_7_19·a_7_20 + a_7_192 + b_2_43·a_1_0·a_7_20 + b_2_43·a_1_0·a_7_19
+ b_2_44·a_1_2·a_5_9 + b_2_44·a_1_0·a_5_7 + b_2_46·a_1_22 + c_8_21·a_1_0·a_5_11 + c_4_7·a_1_0·a_9_28 + b_2_4·c_4_7·a_1_0·a_7_20 + b_2_42·c_4_7·a_1_2·a_5_9 + b_2_42·c_4_7·a_1_2·a_5_8 + b_2_42·c_4_7·a_1_0·a_5_11 + b_2_42·c_4_7·a_1_0·a_5_7 + b_2_43·c_4_7·a_1_0·a_3_6 + b_2_43·c_4_7·a_1_0·a_3_5 + b_2_44·c_4_7·a_1_02 + b_2_42·c_4_72·a_1_02
- b_6_16·a_9_27 + b_2_43·a_9_28 + b_2_44·a_7_20 + b_2_45·a_5_7 + b_2_46·a_3_6
+ b_2_47·a_1_2 + b_2_47·a_1_0 + b_2_42·a_1_02·a_9_28 + b_2_42·c_8_21·a_3_5 + b_2_43·c_8_21·a_1_2 + b_2_43·c_4_7·a_5_9 + b_2_43·c_4_7·a_5_8 + b_2_45·c_4_7·a_1_2 + b_2_43·c_4_72·a_1_2 + c_4_7·c_8_21·a_1_12·a_1_2 + c_4_72·a_1_1·a_1_2·a_5_9 + c_4_72·a_1_02·a_5_11
- b_6_16·a_9_28 + b_6_16·a_9_27 + b_2_43·a_9_27 + b_2_44·a_7_20 + b_2_44·a_7_19
+ b_2_45·a_5_9 + b_2_46·a_3_6 + b_2_46·a_3_5 + b_2_44·a_1_22·a_5_9 + b_2_4·c_8_21·a_5_8 + b_2_4·c_8_21·a_5_7 + b_2_42·c_8_21·a_3_5 + b_2_42·c_4_7·a_7_20 + b_2_43·c_4_7·a_5_8 + b_2_43·c_4_7·a_5_7 + b_2_44·c_4_7·a_3_6 + b_2_45·c_4_7·a_1_2 + b_2_45·c_4_7·a_1_0 + c_8_21·a_1_22·a_5_9 + c_8_21·a_1_1·a_1_2·a_5_9 + c_8_21·a_1_02·a_5_11 + c_4_7·a_1_02·a_9_28 + b_2_4·c_4_7·c_8_21·a_1_0 + b_2_4·c_4_72·a_5_8 + b_2_4·c_4_72·a_5_7 + b_2_42·c_4_72·a_3_6 + b_2_43·c_4_72·a_1_0 + c_4_72·a_1_22·a_5_9 + c_4_72·a_1_02·a_5_11 + b_2_4·c_4_73·a_1_0 + c_4_73·a_1_12·a_1_2
- a_7_20·a_9_28 + b_2_43·a_1_2·a_9_27 + b_2_44·a_1_0·a_7_19 + b_2_45·a_1_0·a_5_7
+ c_8_21·a_1_0·a_7_19 + b_2_4·c_8_21·a_1_2·a_5_9 + b_2_4·c_8_21·a_1_2·a_5_8 + b_2_4·c_8_21·a_1_0·a_5_11 + b_2_42·c_4_7·a_1_0·a_7_20 + b_2_43·c_8_21·a_1_22 + b_2_43·c_8_21·a_1_02 + b_2_44·c_4_7·a_1_0·a_3_6 + b_2_45·c_4_7·a_1_22 + b_2_45·c_4_7·a_1_02 + c_8_21·a_1_1·a_1_22·a_5_9 + c_4_72·a_1_0·a_7_20 + c_4_72·a_1_0·a_7_19 + b_2_4·c_4_72·a_1_2·a_5_9 + b_2_42·c_4_72·a_1_0·a_3_5 + b_2_43·c_4_72·a_1_22 + c_4_7·c_8_21·a_1_12·a_1_22 + c_4_73·a_1_0·a_3_6 + b_2_4·c_4_73·a_1_22 + c_4_73·a_1_1·a_1_23 + c_4_73·a_1_12·a_1_22
- a_7_20·a_9_27 + a_7_19·a_9_28 + a_7_19·a_9_27 + b_2_43·a_1_2·a_9_27
+ b_2_44·a_1_0·a_7_20 + b_2_44·a_1_0·a_7_19 + b_2_45·a_1_2·a_5_8 + b_2_45·a_1_0·a_5_11 + b_2_47·a_1_22 + c_8_21·a_1_0·a_7_20 + c_8_21·a_1_0·a_7_19 + b_2_4·c_8_21·a_1_0·a_5_7 + b_2_4·c_4_7·a_1_2·a_9_27 + b_2_42·c_8_21·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_0·a_7_19 + b_2_43·c_8_21·a_1_02 + b_2_43·c_4_7·a_1_0·a_5_7 + b_2_44·c_4_7·a_1_0·a_3_6 + b_2_44·c_4_7·a_1_0·a_3_5 + b_2_45·c_4_7·a_1_22 + b_2_45·c_4_7·a_1_02 + c_4_7·c_8_21·a_1_0·a_3_6 + c_4_7·c_8_21·a_1_0·a_3_5 + b_2_4·c_4_7·c_8_21·a_1_22 + b_2_4·c_4_7·c_8_21·a_1_02 + b_2_4·c_4_72·a_1_0·a_5_11 + b_2_42·c_4_72·a_1_0·a_3_6 + b_2_43·c_4_72·a_1_22 + b_2_43·c_4_72·a_1_02 + c_4_7·c_8_21·a_1_1·a_1_23 + c_4_72·a_1_12·a_1_2·a_5_9 + b_2_4·c_4_73·a_1_22 + b_2_4·c_4_73·a_1_02 + c_4_73·a_1_1·a_1_23
- a_7_19·a_9_27 + b_2_43·a_1_0·a_9_28 + b_2_44·a_1_0·a_7_20 + b_2_45·a_1_2·a_5_8
+ b_2_45·a_1_0·a_5_11 + b_2_46·a_1_0·a_3_6 + b_2_46·a_1_0·a_3_5 + b_2_47·a_1_22 + b_2_47·a_1_02 + c_8_21·a_1_0·a_7_19 + b_2_4·c_8_21·a_1_0·a_5_11 + b_2_4·c_8_21·a_1_0·a_5_7 + b_2_4·c_4_7·a_1_2·a_9_27 + b_2_42·c_8_21·a_1_0·a_3_6 + b_2_42·c_8_21·a_1_0·a_3_5 + b_2_42·c_4_7·a_1_0·a_7_20 + b_2_42·c_4_7·a_1_0·a_7_19 + b_2_43·c_4_7·a_1_2·a_5_9 + b_2_44·c_4_7·a_1_0·a_3_6 + b_2_44·c_4_7·a_1_0·a_3_5 + b_2_45·c_4_7·a_1_22 + b_2_45·c_4_7·a_1_02 + b_2_4·c_4_72·a_1_0·a_5_7 + b_2_43·c_4_72·a_1_22 + c_4_7·c_8_21·a_1_1·a_1_23 + c_4_7·c_8_21·a_1_12·a_1_22 + b_2_4·c_4_73·a_1_02 + c_4_73·a_1_1·a_1_23 + c_4_73·a_1_12·a_1_22
- a_7_20·a_9_27 + a_7_19·a_9_27 + b_2_43·a_1_2·a_9_27 + b_2_44·a_1_0·a_7_20
+ b_2_45·a_1_2·a_5_9 + b_2_45·a_1_2·a_5_8 + b_2_45·a_1_0·a_5_7 + b_2_46·a_1_0·a_3_5 + c_8_21·a_1_0·a_7_20 + c_8_21·a_1_0·a_7_19 + b_2_4·c_8_21·a_1_2·a_5_8 + b_2_4·c_8_21·a_1_0·a_5_7 + b_2_4·c_4_7·a_1_2·a_9_27 + b_2_4·c_4_7·a_1_0·a_9_28 + b_2_42·c_8_21·a_1_0·a_3_6 + b_2_43·c_8_21·a_1_02 + b_2_43·c_4_7·a_1_2·a_5_8 + b_2_43·c_4_7·a_1_0·a_5_11 + b_2_43·c_4_7·a_1_0·a_5_7 + b_2_45·c_4_7·a_1_22 + b_2_45·c_4_7·a_1_02 + c_8_21·a_1_1·a_1_22·a_5_9 + b_2_4·c_4_7·c_8_21·a_1_22 + b_2_4·c_4_72·a_1_0·a_5_11 + b_2_43·c_4_72·a_1_22 + c_4_7·c_8_21·a_1_1·a_1_23 + c_4_72·a_1_12·a_1_2·a_5_9 + b_2_4·c_4_73·a_1_02
- a_9_272 + b_2_48·a_1_02 + b_2_42·c_8_21·a_1_0·a_5_7 + b_2_43·c_8_21·a_1_0·a_3_6
+ b_2_43·c_8_21·a_1_0·a_3_5 + b_2_44·c_8_21·a_1_22 + b_2_44·c_8_21·a_1_02 + b_2_44·c_4_7·a_1_0·a_5_7 + b_2_45·c_4_7·a_1_0·a_3_6 + b_2_45·c_4_7·a_1_0·a_3_5 + c_8_212·a_1_02 + b_2_42·c_4_7·c_8_21·a_1_22 + b_2_42·c_4_7·c_8_21·a_1_02 + b_2_44·c_4_72·a_1_22 + c_4_72·c_8_21·a_1_12 + b_2_42·c_4_73·a_1_02 + c_4_74·a_1_12
- a_9_282 + b_2_42·c_8_21·a_1_0·a_5_7 + b_2_43·c_8_21·a_1_0·a_3_6
+ b_2_43·c_8_21·a_1_0·a_3_5 + b_2_44·c_8_21·a_1_02 + b_2_46·c_4_7·a_1_22 + b_2_46·c_4_7·a_1_02 + c_8_212·a_1_22 + c_8_212·a_1_12 + c_4_7·c_8_21·a_1_0·a_5_7 + b_2_4·c_4_7·c_8_21·a_1_0·a_3_6 + b_2_4·c_4_7·c_8_21·a_1_0·a_3_5 + b_2_42·c_4_7·c_8_21·a_1_22 + b_2_42·c_4_7·c_8_21·a_1_02 + b_2_44·c_4_72·a_1_22 + b_2_42·c_4_73·a_1_22 + b_2_42·c_4_73·a_1_02 + c_4_74·a_1_22 + c_4_74·a_1_12
- a_9_27·a_9_28 + b_2_45·a_1_0·a_7_20 + b_2_46·a_1_0·a_5_7 + b_2_47·a_1_0·a_3_6
+ b_2_47·a_1_0·a_3_5 + b_2_48·a_1_02 + c_8_21·a_1_2·a_9_27 + c_8_21·a_1_0·a_9_28 + b_2_4·c_8_21·a_1_0·a_7_19 + b_2_42·c_8_21·a_1_0·a_5_11 + b_2_42·c_8_21·a_1_0·a_5_7 + b_2_42·c_4_7·a_1_2·a_9_27 + b_2_43·c_8_21·a_1_0·a_3_6 + b_2_43·c_8_21·a_1_0·a_3_5 + b_2_43·c_4_7·a_1_0·a_7_19 + b_2_44·c_8_21·a_1_22 + b_2_44·c_4_7·a_1_2·a_5_9 + b_2_44·c_4_7·a_1_0·a_5_11 + b_2_45·c_4_7·a_1_0·a_3_5 + c_4_7·c_8_21·a_1_1·a_5_8 + c_4_72·a_1_2·a_9_27 + b_2_4·c_4_7·c_8_21·a_1_0·a_3_6 + b_2_4·c_4_72·a_1_0·a_7_20 + b_2_42·c_4_7·c_8_21·a_1_02 + b_2_42·c_4_72·a_1_2·a_5_9 + b_2_42·c_4_72·a_1_0·a_5_7 + b_2_43·c_4_72·a_1_0·a_3_5 + b_2_44·c_4_72·a_1_22 + b_2_44·c_4_72·a_1_02 + c_4_72·c_8_21·a_1_1·a_1_2 + c_4_72·c_8_21·a_1_12 + c_4_73·a_1_1·a_5_8 + b_2_4·c_4_73·a_1_0·a_3_6 + b_2_42·c_4_73·a_1_22 + b_2_42·c_4_73·a_1_02 + c_4_74·a_1_1·a_1_2 + c_4_74·a_1_12
Data used for Benson′s test
- Benson′s completion test succeeded in degree 18.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_7, a Duflot regular element of degree 4
- c_8_21, a Duflot regular element of degree 8
- b_2_4, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 9, 11].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_4 → 0, an element of degree 2
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- c_4_7 → c_1_04, an element of degree 4
- a_5_7 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- a_5_9 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- a_5_11 → 0, an element of degree 5
- b_6_16 → 0, an element of degree 6
- a_7_19 → 0, an element of degree 7
- a_7_20 → 0, an element of degree 7
- c_8_21 → c_1_18, an element of degree 8
- a_9_27 → 0, an element of degree 9
- a_9_28 → 0, an element of degree 9
Restriction map to a maximal el. ab. subgp. of rank 3
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- b_2_4 → c_1_22, an element of degree 2
- a_3_5 → 0, an element of degree 3
- a_3_6 → 0, an element of degree 3
- c_4_7 → c_1_04, an element of degree 4
- a_5_7 → 0, an element of degree 5
- a_5_8 → 0, an element of degree 5
- a_5_9 → 0, an element of degree 5
- a_5_10 → 0, an element of degree 5
- a_5_11 → 0, an element of degree 5
- b_6_16 → c_1_02·c_1_24, an element of degree 6
- a_7_19 → 0, an element of degree 7
- a_7_20 → 0, an element of degree 7
- c_8_21 → c_1_28 + c_1_14·c_1_24 + c_1_18 + c_1_04·c_1_24, an element of degree 8
- a_9_27 → 0, an element of degree 9
- a_9_28 → 0, an element of degree 9
|