Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 388 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 3.
- Its center has rank 2.
- It has 3 conjugacy classes of maximal elementary abelian subgroups, which are all of rank 3.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 3 and depth 3.
- The depth exceeds the Duflot bound, which is 2.
- The Poincaré series is
( − 1) · (t2 − t + 1) · (t2 + t + 1) |
| (t − 1)3 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-∞,-3. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 5:
- b_1_0, an element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_1, a nilpotent element of degree 2
- b_3_5, an element of degree 3
- b_3_6, an element of degree 3
- b_4_7, an element of degree 4
- b_4_8, an element of degree 4
- c_4_9, a Duflot regular element of degree 4
- c_4_10, a Duflot regular element of degree 4
- b_5_16, an element of degree 5
Ring relations
There are 35 minimal relations of maximal degree 10:
- b_1_0·b_1_1
- b_1_0·b_1_2
- a_2_1·b_1_2
- a_2_1·b_1_0
- b_1_12·b_1_2 + a_2_1·b_1_1
- a_2_12
- b_1_2·b_3_5
- b_1_1·b_3_5 + a_2_1·b_1_12
- b_1_2·b_3_6
- b_1_1·b_3_6
- a_2_1·b_3_5
- a_2_1·b_3_6
- b_4_7·b_1_0
- b_4_8·b_1_0
- b_1_15 + b_4_8·b_1_1 + b_4_7·b_1_2 + b_4_7·b_1_1
- b_3_52 + c_4_9·b_1_02
- b_3_62 + b_3_52 + c_4_10·b_1_02
- b_4_7·b_1_1·b_1_2 + a_2_1·b_4_7
- a_2_1·b_1_14 + a_2_1·b_4_8 + a_2_1·b_4_7
- b_1_2·b_5_16 + b_4_7·b_1_22 + a_2_1·b_4_7 + c_4_10·b_1_22
- b_3_62 + b_3_5·b_3_6 + b_3_52 + b_1_0·b_5_16
- b_1_1·b_5_16 + b_4_7·b_1_12 + a_2_1·b_1_14 + c_4_10·b_1_1·b_1_2
- b_4_7·b_3_5 + a_2_1·b_4_7·b_1_1
- b_4_7·b_3_6
- b_4_8·b_3_5 + a_2_1·b_4_8·b_1_1
- b_4_8·b_3_6
- a_2_1·b_5_16 + a_2_1·b_4_7·b_1_1
- b_4_7·b_1_14 + b_4_72 + a_2_1·b_4_8·b_1_12 + a_2_1·b_4_7·b_1_12 + c_4_9·b_1_14
- b_4_7·b_1_14 + b_4_7·b_4_8 + b_4_72 + a_2_1·b_4_7·b_1_12 + c_4_10·b_1_1·b_1_23
+ a_2_1·c_4_9·b_1_12
- b_4_8·b_1_14 + b_4_82 + b_4_7·b_1_24 + b_4_7·b_1_14 + b_4_72
+ a_2_1·b_4_7·b_1_12 + c_4_10·b_1_24
- b_3_5·b_5_16 + a_2_1·b_4_7·b_1_12 + c_4_10·b_1_0·b_3_5 + c_4_9·b_1_0·b_3_6
- b_3_6·b_5_16 + c_4_10·b_1_0·b_3_6 + c_4_10·b_1_0·b_3_5 + c_4_9·b_1_0·b_3_5
- b_4_7·b_5_16 + b_4_72·b_1_1 + a_2_1·b_4_7·b_1_13 + b_4_7·c_4_10·b_1_2
- b_4_8·b_5_16 + c_4_10·b_1_1·b_1_24 + b_4_8·c_4_10·b_1_2 + b_4_8·c_4_9·b_1_1
+ b_4_7·c_4_9·b_1_2 + b_4_7·c_4_9·b_1_1 + a_2_1·c_4_9·b_1_13
- b_5_162 + b_4_72·b_1_12 + c_4_102·b_1_22 + c_4_102·b_1_02
+ c_4_9·c_4_10·b_1_02 + c_4_92·b_1_02
Data used for Benson′s test
- Benson′s completion test succeeded in degree 10.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_9, a Duflot regular element of degree 4
- c_4_10, a Duflot regular element of degree 4
- b_1_22 + b_1_12 + b_1_02, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, -1, 7].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -3].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_4_7 → 0, an element of degree 4
- b_4_8 → 0, an element of degree 4
- c_4_9 → c_1_14 + c_1_04, an element of degree 4
- c_4_10 → c_1_14, an element of degree 4
- b_5_16 → 0, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → c_1_2, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_3_5 → c_1_1·c_1_22 + c_1_12·c_1_2 + c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_3_6 → c_1_0·c_1_22 + c_1_02·c_1_2, an element of degree 3
- b_4_7 → 0, an element of degree 4
- b_4_8 → 0, an element of degree 4
- c_4_9 → c_1_12·c_1_22 + c_1_14 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_10 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_16 → c_1_12·c_1_23 + c_1_14·c_1_2 + c_1_0·c_1_1·c_1_23 + c_1_0·c_1_12·c_1_22
+ c_1_02·c_1_23 + c_1_02·c_1_1·c_1_22 + c_1_02·c_1_12·c_1_2 + c_1_04·c_1_2, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → c_1_2, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_4_7 → 0, an element of degree 4
- b_4_8 → c_1_1·c_1_23 + c_1_12·c_1_22, an element of degree 4
- c_4_9 → c_1_1·c_1_23 + c_1_14 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- c_4_10 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_16 → c_1_12·c_1_23 + c_1_14·c_1_2, an element of degree 5
Restriction map to a maximal el. ab. subgp. of rank 3
- b_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_1 → 0, an element of degree 2
- b_3_5 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_4_7 → c_1_1·c_1_23 + c_1_12·c_1_22 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
- b_4_8 → c_1_24 + c_1_1·c_1_23 + c_1_12·c_1_22 + c_1_0·c_1_23 + c_1_02·c_1_22, an element of degree 4
- c_4_9 → c_1_1·c_1_23 + c_1_14 + c_1_0·c_1_23 + c_1_04, an element of degree 4
- c_4_10 → c_1_12·c_1_22 + c_1_14, an element of degree 4
- b_5_16 → c_1_1·c_1_24 + c_1_12·c_1_23 + c_1_0·c_1_24 + c_1_02·c_1_23, an element of degree 5
|