Cohomology of group number 462 of order 128

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128


General information on the group

  • The group has 3 minimal generators and exponent 8.
  • It is non-abelian.
  • It has p-Rank 4.
  • Its center has rank 2.
  • It has a unique conjugacy class of maximal elementary abelian subgroups, which is of rank 4.


Structure of the cohomology ring

General information

  • The cohomology ring is of dimension 4 and depth 2.
  • The depth coincides with the Duflot bound.
  • The Poincaré series is
    ( − 1) · (t6  −  t5  −  t4  +  2·t3  −  2·t2  +  t  −  1)

    (t  −  1)4 · (t2  +  1) · (t4  +  1)
  • The a-invariants are -∞,-∞,-6,-4,-4. They were obtained using the filter regular HSOP of the Benson test.

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring generators

The cohomology ring has 14 minimal generators of maximal degree 8:

  1. a_1_0, a nilpotent element of degree 1
  2. a_1_1, a nilpotent element of degree 1
  3. c_1_2, a Duflot regular element of degree 1
  4. a_2_3, a nilpotent element of degree 2
  5. a_2_4, a nilpotent element of degree 2
  6. b_2_5, an element of degree 2
  7. b_2_6, an element of degree 2
  8. b_3_11, an element of degree 3
  9. b_3_12, an element of degree 3
  10. a_5_25, a nilpotent element of degree 5
  11. a_5_28, a nilpotent element of degree 5
  12. a_6_37, a nilpotent element of degree 6
  13. a_6_40, a nilpotent element of degree 6
  14. c_8_75, a Duflot regular element of degree 8

About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Ring relations

There are 53 minimal relations of maximal degree 12:

  1. a_1_02
  2. a_1_12
  3. a_1_0·a_1_1
  4. a_2_3·a_1_0
  5. a_2_4·a_1_1
  6. a_2_4·a_1_0 + a_2_3·a_1_1
  7. b_2_6·a_1_0 + b_2_5·a_1_1
  8. a_2_32
  9. a_2_3·a_2_4
  10. a_2_42
  11. a_1_1·b_3_11 + a_2_3·b_2_6
  12. a_1_0·b_3_11 + a_2_3·b_2_5
  13. a_1_1·b_3_12 + a_2_4·b_2_6 + a_2_3·b_2_6
  14. a_1_0·b_3_12 + a_2_4·b_2_5 + a_2_3·b_2_5
  15. b_2_5·b_2_6·a_1_1 + b_2_52·a_1_1
  16. b_2_52·a_1_1 + a_2_3·b_3_11
  17. b_2_52·a_1_1 + a_2_4·b_3_11 + a_2_3·b_3_12
  18. b_2_52·a_1_1 + a_2_4·b_3_12 + a_2_4·b_3_11
  19. b_3_112 + b_2_5·b_2_62 + a_2_4·b_2_52 + a_2_3·b_2_5·b_2_6
  20. b_3_122 + b_2_5·b_2_62 + b_2_52·b_2_6 + a_2_4·b_2_5·b_2_6 + a_2_4·b_2_52
       + a_2_3·b_2_62 + a_2_3·b_2_5·b_2_6
  21. a_1_1·a_5_25
  22. a_2_3·b_2_5·b_2_6 + a_2_3·b_2_52 + a_1_0·a_5_25
  23. a_2_4·b_2_62 + a_2_4·b_2_5·b_2_6 + a_1_1·a_5_28
  24. a_2_3·b_2_5·b_2_6 + a_2_3·b_2_52 + a_1_0·a_5_28
  25. a_2_3·a_5_25
  26. b_2_6·a_5_25 + b_2_5·a_5_28 + b_2_5·a_5_25 + a_2_3·b_2_6·b_3_12
  27. a_2_3·b_2_6·b_3_12 + a_2_3·b_2_5·b_3_12 + a_2_4·a_5_25 + a_2_3·a_5_28
  28. a_2_4·a_5_28 + a_2_4·a_5_25
  29. a_6_37·a_1_1
  30. a_6_37·a_1_0 + a_2_4·a_5_25
  31. a_2_3·b_2_6·b_3_12 + a_2_3·b_2_5·b_3_12 + a_6_40·a_1_1 + a_2_4·a_5_25
  32. a_6_40·a_1_0 + a_2_4·a_5_25
  33. b_3_12·a_5_25 + b_3_11·a_5_25 + b_2_5·a_6_37 + a_2_4·b_2_53 + a_2_3·b_3_11·b_3_12
       + b_2_5·a_1_0·a_5_25
  34. b_3_12·a_5_28 + b_3_12·a_5_25 + b_3_11·a_5_28 + b_3_11·a_5_25 + b_2_6·a_6_37
       + a_2_3·b_3_11·b_3_12 + a_2_3·b_2_63 + b_2_6·a_1_1·a_5_28
  35. a_2_3·a_6_37
  36. a_2_4·a_6_37
  37. b_3_12·a_5_25 + b_2_5·a_6_40 + a_2_3·b_3_11·b_3_12 + a_2_3·b_2_53
  38. b_3_12·a_5_28 + b_3_12·a_5_25 + b_2_6·a_6_40 + a_2_3·b_3_11·b_3_12 + a_2_3·b_2_53
       + b_2_5·a_1_0·a_5_25
  39. a_2_3·a_6_40
  40. a_2_4·a_6_40
  41. a_6_37·b_3_12 + a_6_37·b_3_11 + b_2_52·a_5_28 + b_2_52·a_5_25 + a_2_3·b_2_52·b_3_11
       + a_2_4·b_2_5·a_5_25
  42. a_6_40·b_3_12 + b_2_5·b_2_6·a_5_28 + a_2_3·b_2_6·a_5_28
  43. a_6_40·b_3_11 + a_6_37·b_3_12 + b_2_5·b_2_6·a_5_28 + a_2_3·b_2_52·b_3_12
       + a_2_3·b_2_52·b_3_11 + a_2_3·b_2_6·a_5_28
  44. a_2_4·b_2_54 + a_2_3·b_2_5·b_3_11·b_3_12 + a_2_3·b_2_54 + a_5_252
       + b_2_52·a_1_0·a_5_25
  45. a_5_25·a_5_28 + a_5_252
  46. a_2_4·b_2_54 + a_2_3·b_2_64 + a_2_3·b_2_5·b_3_11·b_3_12 + a_5_282
  47. a_6_37·a_5_28 + a_6_37·a_5_25
  48. a_6_40·a_5_25 + a_6_37·a_5_25
  49. a_6_40·a_5_28 + a_2_4·b_2_52·a_5_25 + a_2_3·b_2_62·a_5_28
  50. a_6_37·a_5_25 + a_2_4·b_2_52·a_5_25 + a_2_3·c_8_75·a_1_1
  51. a_6_372
  52. a_6_402
  53. a_6_37·a_6_40


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Data used for Benson′s test

  • Benson′s completion test succeeded in degree 12.
  • The completion test was perfect: It applied in the last degree in which a generator or relation was found.
  • The following is a filter regular homogeneous system of parameters:
    1. c_1_2, a Duflot regular element of degree 1
    2. c_8_75, a Duflot regular element of degree 8
    3. b_2_62 + b_2_5·b_2_6 + b_2_52, an element of degree 4
    4. b_3_12, an element of degree 3
  • The Raw Filter Degree Type of that HSOP is [-1, -1, 3, 9, 12].
  • The filter degree type of any filter regular HSOP is [-1, -2, -3, -4, -4].
  • We found that there exists some filter regular HSOP formed by the first 2 terms of the above HSOP, together with 2 elements of degree 2.


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128

Restriction maps

Restriction map to the greatest central el. ab. subgp., which is of rank 2

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. c_1_2c_1_0, an element of degree 1
  4. a_2_30, an element of degree 2
  5. a_2_40, an element of degree 2
  6. b_2_50, an element of degree 2
  7. b_2_60, an element of degree 2
  8. b_3_110, an element of degree 3
  9. b_3_120, an element of degree 3
  10. a_5_250, an element of degree 5
  11. a_5_280, an element of degree 5
  12. a_6_370, an element of degree 6
  13. a_6_400, an element of degree 6
  14. c_8_75c_1_18, an element of degree 8

Restriction map to a maximal el. ab. subgp. of rank 4

  1. a_1_00, an element of degree 1
  2. a_1_10, an element of degree 1
  3. c_1_2c_1_0, an element of degree 1
  4. a_2_30, an element of degree 2
  5. a_2_40, an element of degree 2
  6. b_2_5c_1_22, an element of degree 2
  7. b_2_6c_1_32, an element of degree 2
  8. b_3_11c_1_2·c_1_32, an element of degree 3
  9. b_3_12c_1_2·c_1_32 + c_1_22·c_1_3, an element of degree 3
  10. a_5_250, an element of degree 5
  11. a_5_280, an element of degree 5
  12. a_6_370, an element of degree 6
  13. a_6_400, an element of degree 6
  14. c_8_75c_1_22·c_1_36 + c_1_23·c_1_35 + c_1_12·c_1_22·c_1_34
       + c_1_12·c_1_24·c_1_32 + c_1_14·c_1_34 + c_1_14·c_1_22·c_1_32
       + c_1_14·c_1_24 + c_1_18, an element of degree 8


About the group Ring generators Ring relations Completion information Restriction maps Back to groups of order 128




Simon A. King David J. Green
Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2 Ernst-Abbe-Platz 2
D-07743 Jena D-07743 Jena
Germany Germany

E-mail: simon dot king at uni hyphen jena dot de
Tel: +49 (0)3641 9-46184
Fax: +49 (0)3641 9-46162
Office: Zi. 3524, Ernst-Abbe-Platz 2
E-mail: david dot green at uni hyphen jena dot de
Tel: +49 3641 9-46166
Fax: +49 3641 9-46162
Office: Zi 3512, Ernst-Abbe-Platz 2



Last change: 25.08.2009