Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 391 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 4.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 4 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t6 − t5 + t4 + 1 |
| (t + 1) · (t − 1)4 · (t2 + 1)2 |
- The a-invariants are -∞,-∞,-3,-5,-4. They were obtained using the first, the second, the second power of the third, and the fourth filter regular parameter of the Benson test.
Ring generators
The cohomology ring has 11 minimal generators of maximal degree 6:
- a_1_0, a nilpotent element of degree 1
- b_1_1, an element of degree 1
- b_1_2, an element of degree 1
- a_2_4, a nilpotent element of degree 2
- a_3_5, a nilpotent element of degree 3
- b_3_6, an element of degree 3
- b_4_8, an element of degree 4
- b_4_9, an element of degree 4
- c_4_10, a Duflot regular element of degree 4
- c_4_11, a Duflot regular element of degree 4
- b_6_25, an element of degree 6
Ring relations
There are 33 minimal relations of maximal degree 12:
- a_1_0·b_1_1
- a_1_0·b_1_2
- a_2_4·b_1_2
- a_2_4·a_1_0
- a_2_4·b_1_1 + a_1_03
- a_2_42
- b_1_2·a_3_5
- b_1_1·a_3_5
- a_1_0·b_3_6 + a_1_0·a_3_5
- a_2_4·a_3_5
- a_2_4·b_3_6 + a_1_02·a_3_5
- b_4_8·a_1_0 + a_1_02·a_3_5
- b_1_1·b_1_2·b_3_6 + b_1_12·b_3_6 + b_4_9·b_1_2 + b_4_8·b_1_2 + b_4_8·b_1_1
+ a_1_02·a_3_5
- b_4_9·a_1_0
- a_3_5·b_3_6 + a_3_52
- a_3_52 + c_4_10·a_1_02
- a_2_4·b_4_8
- a_2_4·b_4_9
- b_3_62 + b_1_23·b_3_6 + b_1_13·b_3_6 + b_4_9·b_1_22 + b_4_9·b_1_12
+ b_4_8·b_1_1·b_1_2 + a_3_52 + c_4_11·b_1_22 + c_4_10·b_1_12
- b_4_8·a_3_5 + c_4_10·a_1_03
- b_4_9·a_3_5
- b_1_14·b_3_6 + b_6_25·b_1_2 + b_4_9·b_1_23 + b_4_9·b_1_13 + b_4_8·b_3_6
+ b_4_8·b_1_1·b_1_22 + b_4_8·b_1_12·b_1_2 + c_4_11·b_1_1·b_1_22 + c_4_10·b_1_1·b_1_22 + c_4_10·b_1_13
- b_6_25·a_1_0 + c_4_10·a_1_03
- b_1_14·b_3_6 + b_6_25·b_1_1 + b_4_9·b_3_6 + b_4_9·b_1_23 + b_4_9·b_1_12·b_1_2
+ b_4_9·b_1_13 + b_4_8·b_3_6 + b_4_8·b_1_23 + b_4_8·b_1_1·b_1_22 + c_4_11·b_1_1·b_1_22 + c_4_10·b_1_12·b_1_2 + c_4_10·b_1_13 + c_4_11·a_1_03 + c_4_10·a_1_03
- b_1_25·b_3_6 + b_4_9·b_1_13·b_1_2 + b_4_9·b_1_14 + b_4_8·b_1_12·b_1_22
+ b_4_8·b_1_13·b_1_2 + b_4_8·b_1_14 + b_4_82 + c_4_11·b_1_24 + c_4_10·b_1_24 + c_4_10·b_1_14
- b_4_9·b_1_24 + b_4_9·b_1_1·b_3_6 + b_4_9·b_1_12·b_1_22 + b_4_9·b_1_13·b_1_2
+ b_4_92 + b_4_8·b_1_24 + b_4_8·b_1_1·b_1_23 + b_4_8·b_1_12·b_1_22 + b_4_8·b_1_14 + b_4_8·b_4_9 + c_4_11·b_1_1·b_1_23 + c_4_11·b_1_12·b_1_22 + c_4_11·b_1_13·b_1_2 + c_4_11·b_1_14 + c_4_10·b_1_1·b_1_23 + c_4_10·b_1_12·b_1_22
- a_2_4·b_6_25
- b_6_25·b_1_12 + b_4_9·b_1_1·b_3_6 + b_4_9·b_1_1·b_1_23 + b_4_9·b_1_12·b_1_22
+ b_4_92 + b_4_8·b_1_1·b_3_6 + b_4_8·b_1_1·b_1_23 + b_4_8·b_1_12·b_1_22 + b_4_8·b_1_14 + b_4_82 + c_4_11·b_1_12·b_1_22 + c_4_11·b_1_14 + c_4_10·b_1_12·b_1_22 + c_4_10·b_1_13·b_1_2
- b_6_25·a_3_5 + c_4_10·a_1_02·a_3_5
- b_6_25·b_3_6 + b_4_92·b_1_2 + b_4_92·b_1_1 + b_4_8·b_1_1·b_1_24
+ b_4_8·b_1_13·b_1_22 + b_4_8·b_1_14·b_1_2 + b_4_8·b_4_9·b_1_2 + b_4_8·b_4_9·b_1_1 + b_4_82·b_1_2 + c_4_11·b_1_12·b_3_6 + c_4_11·b_1_12·b_1_23 + c_4_11·b_1_13·b_1_22 + c_4_11·b_1_14·b_1_2 + c_4_10·b_1_1·b_1_24 + c_4_10·b_1_12·b_1_23 + c_4_10·b_1_13·b_1_22 + b_4_9·c_4_11·b_1_2 + b_4_9·c_4_10·b_1_2 + b_4_9·c_4_10·b_1_1 + b_4_8·c_4_11·b_1_1 + b_4_8·c_4_10·b_1_2
- b_4_9·b_6_25 + b_4_92·b_1_22 + b_4_92·b_1_1·b_1_2 + b_4_92·b_1_12
+ b_4_8·b_1_26 + b_4_8·b_1_1·b_1_25 + b_4_8·b_1_13·b_1_23 + b_4_8·b_1_16 + b_4_8·b_4_9·b_1_22 + b_4_8·b_4_9·b_1_1·b_1_2 + b_4_82·b_1_1·b_1_2 + b_4_82·b_1_12 + c_4_11·b_1_23·b_3_6 + c_4_11·b_1_1·b_1_25 + c_4_11·b_1_13·b_3_6 + c_4_11·b_1_13·b_1_23 + c_4_11·b_1_14·b_1_22 + c_4_11·b_1_16 + c_4_10·b_1_23·b_3_6 + c_4_10·b_1_26 + c_4_10·b_1_12·b_1_24 + c_4_10·b_1_13·b_3_6 + c_4_10·b_1_13·b_1_23 + c_4_10·b_1_15·b_1_2 + b_4_9·c_4_11·b_1_22 + b_4_9·c_4_10·b_1_22 + b_4_8·c_4_11·b_1_22 + b_4_8·c_4_11·b_1_1·b_1_2 + b_4_8·c_4_10·b_1_22 + b_4_8·c_4_10·b_1_12
- b_4_8·b_1_26 + b_4_8·b_1_14·b_1_22 + b_4_8·b_1_16 + b_4_8·b_6_25
+ b_4_8·b_4_9·b_1_22 + b_4_8·b_4_9·b_1_1·b_1_2 + b_4_8·b_4_9·b_1_12 + b_4_82·b_1_22 + b_4_82·b_1_1·b_1_2 + c_4_11·b_1_23·b_3_6 + c_4_11·b_1_1·b_1_25 + c_4_11·b_1_12·b_1_24 + c_4_11·b_1_16 + c_4_10·b_1_23·b_3_6 + c_4_10·b_1_26 + c_4_10·b_1_1·b_1_25 + c_4_10·b_1_13·b_3_6 + c_4_10·b_1_15·b_1_2 + b_4_9·c_4_10·b_1_12 + b_4_8·c_4_11·b_1_1·b_1_2 + b_4_8·c_4_10·b_1_1·b_1_2 + b_4_8·c_4_10·b_1_12
- b_6_252 + b_4_92·b_1_13·b_1_2 + b_4_92·b_1_14 + b_4_8·b_1_15·b_1_23
+ b_4_8·b_1_17·b_1_2 + b_4_8·b_1_18 + b_4_8·b_4_9·b_1_1·b_1_23 + b_4_8·b_4_9·b_1_13·b_1_2 + b_4_8·b_4_9·b_1_14 + b_4_82·b_1_2·b_3_6 + b_4_82·b_1_24 + b_4_82·b_1_1·b_3_6 + b_4_82·b_1_1·b_1_23 + b_4_82·b_1_12·b_1_22 + b_4_82·b_1_14 + b_4_83 + c_4_11·b_1_16·b_1_22 + c_4_11·b_1_17·b_1_2 + c_4_11·b_1_18 + c_4_10·b_1_15·b_1_23 + c_4_10·b_1_16·b_1_22 + c_4_10·b_1_17·b_1_2 + b_4_9·c_4_11·b_1_1·b_1_23 + b_4_9·c_4_11·b_1_12·b_1_22 + b_4_9·c_4_10·b_1_12·b_1_22 + b_4_9·c_4_10·b_1_14 + b_4_92·c_4_10 + b_4_8·c_4_11·b_1_1·b_1_23 + b_4_8·c_4_11·b_1_12·b_1_22 + b_4_8·c_4_10·b_1_12·b_1_22 + b_4_8·c_4_10·b_1_14 + b_4_82·c_4_11 + b_4_82·c_4_10 + c_4_112·b_1_12·b_1_22 + c_4_10·c_4_11·b_1_12·b_1_22 + c_4_10·c_4_11·b_1_14 + c_4_102·b_1_12·b_1_22 + c_4_102·b_1_14
Data used for Benson′s test
- Benson′s completion test succeeded in degree 12.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_4_10, a Duflot regular element of degree 4
- c_4_11, a Duflot regular element of degree 4
- b_1_22 + b_1_1·b_1_2 + b_1_12, an element of degree 2
- b_1_22, an element of degree 2
- The Raw Filter Degree Type of that HSOP is [-1, -1, 5, 5, 8].
- The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- b_1_1 → 0, an element of degree 1
- b_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_3_5 → 0, an element of degree 3
- b_3_6 → 0, an element of degree 3
- b_4_8 → 0, an element of degree 4
- b_4_9 → 0, an element of degree 4
- c_4_10 → c_1_14, an element of degree 4
- c_4_11 → c_1_14 + c_1_04, an element of degree 4
- b_6_25 → 0, an element of degree 6
Restriction map to a maximal el. ab. subgp. of rank 4
- a_1_0 → 0, an element of degree 1
- b_1_1 → c_1_2, an element of degree 1
- b_1_2 → c_1_3, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_3_5 → 0, an element of degree 3
- b_3_6 → c_1_1·c_1_32 + c_1_1·c_1_22 + c_1_12·c_1_3 + c_1_12·c_1_2 + c_1_0·c_1_32
+ c_1_02·c_1_3, an element of degree 3
- b_4_8 → c_1_1·c_1_2·c_1_32 + c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_12·c_1_22
+ c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_02·c_1_32, an element of degree 4
- b_4_9 → c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22
+ c_1_0·c_1_33 + c_1_0·c_1_2·c_1_32 + c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_02·c_1_32 + c_1_02·c_1_22, an element of degree 4
- c_4_10 → c_1_12·c_1_32 + c_1_12·c_1_2·c_1_3 + c_1_12·c_1_22 + c_1_14 + c_1_0·c_1_33
+ c_1_0·c_1_22·c_1_3 + c_1_0·c_1_23 + c_1_02·c_1_32 + c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22, an element of degree 4
- c_4_11 → c_1_1·c_1_33 + c_1_1·c_1_22·c_1_3 + c_1_1·c_1_23 + c_1_14 + c_1_02·c_1_32
+ c_1_02·c_1_2·c_1_3 + c_1_02·c_1_22 + c_1_04, an element of degree 4
- b_6_25 → c_1_1·c_1_2·c_1_34 + c_1_12·c_1_2·c_1_33 + c_1_12·c_1_22·c_1_32
+ c_1_12·c_1_23·c_1_3 + c_1_12·c_1_24 + c_1_13·c_1_2·c_1_32 + c_1_13·c_1_22·c_1_3 + c_1_14·c_1_22 + c_1_0·c_1_35 + c_1_0·c_1_2·c_1_34 + c_1_0·c_1_22·c_1_33 + c_1_0·c_1_1·c_1_34 + c_1_0·c_1_1·c_1_22·c_1_32 + c_1_0·c_1_1·c_1_24 + c_1_0·c_1_12·c_1_33 + c_1_0·c_1_12·c_1_22·c_1_3 + c_1_0·c_1_12·c_1_23 + c_1_02·c_1_22·c_1_32 + c_1_02·c_1_1·c_1_33 + c_1_02·c_1_1·c_1_2·c_1_32 + c_1_02·c_1_1·c_1_23 + c_1_02·c_1_12·c_1_32 + c_1_02·c_1_12·c_1_2·c_1_3 + c_1_02·c_1_12·c_1_22 + c_1_03·c_1_2·c_1_32 + c_1_03·c_1_22·c_1_3 + c_1_04·c_1_32 + c_1_04·c_1_2·c_1_3, an element of degree 6
|