Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 387 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has 2 conjugacy classes of maximal elementary abelian subgroups, which are of rank 3 and 4, respectively.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t2 − t + 1 |
| (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-6,-4,-4. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 13 minimal generators of maximal degree 6:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- b_3_5, an element of degree 3
- b_3_6, an element of degree 3
- b_3_7, an element of degree 3
- b_4_10, an element of degree 4
- b_4_11, an element of degree 4
- c_4_12, a Duflot regular element of degree 4
- c_4_13, a Duflot regular element of degree 4
- b_5_21, an element of degree 5
- b_6_29, an element of degree 6
Ring relations
There are 52 minimal relations of maximal degree 12:
- b_1_0·b_1_1
- b_1_0·b_1_2
- a_2_4·b_1_2
- a_2_4·b_1_0
- a_2_4·b_1_1
- a_2_42
- b_1_2·b_3_5
- b_1_1·b_3_5
- b_1_2·b_3_6
- b_1_1·b_3_6
- b_1_0·b_3_7 + b_1_0·b_3_6
- a_2_4·b_3_5
- a_2_4·b_3_6
- a_2_4·b_3_7
- b_1_02·b_3_6 + b_4_10·b_1_0
- b_4_11·b_1_0
- b_1_22·b_3_7 + b_1_1·b_1_2·b_3_7 + b_4_11·b_1_1 + b_4_10·b_1_2
- b_3_5·b_3_7 + b_3_5·b_3_6
- b_3_6·b_3_7 + b_3_62
- b_3_52 + c_4_12·b_1_02
- a_2_4·b_4_10
- b_3_62 + b_4_10·b_1_02 + c_4_13·b_1_02
- b_3_72 + b_3_62 + b_4_11·b_1_22 + b_4_10·b_1_22 + b_4_10·b_1_1·b_1_2
+ b_4_10·b_1_12 + c_4_13·b_1_12 + c_4_12·b_1_22
- a_2_4·b_4_11
- b_1_2·b_5_21 + b_4_10·b_1_22 + b_4_10·b_1_1·b_1_2 + c_4_13·b_1_22
+ c_4_13·b_1_1·b_1_2 + c_4_12·b_1_22
- b_3_62 + b_3_5·b_3_6 + b_1_0·b_5_21
- b_1_1·b_5_21 + b_4_10·b_1_1·b_1_2 + b_4_10·b_1_12 + c_4_13·b_1_1·b_1_2
+ c_4_13·b_1_12 + c_4_12·b_1_1·b_1_2
- b_4_10·b_3_6 + b_4_10·b_1_03 + c_4_13·b_1_03
- b_4_11·b_3_5
- b_4_11·b_3_6
- a_2_4·b_5_21
- b_1_02·b_5_21 + b_4_10·b_3_5 + b_4_10·b_1_03 + c_4_13·b_1_03
- b_6_29·b_1_2 + b_4_11·b_3_7 + b_4_11·b_1_12·b_1_2 + b_4_10·b_1_23
+ b_4_10·b_1_1·b_1_22 + b_4_10·b_1_12·b_1_2 + c_4_13·b_1_23 + c_4_13·b_1_12·b_1_2 + c_4_12·b_1_23 + c_4_12·b_1_1·b_1_22 + c_4_12·b_1_12·b_1_2
- b_6_29·b_1_0 + b_4_10·b_3_5 + b_4_10·b_1_03 + c_4_13·b_1_03 + c_4_12·b_1_03
- b_6_29·b_1_1 + b_4_11·b_1_23 + b_4_11·b_1_1·b_1_22 + b_4_11·b_1_13 + b_4_10·b_3_7
+ b_4_10·b_1_23 + b_4_10·b_1_1·b_1_22 + b_4_10·b_1_12·b_1_2 + b_4_10·b_1_03 + c_4_13·b_1_1·b_1_22 + c_4_13·b_1_12·b_1_2 + c_4_13·b_1_03 + c_4_12·b_1_23 + c_4_12·b_1_12·b_1_2 + c_4_12·b_1_13
- b_4_11·b_1_1·b_1_23 + b_4_11·b_1_12·b_1_22 + b_4_11·b_1_13·b_1_2
+ b_4_11·b_1_14 + b_4_112 + b_4_10·b_1_1·b_1_23 + b_4_10·b_1_12·b_1_22 + b_4_10·b_1_13·b_1_2 + b_4_10·b_1_14 + b_4_10·b_1_04 + b_4_102 + c_4_13·b_1_24 + c_4_13·b_1_12·b_1_22 + c_4_13·b_1_04 + c_4_12·b_1_24 + c_4_12·b_1_14
- b_4_11·b_1_2·b_3_7 + b_4_11·b_1_12·b_1_22 + b_4_11·b_1_14 + b_4_10·b_1_2·b_3_7
+ b_4_10·b_1_12·b_1_22 + b_4_10·b_1_14 + b_4_10·b_1_04 + b_4_10·b_4_11 + b_4_102 + c_4_13·b_1_1·b_1_23 + c_4_13·b_1_12·b_1_22 + c_4_13·b_1_04 + c_4_12·b_1_1·b_1_23 + c_4_12·b_1_12·b_1_22 + c_4_12·b_1_13·b_1_2 + c_4_12·b_1_14
- b_4_11·b_1_1·b_3_7 + b_4_11·b_1_1·b_1_23 + b_4_11·b_1_13·b_1_2 + b_4_11·b_1_14
+ b_4_10·b_1_2·b_3_7 + b_4_10·b_1_1·b_1_23 + b_4_10·b_1_12·b_1_22 + b_4_10·b_1_14 + b_4_10·b_1_04 + b_4_102 + c_4_13·b_1_12·b_1_22 + c_4_13·b_1_13·b_1_2 + c_4_13·b_1_04 + c_4_12·b_1_1·b_1_23 + c_4_12·b_1_12·b_1_22 + c_4_12·b_1_14
- b_3_5·b_5_21 + b_4_10·b_1_0·b_3_5 + c_4_13·b_1_0·b_3_5 + c_4_12·b_1_0·b_3_6
- b_3_6·b_5_21 + b_4_10·b_1_0·b_3_5 + b_4_10·b_1_04 + c_4_13·b_1_0·b_3_6
+ c_4_13·b_1_0·b_3_5 + c_4_13·b_1_04
- b_3_7·b_5_21 + b_4_10·b_1_2·b_3_7 + b_4_10·b_1_1·b_3_7 + b_4_10·b_1_0·b_3_5
+ b_4_10·b_1_04 + c_4_13·b_1_2·b_3_7 + c_4_13·b_1_1·b_3_7 + c_4_13·b_1_0·b_3_6 + c_4_13·b_1_0·b_3_5 + c_4_13·b_1_04 + c_4_12·b_1_2·b_3_7
- a_2_4·b_6_29
- b_4_11·b_5_21 + b_4_10·b_4_11·b_1_2 + b_4_10·b_4_11·b_1_1 + b_4_11·c_4_13·b_1_2
+ b_4_11·c_4_13·b_1_1 + b_4_11·c_4_12·b_1_2
- b_4_10·b_5_21 + b_4_10·b_1_02·b_3_5 + b_4_102·b_1_2 + b_4_102·b_1_1 + b_4_102·b_1_0
+ c_4_13·b_1_02·b_3_5 + b_4_10·c_4_13·b_1_2 + b_4_10·c_4_13·b_1_1 + b_4_10·c_4_13·b_1_0 + b_4_10·c_4_12·b_1_2
- b_6_29·b_3_5 + b_4_10·b_1_02·b_3_5 + c_4_13·b_1_02·b_3_5 + c_4_12·b_1_02·b_3_5
+ b_4_10·c_4_12·b_1_0
- b_6_29·b_3_6 + b_4_10·b_1_02·b_3_5 + b_4_102·b_1_0 + c_4_13·b_1_02·b_3_5
+ b_4_10·c_4_13·b_1_0 + b_4_10·c_4_12·b_1_0
- b_6_29·b_3_7 + b_4_11·b_1_13·b_1_22 + b_4_112·b_1_2 + b_4_112·b_1_1
+ b_4_10·b_1_14·b_1_2 + b_4_10·b_1_02·b_3_5 + b_4_10·b_4_11·b_1_2 + b_4_102·b_1_2 + b_4_102·b_1_1 + b_4_102·b_1_0 + c_4_13·b_1_1·b_1_24 + c_4_13·b_1_14·b_1_2 + c_4_13·b_1_02·b_3_5 + c_4_12·b_1_1·b_1_24 + c_4_12·b_1_12·b_3_7 + c_4_12·b_1_12·b_1_23 + c_4_12·b_1_13·b_1_22 + b_4_11·c_4_13·b_1_1 + b_4_11·c_4_12·b_1_2 + b_4_11·c_4_12·b_1_1 + b_4_10·c_4_13·b_1_2 + b_4_10·c_4_13·b_1_1 + b_4_10·c_4_13·b_1_0 + b_4_10·c_4_12·b_1_2 + b_4_10·c_4_12·b_1_0
- b_5_212 + b_4_102·b_1_22 + b_4_102·b_1_12 + b_4_102·b_1_02
+ b_4_10·c_4_12·b_1_02 + c_4_132·b_1_22 + c_4_132·b_1_12 + c_4_132·b_1_02 + c_4_12·c_4_13·b_1_02 + c_4_122·b_1_22
- b_4_11·b_1_16 + b_4_11·b_6_29 + b_4_112·b_1_22 + b_4_112·b_1_12
+ b_4_10·b_1_12·b_1_24 + b_4_10·b_1_13·b_1_23 + b_4_10·b_1_16 + b_4_10·b_4_11·b_1_12 + b_4_102·b_1_1·b_1_2 + b_4_102·b_1_12 + c_4_13·b_1_26 + c_4_13·b_1_1·b_1_25 + c_4_13·b_1_12·b_1_24 + c_4_13·b_1_14·b_1_22 + c_4_12·b_1_26 + c_4_12·b_1_12·b_1_2·b_3_7 + c_4_12·b_1_15·b_1_2 + c_4_12·b_1_16 + b_4_11·c_4_13·b_1_22 + b_4_11·c_4_13·b_1_1·b_1_2 + b_4_11·c_4_12·b_1_22 + b_4_11·c_4_12·b_1_1·b_1_2 + b_4_11·c_4_12·b_1_12 + b_4_10·c_4_13·b_1_22 + b_4_10·c_4_13·b_1_1·b_1_2
- b_4_10·b_1_12·b_1_2·b_3_7 + b_4_10·b_1_12·b_1_24 + b_4_10·b_1_13·b_3_7
+ b_4_10·b_1_13·b_1_23 + b_4_10·b_1_14·b_1_22 + b_4_10·b_1_15·b_1_2 + b_4_10·b_1_03·b_3_5 + b_4_10·b_6_29 + b_4_10·b_4_11·b_1_22 + b_4_10·b_4_11·b_1_1·b_1_2 + b_4_102·b_1_02 + c_4_13·b_1_26 + c_4_13·b_1_1·b_1_25 + c_4_13·b_1_13·b_1_23 + c_4_13·b_1_15·b_1_2 + c_4_13·b_1_03·b_3_5 + c_4_12·b_1_26 + c_4_12·b_1_12·b_1_24 + c_4_12·b_1_13·b_3_7 + b_4_11·c_4_12·b_1_22 + b_4_11·c_4_12·b_1_1·b_1_2 + b_4_10·c_4_13·b_1_22 + b_4_10·c_4_13·b_1_1·b_1_2 + b_4_10·c_4_13·b_1_02 + b_4_10·c_4_12·b_1_22 + b_4_10·c_4_12·b_1_1·b_1_2 + b_4_10·c_4_12·b_1_12 + b_4_10·c_4_12·b_1_02
- b_6_29·b_5_21 + b_4_10·b_4_11·b_3_7 + b_4_10·b_4_11·b_1_23
+ b_4_10·b_4_11·b_1_1·b_1_22 + b_4_10·b_4_11·b_1_12·b_1_2 + b_4_10·b_4_11·b_1_13 + b_4_102·b_3_7 + b_4_11·c_4_13·b_3_7 + b_4_11·c_4_13·b_1_23 + b_4_11·c_4_13·b_1_1·b_1_22 + b_4_11·c_4_13·b_1_12·b_1_2 + b_4_11·c_4_13·b_1_13 + b_4_11·c_4_12·b_3_7 + b_4_11·c_4_12·b_1_12·b_1_2 + b_4_10·c_4_13·b_3_7 + b_4_10·c_4_13·b_1_23 + b_4_10·c_4_13·b_1_1·b_1_22 + b_4_10·c_4_12·b_3_5 + b_4_10·c_4_12·b_1_23 + b_4_10·c_4_12·b_1_12·b_1_2 + b_4_10·c_4_12·b_1_13 + c_4_132·b_1_23 + c_4_132·b_1_1·b_1_22 + c_4_12·c_4_13·b_1_23 + c_4_12·c_4_13·b_1_1·b_1_22 + c_4_12·c_4_13·b_1_12·b_1_2 + c_4_12·c_4_13·b_1_13 + c_4_122·b_1_23 + c_4_122·b_1_1·b_1_22 + c_4_122·b_1_12·b_1_2
- b_6_292 + b_4_112·b_1_14 + b_4_113 + b_4_10·b_4_11·b_1_12·b_1_22
+ b_4_10·b_4_11·b_1_13·b_1_2 + b_4_102·b_1_24 + b_4_102·b_1_12·b_1_22 + b_4_102·b_1_13·b_1_2 + b_4_103 + b_4_11·c_4_13·b_1_12·b_1_22 + b_4_11·c_4_13·b_1_13·b_1_2 + b_4_11·c_4_13·b_1_14 + b_4_112·c_4_12 + b_4_10·c_4_13·b_1_24 + b_4_10·c_4_13·b_1_1·b_1_23 + b_4_10·c_4_13·b_1_12·b_1_22 + b_4_10·c_4_13·b_1_13·b_1_2 + b_4_10·c_4_13·b_1_14 + b_4_10·c_4_13·b_1_04 + b_4_10·c_4_12·b_1_24 + b_4_10·c_4_12·b_1_13·b_1_2 + b_4_10·c_4_12·b_1_04 + c_4_132·b_1_24 + c_4_132·b_1_12·b_1_22 + c_4_132·b_1_04 + c_4_12·c_4_13·b_1_14 + c_4_12·c_4_13·b_1_04 + c_4_122·b_1_24 + c_4_122·b_1_12·b_1_22 + c_4_122·b_1_14 + c_4_122·b_1_04
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_12, a Duflot regular element of degree 4
- c_4_13, a Duflot regular element of degree 4
- b_1_22 + b_1_1·b_1_2 + b_1_12 + b_1_02, an element of degree 2
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 2, 6, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_3_7 → 0, an element of degree 3
- b_4_10 → 0, an element of degree 4
- b_4_11 → 0, an element of degree 4
- c_4_12 → c_1_14 + c_1_04, an element of degree 4
- c_4_13 → c_1_14, an element of degree 4
- b_5_21 → 0, an element of degree 5
- b_6_29 → 0, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_3_5 → c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_3_6 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_3_7 → c_1_1·c_1_22 + c_1_12·c_1_2, an element of degree 3
- b_4_10 → c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
- b_4_11 → 0, an element of degree 4
- c_4_12 → c_1_12·c_1_22 + c_1_14 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_13 → c_1_1·c_1_23 + c_1_14, an element of degree 4
- b_5_21 → c_1_0·c_1_1·c_1_23 + c_1_0·c_1_12·c_1_22 + c_1_02·c_1_1·c_1_22
+ c_1_02·c_1_12·c_1_2, an element of degree 5
- b_6_29 → c_1_12·c_1_24 + c_1_14·c_1_22 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_23
+ c_1_02·c_1_24 + c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_22 + c_1_04·c_1_22, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- a_2_4 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_3_7 → c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_0·c_1_32
+ c_1_02·c_1_3, an element of degree 3
- b_4_10 → c_1_1·c_1_33 + c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_12·c_1_32
+ c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_23 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- b_4_11 → c_1_1·c_1_33 + c_1_12·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_2·c_1_3, an element of degree 4
- c_4_12 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_23 + c_1_12·c_1_32 + c_1_14 + c_1_0·c_1_33
+ c_1_0·c_1_23 + c_1_02·c_1_2·c_1_3 + c_1_04, an element of degree 4
- c_4_13 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_23 + c_1_12·c_1_32 + c_1_14 + c_1_0·c_1_33
+ c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_02·c_1_32 + c_1_02·c_1_22, an element of degree 4
- b_5_21 → c_1_1·c_1_34 + c_1_1·c_1_2·c_1_33 + c_1_12·c_1_33 + c_1_12·c_1_2·c_1_32
+ c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_0·c_1_34 + c_1_0·c_1_22·c_1_32 + c_1_02·c_1_22·c_1_3 + c_1_04·c_1_3, an element of degree 5
- b_6_29 → c_1_1·c_1_35 + c_1_1·c_1_2·c_1_34 + c_1_1·c_1_24·c_1_3 + c_1_1·c_1_25
+ c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32 + c_1_12·c_1_24 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3 + c_1_14·c_1_32 + c_1_0·c_1_35 + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_23·c_1_32 + c_1_0·c_1_25 + c_1_0·c_1_1·c_1_34 + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_33 + c_1_0·c_1_12·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_23 + c_1_02·c_1_2·c_1_33 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_1·c_1_33 + c_1_02·c_1_1·c_1_2·c_1_32 + c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_3 + c_1_02·c_1_12·c_1_22 + c_1_03·c_1_2·c_1_32 + c_1_03·c_1_22·c_1_3 + c_1_04·c_1_32 + c_1_04·c_1_22, an element of degree 6
|