Simon King
David J. Green
Cohomology
→Theory
→Implementation
Jena:
Faculty
External links:
Singular
Gap
|
Cohomology of group number 395 of order 128
General information on the group
- The group has 3 minimal generators and exponent 8.
- It is non-abelian.
- It has p-Rank 2.
- Its center has rank 2.
- It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 2.
Structure of the cohomology ring
General information
- The cohomology ring is of dimension 2 and depth 2.
- The depth coincides with the Duflot bound.
- The Poincaré series is
t12 + t11 + 2·t10 + t9 + 3·t8 + t7 + 5·t6 + t5 + 3·t4 + t3 + 2·t2 + t + 1 |
| (t − 1)2 · (t2 + 1)2 · (t4 + 1)2 |
- The a-invariants are -∞,-∞,-2. They were obtained using the filter regular HSOP of the Benson test.
Ring generators
The cohomology ring has 21 minimal generators of maximal degree 11:
- a_1_0, a nilpotent element of degree 1
- a_1_1, a nilpotent element of degree 1
- a_1_2, a nilpotent element of degree 1
- a_2_4, a nilpotent element of degree 2
- a_3_5, a nilpotent element of degree 3
- a_4_5, a nilpotent element of degree 4
- a_4_6, a nilpotent element of degree 4
- a_5_6, a nilpotent element of degree 5
- a_5_7, a nilpotent element of degree 5
- a_6_6, a nilpotent element of degree 6
- a_6_7, a nilpotent element of degree 6
- a_6_8, a nilpotent element of degree 6
- a_6_9, a nilpotent element of degree 6
- a_7_10, a nilpotent element of degree 7
- a_7_11, a nilpotent element of degree 7
- c_8_10, a Duflot regular element of degree 8
- c_8_11, a Duflot regular element of degree 8
- a_9_11, a nilpotent element of degree 9
- a_9_12, a nilpotent element of degree 9
- a_9_13, a nilpotent element of degree 9
- a_11_17, a nilpotent element of degree 11
Ring relations
There are 171 minimal relations of maximal degree 22:
- a_1_0·a_1_1
- a_1_0·a_1_2
- a_2_4·a_1_1 + a_1_23 + a_1_1·a_1_22 + a_1_12·a_1_2 + a_1_03
- a_2_4·a_1_0
- a_2_4·a_1_2 + a_1_23 + a_1_13
- a_2_42
- a_1_1·a_3_5 + a_1_1·a_1_23 + a_1_14
- a_1_2·a_3_5 + a_1_12·a_1_22 + a_1_13·a_1_2 + a_1_14
- a_1_13·a_1_22 + a_1_14·a_1_2
- a_1_12·a_1_23 + a_1_14·a_1_2 + a_1_15
- a_2_4·a_3_5
- a_4_5·a_1_0
- a_4_6·a_1_0 + a_1_02·a_3_5
- a_4_6·a_1_2 + a_4_5·a_1_1 + a_1_02·a_3_5 + a_1_14·a_1_2
- a_2_4·a_4_5 + a_4_6·a_1_12 + a_4_5·a_1_22
- a_2_4·a_4_6 + a_4_5·a_1_22 + a_4_5·a_1_1·a_1_2 + a_4_5·a_1_12
- a_1_1·a_5_6 + a_2_4·a_4_5 + a_4_5·a_1_22 + a_4_5·a_1_12
- a_1_2·a_5_6 + a_4_5·a_1_1·a_1_2 + a_4_5·a_1_12
- a_1_1·a_5_7
- a_3_52 + a_1_0·a_5_7 + a_1_0·a_5_6
- a_1_2·a_5_7
- a_4_5·a_3_5 + a_4_5·a_1_23 + a_4_5·a_1_13
- a_4_5·a_3_5 + a_2_4·a_5_6
- a_4_6·a_3_5 + a_4_5·a_3_5 + a_1_02·a_5_7 + a_1_02·a_5_6 + a_4_5·a_1_1·a_1_22
+ a_4_5·a_1_12·a_1_2 + a_4_5·a_1_13
- a_2_4·a_5_7
- a_6_6·a_1_0
- a_6_7·a_1_0 + a_1_02·a_5_6
- a_6_8·a_1_1 + a_6_6·a_1_2 + a_4_5·a_3_5 + a_1_02·a_5_6
- a_6_8·a_1_0 + a_4_6·a_3_5 + a_4_5·a_3_5 + a_1_02·a_5_6 + a_4_5·a_1_1·a_1_22
+ a_4_5·a_1_12·a_1_2 + a_4_5·a_1_13
- a_6_8·a_1_2 + a_6_7·a_1_1 + a_4_5·a_3_5 + a_4_5·a_1_12·a_1_2 + a_4_5·a_1_13
- a_6_9·a_1_1 + a_6_7·a_1_2 + a_6_6·a_1_2 + a_4_6·a_3_5 + a_4_5·a_1_12·a_1_2
- a_6_9·a_1_0 + a_4_6·a_3_5 + a_4_5·a_3_5 + a_1_02·a_5_6 + a_4_5·a_1_1·a_1_22
+ a_4_5·a_1_12·a_1_2 + a_4_5·a_1_13
- a_6_9·a_1_2 + a_6_6·a_1_1 + a_4_5·a_1_1·a_1_22 + a_4_5·a_1_12·a_1_2
- a_4_52
- a_4_5·a_4_6 + a_4_5·a_1_12·a_1_22
- a_4_62
- a_2_4·a_6_7 + a_6_6·a_1_22 + a_6_6·a_1_1·a_1_2 + a_6_6·a_1_12
+ a_4_5·a_1_12·a_1_22 + a_4_5·a_1_13·a_1_2 + a_4_5·a_1_14
- a_2_4·a_6_6 + a_6_7·a_1_1·a_1_2 + a_6_6·a_1_22 + a_6_6·a_1_1·a_1_2
+ a_4_5·a_1_1·a_1_23 + a_4_5·a_1_12·a_1_22 + a_4_5·a_1_13·a_1_2 + a_4_5·a_1_14
- a_2_4·a_6_8 + a_2_4·a_6_6 + a_6_6·a_1_22 + a_6_6·a_1_1·a_1_2 + a_6_6·a_1_12
+ a_4_5·a_1_13·a_1_2 + a_4_5·a_1_14
- a_2_4·a_6_9 + a_6_6·a_1_22 + a_6_6·a_1_1·a_1_2 + a_6_6·a_1_12 + a_4_5·a_1_1·a_1_23
+ a_4_5·a_1_13·a_1_2 + a_4_5·a_1_14
- a_1_1·a_7_10 + a_6_6·a_1_22 + a_6_6·a_1_1·a_1_2 + a_6_6·a_1_12
+ a_4_5·a_1_1·a_1_23 + a_4_5·a_1_14
- a_3_5·a_5_6 + a_1_0·a_7_10 + a_4_5·a_1_12·a_1_22 + a_4_5·a_1_13·a_1_2
+ a_4_5·a_1_14
- a_1_2·a_7_10 + a_2_4·a_6_6 + a_4_5·a_1_14
- a_1_1·a_7_11 + a_2_4·a_6_6 + a_6_6·a_1_12 + a_4_5·a_1_14
- a_3_5·a_5_7 + a_3_5·a_5_6 + a_1_0·a_7_11 + a_4_5·a_1_12·a_1_22 + a_4_5·a_1_13·a_1_2
+ a_4_5·a_1_14
- a_1_2·a_7_11 + a_2_4·a_6_6 + a_6_6·a_1_22 + a_6_6·a_1_12 + a_4_5·a_1_1·a_1_23
+ a_4_5·a_1_12·a_1_22 + a_4_5·a_1_13·a_1_2 + a_4_5·a_1_14
- a_4_5·a_5_6
- a_4_5·a_5_7
- a_6_6·a_1_1·a_1_22 + a_6_6·a_1_12·a_1_2
- a_6_6·a_3_5 + a_6_6·a_1_23 + a_6_6·a_1_13
- a_6_7·a_3_5 + a_6_6·a_3_5 + a_4_6·a_5_6 + a_6_6·a_1_13
- a_6_8·a_3_5 + a_4_6·a_5_7 + a_6_6·a_1_13
- a_6_9·a_3_5 + a_6_6·a_3_5 + a_4_6·a_5_7 + a_6_6·a_1_13
- a_4_6·a_5_6 + a_1_02·a_7_10
- a_2_4·a_7_10
- a_4_6·a_5_7 + a_4_6·a_5_6 + a_1_02·a_7_11
- a_6_6·a_3_5 + a_2_4·a_7_11 + a_6_6·a_1_13
- a_4_6·a_6_7 + a_4_5·a_6_8 + a_6_6·a_1_13·a_1_2 + a_6_6·a_1_14
- a_4_6·a_6_8 + a_4_5·a_6_6 + a_6_6·a_1_13·a_1_2
- a_4_6·a_6_6 + a_4_5·a_6_9 + a_6_6·a_1_13·a_1_2
- a_4_6·a_6_9 + a_4_5·a_6_7 + a_4_5·a_6_6 + a_6_6·a_1_13·a_1_2
- a_5_6·a_5_7 + a_5_62 + a_3_5·a_7_10
- a_5_72 + a_5_62 + a_3_5·a_7_11 + a_6_6·a_1_13·a_1_2 + a_6_6·a_1_14
- a_5_72 + a_5_62 + c_8_10·a_1_02
- a_5_72 + c_8_11·a_1_02
- a_1_1·a_9_11 + a_4_6·a_6_7 + a_4_6·a_6_6 + a_6_6·a_1_14 + c_8_10·a_1_1·a_1_2
+ c_8_10·a_1_12
- a_1_0·a_9_11
- a_1_2·a_9_11 + a_4_5·a_6_7 + a_4_5·a_6_6 + a_6_6·a_1_13·a_1_2 + c_8_10·a_1_22
+ c_8_10·a_1_1·a_1_2
- a_1_1·a_9_12 + a_4_6·a_6_6 + a_6_6·a_1_13·a_1_2 + a_6_6·a_1_14 + c_8_10·a_1_12
- a_5_72 + a_5_62 + a_1_0·a_9_12
- a_1_2·a_9_12 + a_4_5·a_6_6 + a_6_6·a_1_13·a_1_2 + a_6_6·a_1_14 + c_8_10·a_1_1·a_1_2
- a_1_1·a_9_13 + a_4_6·a_6_7 + a_6_6·a_1_13·a_1_2 + a_6_6·a_1_14 + c_8_10·a_1_1·a_1_2
+ c_8_10·a_1_12
- a_5_72 + a_5_6·a_5_7 + a_1_0·a_9_13
- a_1_2·a_9_13 + a_4_5·a_6_7 + c_8_10·a_1_22 + c_8_10·a_1_1·a_1_2
- a_6_6·a_5_7
- a_6_6·a_5_6 + a_4_5·a_6_7·a_1_2 + a_4_5·a_6_6·a_1_2 + a_4_5·a_6_6·a_1_1
- a_6_8·a_5_6 + a_6_7·a_5_7 + a_4_5·a_6_6·a_1_2 + a_4_5·a_6_6·a_1_1
- a_6_9·a_5_7 + a_6_8·a_5_7
- a_6_9·a_5_6 + a_6_7·a_5_7 + a_6_6·a_5_6 + a_4_5·a_6_7·a_1_1
- a_4_5·a_7_10 + a_4_5·a_6_7·a_1_1 + a_4_5·a_6_6·a_1_2 + a_4_5·a_6_6·a_1_1
- a_6_7·a_5_7 + a_6_7·a_5_6 + a_6_6·a_5_6 + a_4_6·a_7_10 + a_4_5·a_6_7·a_1_1
- a_6_6·a_5_6 + a_4_5·a_7_11 + a_4_5·a_6_7·a_1_1
- a_6_8·a_5_7 + a_6_7·a_5_6 + a_6_6·a_5_6 + a_4_6·a_7_11
- a_6_8·a_5_7 + a_6_7·a_5_6 + a_4_5·a_6_7·a_1_1 + a_4_5·a_6_6·a_1_2 + c_8_10·a_1_03
- a_6_8·a_5_7 + c_8_11·a_1_03
- a_6_8·a_5_7 + a_6_7·a_5_6 + a_6_6·a_5_6 + a_2_4·a_9_11 + a_4_5·a_6_6·a_1_2
+ a_4_5·a_6_6·a_1_1 + c_8_10·a_1_1·a_1_22 + c_8_10·a_1_12·a_1_2 + c_8_10·a_1_13
- a_6_8·a_5_7 + a_6_7·a_5_6 + a_2_4·a_9_12 + a_4_5·a_6_6·a_1_1 + c_8_10·a_1_23
+ c_8_10·a_1_1·a_1_22 + c_8_10·a_1_12·a_1_2
- a_6_8·a_5_7 + a_6_7·a_5_7 + a_1_02·a_9_13
- a_6_8·a_5_7 + a_6_7·a_5_6 + a_6_6·a_5_6 + a_2_4·a_9_13 + a_4_5·a_6_7·a_1_1
+ c_8_10·a_1_1·a_1_22 + c_8_10·a_1_12·a_1_2 + c_8_10·a_1_13
- a_6_72 + a_6_6·a_6_7 + a_6_62 + a_4_5·a_6_7·a_1_1·a_1_2 + a_4_5·a_6_6·a_1_22
+ a_4_5·a_6_6·a_1_12
- a_6_82 + a_6_6·a_6_7 + a_4_5·a_6_7·a_1_1·a_1_2 + a_4_5·a_6_6·a_1_22
+ a_4_5·a_6_6·a_1_12
- a_6_8·a_6_9 + a_6_62 + a_4_5·a_6_7·a_1_1·a_1_2 + a_4_5·a_6_6·a_1_1·a_1_2
+ a_4_5·a_6_6·a_1_12
- a_6_92 + a_6_6·a_6_7 + a_6_62 + a_4_5·a_6_7·a_1_1·a_1_2 + a_4_5·a_6_6·a_1_22
+ a_4_5·a_6_6·a_1_12
- a_6_7·a_6_8 + a_6_6·a_6_9 + a_6_6·a_6_8 + a_4_5·a_6_7·a_1_1·a_1_2
+ a_4_5·a_6_6·a_1_1·a_1_2 + a_4_5·a_6_6·a_1_12
- a_6_7·a_6_9 + a_6_6·a_6_8 + a_4_5·a_6_7·a_1_1·a_1_2 + a_4_5·a_6_6·a_1_12
- a_5_7·a_7_10 + a_5_6·a_7_11 + a_5_6·a_7_10 + a_4_5·a_6_7·a_1_1·a_1_2
+ a_4_5·a_6_6·a_1_22
- a_5_7·a_7_11 + a_5_7·a_7_10 + a_5_6·a_7_10 + a_4_5·a_6_7·a_1_1·a_1_2
+ a_4_5·a_6_6·a_1_22 + a_4_5·a_6_6·a_1_1·a_1_2 + c_8_10·a_1_0·a_3_5
- a_6_6·a_6_7 + a_4_5·a_6_7·a_1_1·a_1_2 + a_4_5·a_6_6·a_1_22 + a_4_5·a_6_6·a_1_12
+ c_8_11·a_1_14 + c_8_10·a_1_12·a_1_22 + c_8_10·a_1_14
- a_6_7·a_6_8 + a_4_5·a_6_6·a_1_12 + c_8_11·a_1_13·a_1_2 + c_8_10·a_1_1·a_1_23
+ c_8_10·a_1_13·a_1_2
- a_6_6·a_6_7 + a_6_62 + a_4_5·a_6_7·a_1_1·a_1_2 + a_4_5·a_6_6·a_1_22
+ a_4_5·a_6_6·a_1_12 + c_8_11·a_1_12·a_1_22 + c_8_10·a_1_14
- a_6_7·a_6_8 + a_6_6·a_6_8 + a_4_5·a_6_7·a_1_1·a_1_2 + c_8_11·a_1_1·a_1_23
+ c_8_10·a_1_13·a_1_2
- a_5_7·a_7_11 + a_5_7·a_7_10 + c_8_11·a_1_0·a_3_5
- a_3_5·a_9_11 + a_4_5·a_6_7·a_1_1·a_1_2 + a_4_5·a_6_6·a_1_12 + c_8_10·a_1_1·a_1_23
+ c_8_10·a_1_12·a_1_22 + c_8_10·a_1_13·a_1_2
- a_5_7·a_7_11 + a_5_7·a_7_10 + a_5_6·a_7_10 + a_3_5·a_9_12 + c_8_10·a_1_1·a_1_23
+ c_8_10·a_1_14
- a_5_7·a_7_11 + a_3_5·a_9_13 + a_4_5·a_6_6·a_1_22 + a_4_5·a_6_6·a_1_1·a_1_2
+ a_4_5·a_6_6·a_1_12 + c_8_10·a_1_1·a_1_23 + c_8_10·a_1_12·a_1_22 + c_8_10·a_1_13·a_1_2
- a_1_1·a_11_17 + a_6_7·a_6_8 + a_6_62 + a_4_5·a_6_6·a_1_22 + a_4_5·a_6_6·a_1_12
- a_5_7·a_7_10 + a_1_0·a_11_17
- a_1_2·a_11_17 + a_6_6·a_6_8 + a_6_6·a_6_7 + a_6_62 + a_4_5·a_6_7·a_1_1·a_1_2
+ a_4_5·a_6_6·a_1_1·a_1_2
- a_6_9·a_7_10 + a_6_8·a_7_10 + a_6_6·a_7_10 + a_4_5·a_6_6·a_1_23 + a_4_5·a_6_6·a_1_13
- a_6_9·a_7_11 + a_6_8·a_7_11
- a_6_8·a_7_10 + a_6_7·a_7_11 + a_6_7·a_7_10 + a_6_6·a_7_11
- a_6_9·a_7_10 + a_6_8·a_7_11 + a_6_7·a_7_10 + a_4_5·a_6_6·a_1_13 + c_8_10·a_1_02·a_3_5
- a_6_6·a_7_11 + a_4_5·a_6_6·a_1_23 + c_8_11·a_1_15 + c_8_10·a_1_14·a_1_2
+ c_8_10·a_1_15
- a_6_9·a_7_10 + a_6_8·a_7_10 + a_6_6·a_7_11 + a_4_5·a_6_6·a_1_23 + c_8_11·a_1_14·a_1_2
+ c_8_10·a_1_15
- a_6_9·a_7_10 + a_6_8·a_7_11 + a_6_6·a_7_11 + a_4_5·a_6_6·a_1_13 + c_8_11·a_1_02·a_3_5
- a_4_5·a_9_11 + a_4_5·a_6_6·a_1_23 + a_4_5·a_6_6·a_1_13 + a_4_5·c_8_10·a_1_2
+ a_4_5·c_8_10·a_1_1
- a_6_9·a_7_10 + a_6_8·a_7_11 + a_6_7·a_7_10 + a_4_6·a_9_11 + a_4_5·a_6_6·a_1_13
+ a_4_6·c_8_10·a_1_1 + a_4_5·c_8_10·a_1_1 + c_8_10·a_1_14·a_1_2
- a_4_5·a_9_12 + a_4_5·a_6_6·a_1_23 + a_4_5·c_8_10·a_1_1
- a_6_9·a_7_10 + a_6_8·a_7_11 + a_6_7·a_7_10 + a_4_6·a_9_12 + a_4_5·a_6_6·a_1_23
+ a_4_5·a_6_6·a_1_13 + a_4_6·c_8_10·a_1_1
- a_4_5·a_9_13 + a_4_5·c_8_10·a_1_2 + a_4_5·c_8_10·a_1_1
- a_6_9·a_7_10 + a_6_7·a_7_10 + a_4_6·a_9_13 + a_4_5·a_6_6·a_1_13 + a_4_6·c_8_10·a_1_1
+ a_4_5·c_8_10·a_1_1 + c_8_10·a_1_14·a_1_2
- a_6_9·a_7_10 + a_6_6·a_7_11 + a_1_02·a_11_17 + a_4_5·a_6_6·a_1_23
+ a_4_5·a_6_6·a_1_13
- a_2_4·a_11_17 + a_4_5·a_6_6·a_1_23
- a_7_112 + a_7_10·a_7_11 + c_8_10·a_1_0·a_5_7
- a_7_10·a_7_11 + c_8_10·a_1_0·a_5_6
- a_7_112 + a_7_102 + a_4_5·a_6_6·a_1_14 + c_8_11·a_1_0·a_5_7 + c_8_11·a_1_0·a_5_6
- a_5_7·a_9_11
- a_5_6·a_9_11 + a_4_6·c_8_10·a_1_12 + a_4_5·c_8_10·a_1_1·a_1_2
- a_7_112 + a_7_10·a_7_11 + a_5_7·a_9_12
- a_7_10·a_7_11 + a_5_6·a_9_12 + a_4_5·a_6_6·a_1_14 + a_4_6·c_8_10·a_1_12
+ a_4_5·c_8_10·a_1_12
- a_7_112 + a_7_102 + a_5_7·a_9_13 + a_4_5·a_6_6·a_1_14
- a_7_10·a_7_11 + a_7_102 + a_5_6·a_9_13 + a_4_5·a_6_6·a_1_14 + a_4_6·c_8_10·a_1_12
+ a_4_5·c_8_10·a_1_1·a_1_2
- a_7_10·a_7_11 + a_7_102 + a_3_5·a_11_17
- a_6_8·a_9_11 + a_6_7·c_8_10·a_1_1 + a_6_6·c_8_10·a_1_2 + c_8_10·a_1_02·a_5_6
+ a_4_5·c_8_11·a_1_1·a_1_22 + a_4_5·c_8_10·a_1_12·a_1_2
- a_6_9·a_9_11 + a_6_7·c_8_10·a_1_2 + a_6_6·c_8_10·a_1_2 + a_6_6·c_8_10·a_1_1
+ c_8_10·a_1_02·a_5_7 + c_8_10·a_1_02·a_5_6 + a_4_5·c_8_11·a_1_13 + a_4_5·c_8_10·a_1_23 + a_4_5·c_8_10·a_1_1·a_1_22 + a_4_5·c_8_10·a_1_12·a_1_2 + a_4_5·c_8_10·a_1_13
- a_6_6·a_9_11 + a_6_6·c_8_10·a_1_2 + a_6_6·c_8_10·a_1_1 + a_4_5·c_8_11·a_1_12·a_1_2
+ a_4_5·c_8_10·a_1_23 + a_4_5·c_8_10·a_1_12·a_1_2
- a_6_7·a_9_11 + a_6_7·c_8_10·a_1_2 + a_6_7·c_8_10·a_1_1 + a_4_5·c_8_11·a_1_23
+ a_4_5·c_8_10·a_1_12·a_1_2
- a_6_8·a_9_12 + a_6_6·c_8_10·a_1_2 + c_8_10·a_1_02·a_5_7 + c_8_10·a_1_02·a_5_6
+ a_4_5·c_8_11·a_1_1·a_1_22 + a_4_5·c_8_11·a_1_13 + a_4_5·c_8_10·a_1_23 + a_4_5·c_8_10·a_1_1·a_1_22 + a_4_5·c_8_10·a_1_13
- a_6_9·a_9_12 + a_6_7·c_8_10·a_1_2 + a_6_6·c_8_10·a_1_2 + c_8_10·a_1_02·a_5_6
+ a_4_5·c_8_11·a_1_1·a_1_22 + a_4_5·c_8_10·a_1_23 + a_4_5·c_8_10·a_1_1·a_1_22 + a_4_5·c_8_10·a_1_13
- a_6_6·a_9_12 + a_6_6·c_8_10·a_1_1 + a_4_5·c_8_11·a_1_23 + a_4_5·c_8_10·a_1_12·a_1_2
- a_6_7·a_9_12 + a_6_7·c_8_10·a_1_1 + c_8_10·a_1_02·a_5_6 + a_4_5·c_8_11·a_1_23
+ a_4_5·c_8_11·a_1_12·a_1_2 + a_4_5·c_8_10·a_1_23
- a_6_8·a_9_13 + a_6_7·c_8_10·a_1_1 + a_6_6·c_8_10·a_1_2 + c_8_11·a_1_02·a_5_7
+ c_8_11·a_1_02·a_5_6 + c_8_10·a_1_02·a_5_6 + a_4_5·c_8_11·a_1_13 + a_4_5·c_8_10·a_1_1·a_1_22 + a_4_5·c_8_10·a_1_12·a_1_2
- a_6_9·a_9_13 + a_6_7·c_8_10·a_1_2 + a_6_6·c_8_10·a_1_2 + a_6_6·c_8_10·a_1_1
+ c_8_11·a_1_02·a_5_7 + c_8_11·a_1_02·a_5_6 + c_8_10·a_1_02·a_5_7 + c_8_10·a_1_02·a_5_6 + a_4_5·c_8_11·a_1_1·a_1_22 + a_4_5·c_8_11·a_1_13 + a_4_5·c_8_10·a_1_23 + a_4_5·c_8_10·a_1_1·a_1_22 + a_4_5·c_8_10·a_1_12·a_1_2
- a_6_6·a_9_13 + a_6_6·c_8_10·a_1_2 + a_6_6·c_8_10·a_1_1 + a_4_5·c_8_11·a_1_23
+ a_4_5·c_8_11·a_1_12·a_1_2 + a_4_5·c_8_10·a_1_23
- a_6_7·a_9_13 + a_6_7·c_8_10·a_1_2 + a_6_7·c_8_10·a_1_1 + c_8_11·a_1_02·a_5_7
+ c_8_11·a_1_02·a_5_6 + c_8_10·a_1_02·a_5_7 + a_4_5·c_8_11·a_1_12·a_1_2 + a_4_5·c_8_10·a_1_23 + a_4_5·c_8_10·a_1_12·a_1_2
- a_4_5·a_11_17 + a_4_5·c_8_11·a_1_1·a_1_22 + a_4_5·c_8_11·a_1_12·a_1_2
+ a_4_5·c_8_11·a_1_13 + a_4_5·c_8_10·a_1_23 + a_4_5·c_8_10·a_1_1·a_1_22 + a_4_5·c_8_10·a_1_12·a_1_2
- a_4_6·a_11_17 + c_8_11·a_1_02·a_5_7 + c_8_11·a_1_02·a_5_6 + c_8_10·a_1_02·a_5_7
+ a_4_5·c_8_11·a_1_23 + a_4_5·c_8_11·a_1_13 + a_4_5·c_8_10·a_1_1·a_1_22 + a_4_5·c_8_10·a_1_12·a_1_2 + a_4_5·c_8_10·a_1_13
- a_7_11·a_9_11 + a_6_6·c_8_10·a_1_22 + a_4_5·c_8_11·a_1_1·a_1_23
+ a_4_5·c_8_11·a_1_13·a_1_2 + a_4_5·c_8_11·a_1_14 + a_4_5·c_8_10·a_1_13·a_1_2 + a_4_5·c_8_10·a_1_14
- a_7_10·a_9_11 + a_6_7·c_8_10·a_1_1·a_1_2 + a_6_6·c_8_10·a_1_12
+ a_4_5·c_8_11·a_1_1·a_1_23 + a_4_5·c_8_11·a_1_12·a_1_22 + a_4_5·c_8_11·a_1_13·a_1_2 + a_4_5·c_8_10·a_1_1·a_1_23 + a_4_5·c_8_10·a_1_12·a_1_22 + a_4_5·c_8_10·a_1_13·a_1_2
- a_7_11·a_9_12 + c_8_10·a_1_0·a_7_11 + a_6_7·c_8_10·a_1_1·a_1_2 + a_6_6·c_8_10·a_1_22
+ a_6_6·c_8_10·a_1_1·a_1_2 + a_6_6·c_8_10·a_1_12 + a_4_5·c_8_11·a_1_12·a_1_22 + a_4_5·c_8_11·a_1_13·a_1_2 + a_4_5·c_8_10·a_1_12·a_1_22 + a_4_5·c_8_10·a_1_14
- a_7_10·a_9_12 + c_8_10·a_1_0·a_7_10 + a_6_6·c_8_10·a_1_22 + a_6_6·c_8_10·a_1_1·a_1_2
+ a_6_6·c_8_10·a_1_12 + a_4_5·c_8_11·a_1_12·a_1_22 + a_4_5·c_8_11·a_1_13·a_1_2 + a_4_5·c_8_11·a_1_14 + a_4_5·c_8_10·a_1_12·a_1_22 + a_4_5·c_8_10·a_1_13·a_1_2 + a_4_5·c_8_10·a_1_14
- a_7_11·a_9_13 + c_8_10·a_1_0·a_7_11 + c_8_10·a_1_0·a_7_10 + a_6_6·c_8_10·a_1_22
+ a_4_5·c_8_11·a_1_1·a_1_23 + a_4_5·c_8_11·a_1_12·a_1_22 + a_4_5·c_8_11·a_1_14 + a_4_5·c_8_10·a_1_1·a_1_23
- a_7_10·a_9_13 + c_8_11·a_1_0·a_7_11 + c_8_10·a_1_0·a_7_11 + c_8_10·a_1_0·a_7_10
+ a_6_7·c_8_10·a_1_1·a_1_2 + a_6_6·c_8_10·a_1_12 + a_4_5·c_8_11·a_1_1·a_1_23 + a_4_5·c_8_11·a_1_14
- a_5_7·a_11_17 + c_8_11·a_1_0·a_7_10
- a_5_6·a_11_17 + c_8_11·a_1_0·a_7_11 + c_8_11·a_1_0·a_7_10 + c_8_10·a_1_0·a_7_11
+ c_8_10·a_1_0·a_7_10 + a_4_5·c_8_11·a_1_1·a_1_23 + a_4_5·c_8_11·a_1_12·a_1_22 + a_4_5·c_8_11·a_1_13·a_1_2 + a_4_5·c_8_10·a_1_1·a_1_23 + a_4_5·c_8_10·a_1_14
- a_6_8·a_11_17 + c_8_11·a_1_02·a_7_10 + a_6_6·c_8_11·a_1_23 + a_6_6·c_8_10·a_1_23
+ a_6_6·c_8_10·a_1_13
- a_6_9·a_11_17 + c_8_11·a_1_02·a_7_10 + a_6_6·c_8_11·a_1_23 + a_6_6·c_8_11·a_1_13
+ a_6_6·c_8_10·a_1_13
- a_6_6·a_11_17 + a_6_6·c_8_11·a_1_13 + a_6_6·c_8_10·a_1_23
- a_6_7·a_11_17 + c_8_11·a_1_02·a_7_11 + c_8_11·a_1_02·a_7_10 + c_8_10·a_1_02·a_7_11
+ c_8_10·a_1_02·a_7_10 + a_6_6·c_8_11·a_1_23 + a_6_6·c_8_11·a_1_13 + a_6_6·c_8_10·a_1_13
- a_9_112 + c_8_102·a_1_22 + c_8_102·a_1_12
- a_9_11·a_9_12 + a_4_5·a_6_8·c_8_10 + a_4_5·a_6_6·c_8_10 + a_6_6·c_8_10·a_1_13·a_1_2
+ c_8_102·a_1_1·a_1_2 + c_8_102·a_1_12
- a_9_122 + c_8_102·a_1_12 + c_8_102·a_1_02
- a_9_11·a_9_13 + a_4_5·a_6_9·c_8_10 + a_4_5·a_6_6·c_8_10 + a_6_6·c_8_10·a_1_13·a_1_2
+ c_8_102·a_1_22 + c_8_102·a_1_12
- a_9_132 + c_8_10·c_8_11·a_1_02 + c_8_102·a_1_22 + c_8_102·a_1_12
- a_9_12·a_9_13 + c_8_10·a_1_0·a_9_13 + a_4_5·a_6_9·c_8_10 + a_4_5·a_6_8·c_8_10
+ a_4_5·a_6_6·c_8_10 + a_6_6·c_8_10·a_1_13·a_1_2 + c_8_102·a_1_1·a_1_2 + c_8_102·a_1_12
- a_7_11·a_11_17 + c_8_10·a_1_0·a_9_13 + a_6_6·c_8_11·a_1_14
+ a_6_6·c_8_10·a_1_13·a_1_2 + c_8_10·c_8_11·a_1_02
- a_7_10·a_11_17 + c_8_11·a_1_0·a_9_13 + c_8_10·a_1_0·a_9_13
- a_9_11·a_11_17 + a_4_5·a_6_6·c_8_11·a_1_22 + a_4_5·a_6_6·c_8_11·a_1_1·a_1_2
+ a_4_5·a_6_6·c_8_11·a_1_12 + a_4_5·a_6_6·c_8_10·a_1_22 + c_8_10·c_8_11·a_1_1·a_1_23 + c_8_10·c_8_11·a_1_14 + c_8_102·a_1_12·a_1_22 + c_8_102·a_1_13·a_1_2 + c_8_102·a_1_14
- a_9_13·a_11_17 + c_8_11·a_1_0·a_11_17 + a_4_5·a_6_7·c_8_11·a_1_1·a_1_2
+ a_4_5·a_6_6·c_8_11·a_1_22 + a_4_5·a_6_6·c_8_11·a_1_1·a_1_2 + a_4_5·a_6_6·c_8_10·a_1_1·a_1_2 + a_4_5·a_6_6·c_8_10·a_1_12 + c_8_112·a_1_0·a_3_5 + c_8_10·c_8_11·a_1_0·a_3_5 + c_8_10·c_8_11·a_1_1·a_1_23 + c_8_10·c_8_11·a_1_14 + c_8_102·a_1_12·a_1_22 + c_8_102·a_1_13·a_1_2 + c_8_102·a_1_14
- a_9_12·a_11_17 + c_8_10·a_1_0·a_11_17 + a_4_5·a_6_7·c_8_11·a_1_1·a_1_2
+ a_4_5·a_6_6·c_8_11·a_1_12 + a_4_5·a_6_6·c_8_10·a_1_1·a_1_2 + a_4_5·a_6_6·c_8_10·a_1_12 + c_8_10·c_8_11·a_1_12·a_1_22 + c_8_10·c_8_11·a_1_13·a_1_2 + c_8_10·c_8_11·a_1_14 + c_8_102·a_1_1·a_1_23 + c_8_102·a_1_12·a_1_22 + c_8_102·a_1_13·a_1_2
- a_11_172 + a_4_5·a_6_6·c_8_10·a_1_14 + c_8_112·a_1_0·a_5_7 + c_8_112·a_1_0·a_5_6
+ c_8_10·c_8_11·a_1_0·a_5_7 + c_8_10·c_8_11·a_1_0·a_5_6
Data used for Benson′s test
- Benson′s completion test succeeded in degree 22.
- The completion test was perfect: It applied in the last degree in which a generator or relation was found.
- The following is a filter regular homogeneous system of parameters:
- c_8_10, a Duflot regular element of degree 8
- c_8_11, a Duflot regular element of degree 8
- The Raw Filter Degree Type of that HSOP is [-1, -1, 14].
- The filter degree type of any filter regular HSOP is [-1, -2, -2].
Restriction maps
Restriction map to the greatest central el. ab. subgp., which is of rank 2
- a_1_0 → 0, an element of degree 1
- a_1_1 → 0, an element of degree 1
- a_1_2 → 0, an element of degree 1
- a_2_4 → 0, an element of degree 2
- a_3_5 → 0, an element of degree 3
- a_4_5 → 0, an element of degree 4
- a_4_6 → 0, an element of degree 4
- a_5_6 → 0, an element of degree 5
- a_5_7 → 0, an element of degree 5
- a_6_6 → 0, an element of degree 6
- a_6_7 → 0, an element of degree 6
- a_6_8 → 0, an element of degree 6
- a_6_9 → 0, an element of degree 6
- a_7_10 → 0, an element of degree 7
- a_7_11 → 0, an element of degree 7
- c_8_10 → c_1_18, an element of degree 8
- c_8_11 → c_1_08, an element of degree 8
- a_9_11 → 0, an element of degree 9
- a_9_12 → 0, an element of degree 9
- a_9_13 → 0, an element of degree 9
- a_11_17 → 0, an element of degree 11
|